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1. 750CL Overview

The IBM® 750CL PowerPC® RISC microprocessor is an implementation of the PowerPC Architecture™ with
enhancements to improve the floating point performance and the data transfer capability. This chapter
provides an overview of the PowerPC 750CL microprocessor features, including a block diagram showing the
major functional components. It also provides information about how 750CL implementation complies with
the PowerPC architecture definition.

1.1 750CL Microprocessor Overview

This section describes the features and general operation of 750CL and provides a block diagram showing
major functional units. 750CL is an implementation of the PowerPC microprocessor family of reduced instruc-
tion set computer (RISC) microprocessors with extensions to improve the floating point performance. 750CL
implements the 32-bit portion of the PowerPC Architecture, which provides 32-bit effective addresses, integer
data types of 8, 16, and 32 bits, and floating-point data types of single and double-precision. 750CL extends
the PowerPC Architecture with the paired single-precision floating point data type and a set of paired single
floating point instructions. 750CL is a superscalar processor that can complete two instructions simulta-
neously. It incorporates the following six execution units:

¢ Floating-point unit (FPU)

¢ Branch processing unit (BPU)
* System register unit (SRU)

¢ Load/store unit (LSU)

* Two integer units (IUs): IU1 executes all integer instructions. lU2 executes all integer instructions except
multiply and divide instructions.

The ability to execute several instructions in parallel and the use of simple instructions with rapid execution
times yield high efficiency and throughput for 750CL-based systems. Most integer instructions execute in one
clock cycle. The FPU is pipelined, it breaks the tasks it performs into subtasks, and then executes in three
successive stages. Typically, a floating-point instruction can occupy only one of the three stages at a time,
freeing the previous stage to work on the next floating-point instruction. Thus, three single or paired-single
precision floating-point instructions can be in the FPU execute stage at a time. Double-precision add instruc-
tions have a three-cycle latency; double-precision multiply and multiply-add instructions have a four-cycle
latency.

Figure 8-2 750CL Block Diagram on page 276 shows the parallel organization of the execution units (shaded
in the diagram). The instruction unit fetches, dispatches, and predicts branch instructions. Note that this is a
conceptual model that shows basic features rather than attempting to show how features are implemented
physically.

750CL has independent on-chip, 32 KB, eight-way set-associative, physically addressed L1 caches for
instructions and data and independent instruction and data memory management units (MMUSs). The data
cache can be configured as a four-way, 16 KB locked cache and a four-way, 16 KB normal cache. Each MMU
has a 128-entry, two-way set-associative translation lookaside buffer (DTLB and ITLB) that saves recently
used page address translations. Block address translation is done through the four-entry instruction and data
block address translation (IBAT and DBAT) arrays, defined by the PowerPC Architecture. During block trans-
lation, effective addresses are compared simultaneously with all four BAT entries.
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For information about the L1 cache, see Section 3 750CL Instruction and Data Cache Operation on
page 125.

The L2 cache is implemented with an on-chip, two-way set-associative tag memory, and an on-chip 256 KB
SRAM with error correcting code (ECC) for data storage. See Section 9 L2 Cache, Locked D-Cache, DMA,
and Write Gather Pipe on page 315.

The 750CL has a direct memory access (DMA) engine to transfer data from the external memory to the
locked data cache and to transfer data from the locked data cache to the external memory.

A write gather pipe is implemented for efficient noncacheable store operations.

The 750CL has a 32-bit address bus and a 64-bit data bus. Multiple devices compete for system resources
through a central external arbiter. The 750CL’s three-state cache-coherency protocol (MEI) supports the
modified, exclusive and invalid states, a compatible subset of the MESI (modified/exclusive/shared/invalid)
four-state protocol, and it operates coherently in systems with four-state caches. 750CL supports single-beat
and burst data transfers for external memory accesses and memory-mapped I/O operations. The system
interface is described in Section 7 Signal Descriptions on page 247 and Section 8 Bus Interface Operation on
page 273.

The 750CL has four software-controllable power-saving modes. Three static modes, doze, nap, and sleep,
progressively reduce power dissipation. When functional units are idle, a dynamic power management mode
causes those units to enter a low-power mode automatically without affecting operational performance, soft-
ware execution, or external hardware. Power management is described in Section 10 Power and Thermal
Management on page 329.

1.2 750CL Microprocessor Features

This section lists features of 750CL. The interrelationship of these features is shown in Figure 8-2 750CL
Block Diagram on page 276.

1.2.1 Overview of 750CL Microprocessor Features

Major features of 750CL are as follows.
* High-performance, superscalar microprocessor.

— As many as four instructions can be fetched from the instruction cache per clock cycle.

As many as two instructions can be dispatched per clock.

As many as six instructions can execute per clock (including two integer instructions).

Single-clock-cycle execution for most instructions.
* Six independent execution units and two register files.
— BPU featuring both static and dynamic branch prediction.

— 64-entry (16-set, four-way set-associative) branch target instruction cache (BTIC), a cache of
branch instructions that have been encountered in branch/loop code sequences. If a target
instruction is in the BTIC, it is fetched into the instruction queue a cycle sooner than it can be
made available from the instruction cache. Typically, if a fetch access hits the BTIC, it provides
the first two instructions in the target stream, effectively yielding a zero cycle branch.
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— 512-entry branch history table (BHT) with two bits per entry for four levels of prediction—not-
taken, strongly not-taken, taken, strongly taken.

— Branch instructions that do not update the count register (CTR) or link register (LR) are removed
from the instruction stream.

— Two integer units (IUs) that share thirty-two GPRs for integer operands.
— IU1 can execute any integer instruction.

— IU2 can execute all integer instructions except multiply and divide instructions (multiply, divide,
shift, rotate, arithmetic, and logical instructions). Most instructions that execute in the IU2 take
one cycle to execute. The IU2 has a single-entry reservation station.

— Three-stage FPU.
— Supports paired single precision floating point arithmetic instruction set extension.
— Fully IEEE 754-1985-compliant FPU for both single- and double-precision operations.
— Supports non-IEEE mode for time-critical operations.
— Hardware support for denormalized numbers.
— Two-entry reservation station.
— Thirty-two 64-bit FPRs for single, paired single, or double-precision operands.

— Two-stage LSU.
— Two-entry reservation station.
— Single-cycle, pipelined cache access.
— Dedicated adder performs EA calculations.
— Performs alignment and precision conversion for floating-point data.
— Performs alignment and sign extension for integer data.
— Three-entry store queue.
— Supports both big and little-endian modes.
— Supports data type conversion with indexed scaling.

— SRU handles miscellaneous instructions.
— Executes CR logical and Move to/Move from SPR instructions (mtspr and mfspr).
— Single-entry reservation station.

* Rename buffers.

— Six GPR rename buffers.

— Six FPR rename buffers.

— Condition register buffering supports two CR writes per clock.

e Completion unit.

— The completion unit retires an instruction from the six-entry reorder buffer (completion queue) when
all instructions ahead of it have been completed, the instruction has finished execution, and no
exceptions are pending.

— Guarantees sequential programming model and a precise exception model.

— Monitors all dispatched instructions and retires them in order.
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Tracks unresolved branches and flushes instructions from the mispredicted branch path.

Retires as many as two instructions per clock.

* Separate on-chip L1 instruction and data caches (Harvard architecture).

32 KB, eight-way set-associative instruction and data caches.
Pseudo least-recently-used (PLRU) replacement algorithm.
32-byte (eight-word) cache block.

Physically indexed/physical tags. (Note that the PowerPC Architecture refers to physical address
space as real address space.)

Cache write-back or write-through operation programmable on a virtual page or BAT block basis.
Instruction cache can provide four instructions per clock; data cache can provide two words per clock
Caches can be disabled in software

Caches can be locked in software

Data cache coherency (MEI) maintained in hardware

The critical doubleword is made available to the requesting unit when it is read into the line-fill buffer.
The cache is nonblocking, so it can be accessed during this block reload.

Data cache can be partitioned as a four-way, 16 KB normal cache and a four-way, 16 KB locked
cache.

On-chip 1:1 L2 cache.

256 KB on-chip ECC SRAMSs.

On-chip 2-way set-associative tag memory.

DMA engine.

15-entry DMA command queue.

Each DMA command can transfer up to 4 KB data in 32-byte increment.

Write gather pipe.

128-byte circular first-in, first-out (FIFO) buffer.

Noncacheable stores to a specified address are gathered for burst transaction transfer.

ECC error correction for most single-bit errors, detection of double-bit errors.

Separate memory management units (MMUSs) for instructions and data.

52-bit virtual address; 32-bit physical address.
Address translation for virtual pages or variable-sized BAT blocks.

Memory programmable as write-back/write-through, cacheable/noncacheable, and coherency
enforced/coherency not enforced on a virtual page or BAT block basis.

Separate IBATs and DBATs (four each) arrays for instructions and data, respectively.
Separate virtual instruction and data translation lookaside buffers (TLB).
— Both TLBs are 128-entry, two-way set associative, and use LRU replacement algorithm.

— TLBs are hardware-reloadable (the page table search is performed by hardware).
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* Bus interface features include the following:

— Selectable bus-to-core clock frequency ratios of 2x, 2.5x, 3x, 3.5x, 4x, 4.5x, 5%, 5.5x, 6x, 6.5x, 7x,
7.5x, 8x, 8.5x, 9x, 9.5x, 10x, 11x, 12x, 13x, 14x, 15x, 16x, 17x, 18x, 19x and 20x.

— A 64-bit, split-transaction external data bus with burst transfers.

— Support for address pipelining and limited out-of-order bus transactions.
— 8-word reload buffer for L1 data cache.

— Single-entry load queue.

— Single-entry instruction fetch queue.

— Two-entry L2 cache castout queue.

— No-DRTRY mode eliminates the DRTRY signal from the qualified bus grant. This allows the for-
warding of data during load operations to the internal core one bus cycle sooner than if the use of
DRTRY is enabled.

¢ Multiprocessing support features include the following:

— Hardware-enforced, three-state cache coherency protocol (MEI) for data cache.

— Load/store with reservation instruction pair for atomic memory references, semaphores, and other
multiprocessor operations

¢ Power and thermal management
— Three static modes, doze, nap, and sleep, progressively reduce power dissipation:

— Doze—All the functional units are disabled except for the time base/decrementer registers and
the bus snooping logic.

— Nap—The nap mode further reduces power consumption by disabling bus snooping, leaving only
the time base register and the PLL in a powered state.

— Sleep—All internal functional units are disabled, after which external system logic may disable
the PLL and SYSCLK.

— Instruction cache throttling provides control to slow instruction fetching to limit power consumption.
* Performance monitor can be used to help debug system designs and improve software efficiency.
* In-system testability and debugging features through JTAG boundary-scan capability.

1.2.2 Instruction Flow

As shown in Figure 8-2 750CL Block Diagram on page 276, the 750CL instruction unit provides centralized
control of instruction flow to the execution units. The instruction unit contains a sequential fetcher, six-entry
instruction queue (1Q), dispatch unit, and BPU. It determines the address of the next instruction to be fetched
based on information from the sequential fetcher and from the BPU.

See Section 6 Instruction Timing on page 211 for more information.

The sequential fetcher loads instructions from the instruction cache into the instruction queue. The BPU
extracts branch instructions from the sequential fetcher. Branch instructions that cannot be resolved immedi-
ately are predicted using either 750CL-specific dynamic branch prediction or the architecture-defined static
branch prediction.
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Branch instructions that do not update the LR or CTR are removed from (folded out) the instruction stream.
Instruction fetching continues along the predicted path of the branch instruction.

Instructions issued to execution units beyond a predicted branch can be executed but are not retired until the
branch is resolved. If branch prediction is incorrect, the completion unit flushes all instructions fetched on the
predicted path, and instruction fetching resumes along the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit

The instruction queue (1Q), shown in Figure 8-2 750CL Block Diagram on page 276, holds as many as six
instructions and loads up to four instructions from the instruction cache during a single processor clock cycle.
The instruction fetcher continuously attempts to load as many instructions as there were vacancies created in
the 1Q in the previous clock cycle. All instructions except branches are dispatched to their respective execu-
tion units from the bottom two positions in the instruction queue (IQ0 and 1Q1) at a maximum rate of two
instructions per cycle. Reservation stations are provided for the IU1, IU2, FPU, LSU, and SRU for dispatched
instructions. The dispatch unit checks for source and destination register dependencies, allocates rename
buffers, determines whether a position is available in the completion queue, and inhibits subsequent instruc-
tion dispatching if these resources are not available.

Branch instructions can be detected, decoded, and predicted from anywhere in the instruction queue. For a
more detailed discussion of instruction dispatch, see Section 6.6.1 Branch, Dispatch, and Completion Unit
Resource Requirements on page 237.

1.2.2.2 Branch Processing Unit

The BPU receives branch instructions from the sequential fetcher and performs CR lookahead operations on
conditional branches to resolve them early, achieving the effect of a zero-cycle branch in many cases.

Unconditional branch instructions and conditional branch instructions in which the condition is known can be
resolved immediately. For unresolved conditional branch instructions, the branch path is predicted using
either the architecture-defined static branch prediction or 750CL-specific dynamic branch prediction. Dynamic
branch prediction is enabled if HIDO[BHT] = ‘1"

When a prediction is made, instruction fetching, dispatching, and execution continue along the predicted
path, but instructions cannot be retired and write results back to architected registers until the prediction is
determined to be correct (resolved). When a prediction is incorrect, the instructions from the incorrect path
are flushed from the processor and instruction fetching resumes along the correct path. 750CL allows a
second branch instruction to be predicted; instructions from the second predicted branch instruction stream
can be fetched but cannot be dispatched. These instructions are held in the instruction queue.

Dynamic prediction is implemented using a 512-entry BHT, a cache that provides two bits per entry that
together indicate four levels of prediction for a branch instruction—not-taken, strongly not-taken, taken,
strongly taken. When dynamic branch prediction is disabled, the BPU uses a bit in the instruction encoding to
predict the direction of the conditional branch. Therefore, when an unresolved conditional branch instruction
is encountered, 750CL executes instructions from the predicted path although the results are not committed
to architected registers until the conditional branch is resolved. This execution can continue until a second
unresolved branch instruction is encountered.

When a branch is taken (or predicted as taken), the instructions from the untaken path must be flushed and
the target instruction stream must be fetched into the IQ. The BTIC is a 64-entry cache that contains the most
recently used branch target instructions, typically in pairs. When an instruction fetch hits in the BTIC, the
instructions arrive in the instruction queue in the next clock cycle, a clock cycle sooner than they would arrive
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from the instruction cache. Additional instructions arrive from the instruction cache in the next clock cycle.
The BTIC reduces the number of missed opportunities to dispatch instructions and gives the processor a one-
cycle head start on processing the target stream. With the use of the BTIC the 750CL achieves a zero cycle
delay for branches taken. Coherency of the BTIC table is maintained by table reset on an icache flush invali-
date, icbi or rfi instruction execution or when an exception is taken.

The BPU contains an adder to compute branch target addresses and three user-control registers—the link
register (LR), the CTR, and the CR. The BPU calculates the return pointer for subroutine calls and saves it
into the LR for certain types of branch instructions. The LR also contains the branch target address for the
Branch Conditional to Link Register (belrx) instruction. The CTR contains the branch target address for the
Branch Conditional to Count Register (bectrx) instruction. Because the LR and CTR are SPRs, their contents
can be copied to or from any GPR. Because the BPU uses dedicated registers rather than GPRs or FPRs,
execution of branch instructions is largely independent from execution of integer and floating-point instruc-
tions.

1.2.2.3 Completion Unit

The completion unit operates closely with the dispatch unit. Instructions are fetched and dispatched in
program order. At the point of dispatch, the program order is maintained by assigning each dispatched
instruction a successive entry in the six-entry completion queue. The completion unit tracks instructions from
dispatch through execution and retires them in program order from the two bottom entries in the completion
queue (CQO and CQ1).

Instructions cannot be dispatched to an execution unit unless there is a vacancy in the completion queue and
rename buffers are available. Branch instructions that do not update the CTR or LR are removed from the
instruction stream and do not occupy a space in the completion queue. Instructions that update the CTR and
LR follow the same dispatch and completion procedures as nonbranch instructions, except that they are not
issued to an execution unit.

An instruction is retired when it is removed from the completion queue and it’s results are written to archi-
tected registers (GPRs, FPRs, LR, and CTR) from the rename buffers. In-order completion ensures program
integrity and the correct architectural state when the 750CL must recover from a mispredicted branch or any
exception. Also, the rename buffers that are assigned to it by the dispatch unit are returned to the available
rename buffer pool. These rename buffers are reused by the dispatch unit for subsequent instructions being
dispatched.

For a more detailed discussion of instruction completion, see Section 6.6.1 Branch, Dispatch, and Comple-
tion Unit Resource Requirements on page 237 in this manual.

1.2.2.4 Independent Execution Units

In addition to the BPU, 750CL has the following five execution units.
¢ Two Integer Units (IUs)
¢ Floating-Point Unit (FPU)
¢ Load/Store Unit (LSU)
* System Register Unit (SRU)

Each is described in the following sections.
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Integer Units (IUs)

The integer units IU1 and 1U2 are shown in Figure 8-2 on page 276. The IU1 can execute any integer instruc-
tion; the IU2 can execute any integer instruction except multiplication and division instructions. Each |U has a
single-entry reservation station that can receive instructions from the dispatch unit and operands from the
GPRs or the rename buffers. The output of the IU is latched in the rename buffer assigned to the instruction
by the dispatch unit.

Each IU consists of three single-cycle subunits—a fast adder/comparator, a subunit for logical operations,
and a subunit for performing rotates, shifts, and count-leading-zero operations. These subunits handle all
one-cycle arithmetic and logical integer instructions; only one subunit can execute an instruction at a time.

The 1U1 has a 32-bit integer multiplier/divider as well as the adder, shift, and logical units of the IU2. The
multiplier supports early exit for operations that do not require full 32 x 32 bit multiplication. Multiply and divide
instructions spend several cycles in the execution stage before the results are written to the output rename
buffer.

Floating-Point Unit (FPU)

The FPU, shown in Figure 1-2 on page 35, is designed as a three stage pipelined processing unit, where the
first stage is for multiply, the second stage is for add and the third stage is for normalize. A single-precision
multiply-add operation is processed with 1-cycle throughput and 3-cycle latency. (a single-precision instruc-
tion spends one cycle in each stage of the FPU). A double-precision multiply requires two cycles in the
multiply stage and one cycle in each additional stage. A double-precision multiply-add has a 2-cycle
throughput and a 4-cycle latency. As instructions are dispatched to the FPU’s reservation station, source
operand data can be accessed from the FPRs or from the FPR rename buffers. Results in turn are written to
the rename buffers and are made available to subsequent instructions. Instructions pass through the reserva-
tion station and the pipe line stages in program order. Stalls due to contention for FPRs are minimized by
automatic allocation of the six floating-point rename buffers. The completion unit writes the contents of the
rename buffer to the appropriate FPR when floating-point instructions are retired.

The 750CL supports all IEEE 754 floating-point data types (normalized, denormalized, NaN, zero, and
infinity) in hardware, eliminating the latency incurred by software exception routines. (Note that “exception” is
also referred to as “interrupt” in the architecture specification.) For paired single-precision operations, both
data paths comply with the IEEE standard independently.

Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface between the GPRs,
FPRs, and the data cache/memory subsystem. The LSU functions as a two stage pipe-lined unit where it
calculates effective addresses in the first stage. In second stage the address is translated, the cache is
accessed and the data is aligned if necessary. Unless extensive data alignment is required (for example,
crossing doubleword boundary) the instructions complete in two cycles with a 1-cycle throughput. The LSU
also provides sequencing for load/store string and multiple register transfer instructions.

The 750CL implements 8 paired single quantization load and store instructions. The load instructions read a
pair of 8 or 16-bit, signed or unsigned integers, convert them into single-precision floating point data with the
scaling factor in the quantization register, and write the results into the FPR. The store instructions read the
64-bit data from the FPR as a pair of single-precision floating point data, convert the single-precision floating
point numbers into a pair of 8 or 16-bit, signed or unsigned integer data, and store the results.
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Load and store instructions are translated and issued in program order; however, some memory accesses
can occur out of order. Synchronizing instructions can be used to enforce strict ordering if necessary. When
there are no data dependencies and the guard bit for the page or block is cleared, a maximum of one out-of-
order cacheable load operation can execute per cycle, with a two-cycle total latency on a cache hit. Data
returned from the cache is held in a rename buffer until the completion logic commits the value to a GPR or
FPR. Stores cannot be executed out of order and are held in the store queue until the completion logic
signals that the store operation is to be completed to memory. 750CL executes store instructions with a
maximum throughput of one per cycle and a three-cycle total latency to the data cache. The time required to
perform the actual load or store operation depends on the processor/bus clock ratio and whether the opera-
tion involves the L1 cache, the L2 cache, system memory, or an I/O device.

System Register Unit (SRU)

The SRU executes various system-level instructions, as well as condition register logical operations and
move to/from special-purpose register instructions. To maintain system state, most instructions executed by
the SRU are execution serialized with other instructions; that is, the instruction is held for execution in the
SRU until all previously issued instructions have been retired. Results from execution-serialized instructions
executed by the SRU are not available or forwarded for subsequent instructions until the instruction
completes.

1.2.3 Memory Management Units (MMUSs)

750CL’s MMUs support up to 4 petabytes (252) of virtual-memory and 4 GB (232) of physical memory for
instructions and data. The MMUSs also control access privileges for these spaces on block and page granular-
ities. Referenced and changed status is maintained by the processor for each page to support demand-
paged virtual-memory systems.

The LSU with the aid of the MMU translates effective addresses for data loads and stores; the effective
address is calculated on the first cycle and the MMU translates it to a physical address at the same time it is
accessing the L1 cache on the second cycle. The MMU also provides the necessary control and protection
information to complete the access. By the end of the second cycle, the data and control information is avail-
able if no miss conditions for translate and cache access were encountered. This yields a one-cycle
throughput and a two-cycle latency.

The 750CL supports the following types of memory translation.

* Real addressing mode—In this mode, translation is disabled (control bits MSR[IR] = ‘0’ for instructions
and MSR[DR] = ‘0’ for data) and the effective address is used as the physical address to access memory.

¢ Virtual page address translation—translates from an effective address to a physical address by using the
segment registers and the TLB and access data from a 4 KB virtual page. This page is either in physical
memory or on disk. If the latter a page-fault exception occurs.

¢ Block address translation—translates the effective address into a physical address by using the BAT reg-
isters and accesses a block (128 KB - 256 MB) in memory.

If translation is enabled, the appropriate MMU translates the higher-order bits of the effective address into
physical address bits by either BATs or page translation method. The lower-order address bits (that are
untranslated and therefore, considered both logical and physical) are directed to the L1 caches where they
form the index into the eight-way set-associative tag and data arrays. After translating the address, the MMU
passes the higher-order physical address bits to the cache and the cache lookup completes. For caching-

01_750CL.fm.1.0 750CL Overview
August 8, 2007 Page 31 of 619



User’'s Manual

IBM 750CL RISC Microprocessor Preliminary

inhibited accesses or accesses that miss in the cache, the untranslated lower-order address bits are concate-
nated with the translated higher-order address bits; the resulting 32-bit physical address accesses the L2
cache or system memory using the 60x bus.

If the BAT registers are enabled and the address translates by using this method, the page translation is
canceled and the high-order physical address bits from the BAT register are forward to the cache/memory
access system. There are four 8-byte BAT registers for instruction address translation and four 8-byte regis-
ters for data address translation. In enhanced mode, the number of BAT registers is doubled. These registers
provide cache control and protection information as well as address translation. Only one of the 4 BAT entries
should translate a given effective address.

If address relocation is enabled and the effective address does not translate by using the BAT method, then
the virtual page method is used. The 4 high-order bits of the effective address are used to access the
16-entry segment register array. From this array a 24-bit segment register is accessed and used to form the
high-order bits of a 52-bit virtual address. The low-order 28-bits of the effective address are used to form the
low-order bits of the virtual address. This 52-bit virtual address is translated into a physical address by doing
a lookup in the TLB. If the lookup is successful a physical address is formed by using 16 low-order bits from
the virtual address and 16 high-order bits from the TLB. The TLB also provides cache control and protection
information to be used by the cache/memory system.

TLBs are 128-entry, two-way set-associative caches that contain information about recently translated virtual
addresses. When an address translation is not in a TLB, 750CL automatically generates a page table search
in memory to update the TLB. This search could find the desired entry in the L1 or L2 cache or in the page
table in memory. The time to reload a TLB entry depends on where it is found and could be completed in just
several cycles. If memory is searched, a maximum of 16 bus cycles would be needed before a page fault
exception is signaled.

1.2.4 On-Chip Level 1 Instruction and Data Caches

750CL implements separate instruction and data caches. Each cache is 32 KB and eight-way set associative.
As defined by the PowerPC Architecture, they are physically indexed. Each cache block contains eight
contiguous words from memory that are loaded from an 8-word boundary (that is, bits EA[27-31] are zeros);
thus, a cache block never crosses a page boundary. A miss in the L1 cache causes a block reload from either
the L2 if the block is in the L2 or from main memory. The critical doubleword is accessed first and forwarded
to the load/store unit and written into an 8-word buffer. Subsequent doublewords are fetch from either the L2
or the system memory and written into the buffer. Once the total block is in the buffer the line is written into
the L1 cache in a single cycle through a 256 buffer-to-L1 bus. This minimizes write cycles into the L1 leaving
more read/write cycles available to the LSU. The L1 is nonblocking and supports hits under misses during
this reload. Misaligned accesses across a block or page boundary can incur a performance penalty.

750CL L1 cache organization is shown in Figure 1-1 on page 33.
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Figure 1-1. Cache Organization
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The data cache provides double-word accesses to the LSU each cycle. Like the instruction cache, the data
cache can be invalidated all at once or on a per-cache-block basis. The data cache can be disabled and
invalidated by clearing HIDO[DCE] and setting HIDO[DCFI]. The data cache can be locked by setting
HIDO[DLOCK]. To ensure cache coherency, the data cache supports the three-state MEI protocol. The data
cache tags are single-ported, so a simultaneous load or store and a snoop access represent a resource colli-
sion and a LSU access is delayed for one cycle. If a snoop hit occurs and a cast-out is required, the LSU is
blocked internally for one cycle to allow the eight-word block of data to be copied to the write-back buffer.

The data bus width for bus interface unit (BIU) accesses of the L1 data cache array is 64 bits on the 750CL
and cast out or reload of a 32-byte cache line requires four access cycles. On the 750CL, this bus has been
expanded to 256 bits with access to an intermediate 32-byte buffer. As a result, cache blocks can be read
from or written to the cache array in a single cycle, reducing cache contention between the BIU, the L1 and
the load-store unit. See Figure 9-1 on page 316.

By setting HID2[LCE] = “1’, the data cache can be configured into two partitions. The first partition, consisting
of ways 0 - 3, forms a 16 KB normal data cache. The second partition, consisting of ways 4-7, forms a 16 KB
locked cache which can be used as an on-chip memory. The detail operation is defined in Section 9 L2
Cache, Locked D-Cache, DMA, and Write Gather Pipe on page 315. Within one cycle, the instruction cache
provides up to four instructions to the instruction queue. The instruction cache can be invalidated entirely or
on a cache-block basis. The instruction cache can be disabled and invalidated by clearing HIDO[ICE] and
setting HIDO[ICFI]. The instruction cache can be locked by setting HIDO[ILOCK]. The instruction cache
supports only the valid/invalid states.
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The 750CL also implements a 64-entry (16-set, four-way set-associative) BTIC. The BTIC is a cache of
branch instructions that have been encountered in branch/loop code sequences. If the target instruction is in
the BTIC, it is fetched into the instruction queue a cycle sooner than it can be made available from the instruc-
tion cache. Typically the BTIC contains the first two instructions in the target stream. The BTIC can be
disabled and invalidated through software.

Coherency of the BTIC is transparent to the running software and is coupled with various functions in
the750CL processor. When the BTIC is enabled and loaded with instruction pairs to support zero cycle delay
on branches taken, the table must be invalidated if the underlying program changes. (This is also true for the
I-cache.) The BTIC is reset on an icache flush invalidate, an icbi or rfi instruction, and any exception.

For more information and timing examples showing cache hit and cache miss latencies, see Section 6.3.2
Instruction Fetch Timing on page 218.

1.2.5 On-Chip Level 2 Cache Implementation

The L2 cache is a unified cache that receives memory requests from both the L1 instruction and data caches
independently. The L2 cache is implemented with a L2 cache control register (L2CR), an on-chip, two-way,
set-associative tag array, and with a 256 KB on-chip SRAM for data storage. The L2 cache normally operates
in write-back mode and supports cache coherency through snooping. The access interface to the L2 is 64 bits
and requires four cycles to read or write a single cache block. The L2 uses ECC on a doubleword and
corrects most single bit errors and detects all double bit errors. See Figure 9-1 on page 316.

The L2 cache is organized with 64-byte lines, which in turn are subdivided into 32-byte blocks, the unit at
which cache coherency is maintained. This reduces the size of the tag array and one tag supports two cache
blocks. Each 32-byte cache block has its own valid and modified status bits. When a cache line is removed,
both blocks and the tag are removed from the L2 cache. The cache block is only written to system memory if
the modified bit is set.

Requests from the L1 cache generally result from instruction misses, data load or store misses, write-through
operations, or cache management instructions. Misses from the L1 cache are looked up in the L2 tags and
serviced by the L2 cache if they hit; they are forwarded to the 60x bus interface if they miss.

The L2 cache can accept multiple, simultaneous accesses, however, they are serialized and processed one
per cycle. The L1 instruction cache can request an instruction at the same time that the L1 data cache is
requesting one load and two store operations. The L2 cache also services snoop requests from the bus. If
there are multiple pending requests to the L2 cache, snoop requests have highest priority. The next priority
consists of load and store requests from the L1 data cache. The next priority consists of instruction fetch
requests from the L1 instruction cache. A load miss normally results in a request for the 32-byte sector
containing the desired instruction or data. Optionally, the L2 cache can be configured to request a 64-byte
line or 128-byte block instead.

1.2.6 System Interface/Bus Interface Unit

The address and data buses operate independently; address and data tenures of a memory access are
decoupled to provide a more flexible control of bus traffic. The primary activity of the system interface is trans-
ferring data and instructions between the processor and system memory. There are two types of memory
accesses.

* Single-beat transfers—These memory accesses allow transfer sizes of 8, 16, 24, 32, or 64 bits in one bus
clock cycle. Single-beat transactions are caused by uncacheable read and write operations that access
memory directly when caches are disabled, for cache-inhibited accesses, and for stores in write-through
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mode. The two latter accesses are defined by control bits provided by the MMU during address transla-
tion.

¢ Four-beat burst (32-byte) data transfers—burst transactions, which always transfer an entire cache block
(32 bytes), are initiated when an entire cache block is transferred. If the caches on the 750CL are enabled
and using write-back mode, burst-read operations are the most common memory accesses, followed by
burst-write memory operations and single beat (noncacheable or write-through) memory read and write
operations.

750CL also supports address-only operations, variants of the burst and single-beat operations, (for example,
atomic memory operations and global memory operations that are snooped), and address retry activity (for

example, when a snooped read access hits a modified block in the cache). The broadcast of some address-
only operations is controlled through HIDO[ABE]. I/O accesses use the same protocol as memory accesses.

Access to the system interface is granted through an external arbitration mechanism that allows devices to
compete for bus mastership. This arbitration mechanism is flexible, allowing 750CL to be integrated into
systems that implement various fairness and bus parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including load/store string and
multiple instructions, do not necessarily complete in the order they begin—maximizing the efficiency of the
bus without sacrificing data coherency. 750CL allows read operations to go ahead of store operations (except
when a dependency exists, or in cases where a noncacheable access is performed), and provides support for
a write operation to go ahead of a previously queued read data tenure (for example, letting a snoop push be
enveloped between address and data tenures of a read operation). Because 750CL can dynamically optimize
run-time ordering of load/store traffic, overall performance is improved.

The system interface is specific for each PowerPC microprocessor implementation.

750CL signals are grouped as shown in Figure 1-2. Test and control signals provide diagnostics for selected
internal circuits.

Figure 1-2. System Interface

Address Arbitration €«—>» ~«—>» Data Arbitration
Address Start <«—>»| <<—> Data Transfer
750CL
Address Transfer «——» <—>» Data Termination
Transfer Attribute €«—> <—>» Test and Control
Address Termination <«——> <—>» Clocks
System Status <——> <«—>» Processor Status/Control

Vbp Vpp (/0)

The system interface supports address pipelining, which allows the address tenure of one transaction to
overlap the data tenure of another. The extent of the pipelining depends on external arbitration and control
circuitry. Similarly, 750CL supports split-bus transactions for systems with multiple potential bus masters—
one device can have mastership of the address bus while another has mastership of the data bus. Allowing
multiple bus transactions to occur simultaneously increases the available bus bandwidth for other activity.

750CL’s clocking structure supports a wide range of processor-to-bus clock ratios.
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1.2.7 Signals

750CL’s signals are grouped as follows.
* Address arbitration signals—750CL uses these signals to arbitrate for address bus mastership.

* Address start signals—These signals indicate that a bus master has begun a transaction on the address
bus.

¢ Address transfer sighals—These signals include the address bus. They are used to transfer the address.

¢ Transfer attribute signals—These signals provide information about the type of transfer, such as the trans-
fer size and whether the transaction is bursted, write-through, or caching-inhibited.

* Address termination signals—These signals are used to acknowledge the end of the address phase of
the transaction. They also indicate whether a condition exists that requires the address phase to be
repeated.

* Data arbitration signals—750CL uses these signals to arbitrate for data bus mastership.
* Data transfer signals—These signals are used to transfer the data.

¢ Data termination signals—Data termination signals are required after each data beat in a data transfer. In
a single-beat transaction, a data termination signal also indicates the end of the tenure; in burst
accesses, data termination signals apply to individual beats and indicate the end of the tenure only after
the final data beat.

¢ Interrupt signals—These signals include the interrupt signal, checkstop signals, and both soft reset and
hard reset signals. These signals are used to generate interrupt exceptions and, under various condi-
tions, to reset the processor.

* Processor status and control signals—These signals are used control the processor nap and sleep power
management modes and other functions.

* JTAG/COP interface signals—The common on-chip processor (COP) unit provides a serial interface to
the system for performing board-level boundary scan interconnect tests. Other signals in this group are
used during factory test of the 750CL.

* Clock signals—These signals determine the system clock type (single or differential) and operating fre-
quency.

Note: A bar over a signal name indicates that the signal is active low—for example, ARTRY (address retry)
and TS (transfer start). Active-low signals are referred to as asserted (active) when they are low and negated
when they are high. Signals that are not active low, such as A[0-31] (address bus signals) and TT[0—4]
(transfer type signals) are referred to as asserted when they are high and negated when they are low.

1.2.8 Signal Configuration

Figure 7-1 on page 248 shows the 750CL’s logical pin configuration. The signals are grouped by function.
Signal functionality is described in detail in Section 7 Signal Descriptions on page 247and Section 8 Bus
Interface Operation on page 273.

1.2.9 Clocking

750CL requires a single system clock input, SYSCLK, that represents the bus interface frequency. Internally,
the processor uses a phase-locked loop (PLL) circuit to generate a master core clock that is frequency-multi-
plied and phase-locked to the SYSCLK input. This core frequency is used to operate the internal circuitry.
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The PLL is configured by the PLL_CFG[0-4] signals, which select the multiplier that the PLL uses to multiply
the SYSCLK frequency up to the internal core frequency. The feedback in the PLL guarantees that the
processor clock is phase locked to the bus clock, regardless of process variations, temperature changes, or
parasitic capacitances.

The PLL also ensures a 50% duty cycle for the processor clock.

750CL supports various processor-to-bus clock frequency ratios, although not all ratios are available for all
frequencies. Configuration of the processor/bus clock ratios is displayed through a 750CL-specific register,
HID1. For information about supported clock frequencies, see the 750CL datasheet.

1.3 750CL Microprocessor: Implementation

The PowerPC Architecture is derived from the POWER architecture (Performance Optimized With Enhanced
RISC architecture). The PowerPC Architecture shares the benefits of the POWER architecture optimized for
single-chip implementations. The PowerPC Architecture design facilitates parallel instruction execution and is
scalable to take advantage of future technological gains.

This section describes the PowerPC Architecture in general, and specific details about the implementation of
750CL as a low-power, 32-bit member of the PowerPC processor family. The structure of this section follows
the organization of the user’'s manual; each subsection provides an overview of each chapter.

* Registers and programming model—Section 1.4 PowerPC Registers and Programming Model on
page 38 describes the registers for the operating environment architecture common among PowerPC
processors and describes the programming model. It also describes the registers that are unique to
750CL. The information in this section is described more fully in Section 2 Programming Model on
page 53.

* Instruction set and addressing modes—Section 1.5 Instruction Set on page 41 describes the PowerPC
instruction set and addressing modes for the PowerPC operating environment architecture, defines the
PowerPC instructions implemented in 750CL, and describes new instruction set extensions to improve
the performance of single-precision floating-point operations and the capability of data transfer. The infor-
mation in this section is described more fully in Section 1.1 750CL Microprocessor Overview on page 23.

* Cache implementation—Section 1.6 On-Chip Cache Implementation on page 43 describes the cache
model that is defined generally for PowerPC processors by the virtual environment architecture. It also
provides specific details about 750CL cache implementation.

¢ Exception model—Section 1.7 Exception Model on page 44 describes the exception model of the Pow-
erPC operating environment architecture and the differences in 750CL exception model. The information
in this section is described more fully in Section 4 Exceptions on page 157.

* Memory management—Section 1.8 Memory Management on page 47 describes generally the conven-
tions for memory management among the PowerPC processors. This section also describes 750CL’s
implementation of the 32-bit PowerPC memory management specification. The information in this section
is described more fully in Section 5 Memory Management on page 181.

¢ Instruction timing—Section 1.9 Instruction Timing on page 48 provides a general description of the
instruction timing provided by the superscalar, parallel execution supported by the PowerPC Architecture
and 750CL. The information in this section is described more fully in Section 6 Instruction Timing on
page 211.

* Power management—Section 1.10 Power Management on page 50 describes how the power manage-
ment can be used to reduce power consumption when the processor, or portions of it, are idle. The infor-
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mation in this section is described more fully in Section 10 Power and Thermal Management on
page 329.

* Thermal management—Section 1.11 Thermal Management on page 51 describes the cache throttling
mechanism that can be used to reduce die temperature. The information in this section is described more
fully in Section 10 Power and Thermal Management on page 329.

¢ Performance monitor—Section 1.12 Performance Monitoron page 51 describes the performance monitor
facility, which system designers can use to help bring up, debug, and optimize software performance. The
information in this section is described more fully in Section 11 Performance Monitor on page 335.

The following sections summarize the features of 750CL, distinguishing those that are defined by the archi-
tecture from those that are unique to 750CL implementation.

The PowerPC Architecture consists of the following layers, and adherence to the PowerPC Architecture can
be described in terms of which of the following levels of the architecture is implemented:

¢ PowerPC user instruction set architecture (UISA)—Defines the base user-level instruction set, user-level
registers, data types, floating-point exception model, memory models for a uniprocessor environment,
and programming model for a uniprocessor environment.

* PowerPC virtual environment architecture (VEA)—Describes the memory model for a multiprocessor
environment, defines cache control instructions, and describes other aspects of virtual environments.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily adhere to the
OEA.

¢ PowerPC operating environment architecture (OEA)—Defines the memory management model, supervi-
sor-level registers, synchronization requirements, and the exception model. Implementations that con-
form to the OEA also adhere to the UISA and the VEA.

The PowerPC Architecture allows a wide range of designs for such features as cache and system interface
implementations. 750CL implementations support the three levels of the architecture described above. For
more information about the PowerPC Architecture, see the PowerPC Microprocessor Family: The Program-
ming Environments manual.

Specific features of 750CL are listed in Section 1.2 750CL Microprocessor Features on page 24.

1.4 PowerPC Registers and Programming Model

The PowerPC Architecture defines register-to-register operations for most computational instructions. Source
operands for these instructions are accessed from the registers or are provided as immediate values
embedded in the instruction itself. The three-register instruction formats allow specification of a target register
distinct from the two source operands. Only load and store instructions transfer data between registers and
memory.

PowerPC processors have two levels of privilege—supervisor mode of operation (typically used by the oper-
ating system) and user mode of operation (used by the application software, it is also called problem state).
The programming models incorporate 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Each PowerPC microprocessor also has its own unique set of hardware implemen-
tation-dependent (HID) registers.

While running in supervisor mode the operating system is able to execute all instructions and access all regis-
ters defined in the PowerPC Architecture. In this mode the operating system establishes all address transla-
tions and protection mechanisms, loads all processor state registers. and sets up all other control
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mechanisms defined on the 750CL processor. While running in user mode (problem state) many of these
registers and facilities are not accessible and any attempt to read or write these register results in a program
exception.

Figure 2-1 Programming Model—750CL Microprocessor Registers on page 54 shows all 750CL registers
available at the user and supervisor level. The numbers to the right of the SPRs indicate the number that is
used in the syntax of the instruction operands to access the register.

For more information see Section 2 Programming Model on page 53.

The following tables summarize the PowerPC registers implemented in 750CL; Table 1-1 describes the regis-
ters (excluding SPRs) defined by the architecture.

Table 1-1. Architecture-Defined Registers (Excluding SPRs)

Register Level Function

The condition register (CR) consists of eight four-bit fields that reflect the results of certain operations,
CR User such as move, integer and floating-point compare, arithmetic, and logical instructions, and provide a
mechanism for testing and branching.

FPRs User The 32 floating-point registers (FPRs) serve as the data source or destination for floating-point instruc-
tions. These 64-bit registers can hold single, paired single or double-precision floating-point values.

The floating-point status and control register (FPSCR) contains the floating-point exception signal bits,
FPSCR User exception summary bits, exception enable bits, and rounding control bits needed for compliance with the
IEEE-754 standard.

GPRs User The 32 GPRs contain the address and data arguments addressed from source or destination fields in inte-
ger instructions. Also floating-point load and store instructions use GPRs for addressing memory.

The machine state register (MSR) defines the processor state. lts contents are saved when an exception
is taken and restored when exception handling completes. The 750CL implements MSR[POW], (defined
by the architecture as optional), which is used to enable the power management feature.
The 750CL-specific MSR[PM] bit is used to mark a process for the performance monitor.

MSR Supervisor

The sixteen 32-bit segment registers (SRs) define the 4-GB space as sixteen 256-MB segments. 750CL
implements segment registers as two arrays—a main array for data accesses and a shadow array for

SR0-SR15 | Supervisor |instruction accesses; see Figure 8-2 on page 276. Loading a segment entry with the Move to Segment
Register (mtsr) instruction loads both arrays. The mfsr instruction reads the master register, shown as
part of the data MMU in Figure 8-2.

The OEA defines numerous special-purpose registers that serve a variety of functions, such as providing
controls, indicating status, configuring the processor, and performing special operations. During normal
execution, a program can access the registers, shown in Figure 2-1 Programming Model—750CL Micropro-
cessor Registers on page 54, depending on the program’s access privilege (supervisor or user, determined
by the privilege-level (PR) bit in the MSR). GPRs and FPRs are accessed through operands that are defined
in the instructions. Access to registers can be explicit (that is, through the use of specific instructions for that
purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-Purpose Register
(mfspr) instructions) or implicit, as the part of the execution of an instruction. Some registers can be
accessed both explicitly and implicitly.

In 750CL, all SPRs are 32 bits wide. Table 1-2 describes the architecture-defined SPRs implemented by
750CL. In the PowerPC Microprocessor Family: The Programming Environments manual, these registers are
described in detail, including bit descriptions. Section 2.1 750CL Processor Register Set on page 53
describes how these registers are implemented in 750CL. In particular, this section describes which features
the PowerPC Architecture defines as optional are implemented on 750CL.
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Table 1-2. Architecture-Defined SPRs Implemented

Register

LR

BATs

CTR
DABR
DAR

DEC

DSISR

EAR

PVR

SDR1

SRRO

SRR1

SPRGO-
SPRG3

B

XER

Level Function
User The link register (LR) can be used to provide the branch target address and to hold the return address
after branch and link instructions.
The architecture defines 16 block address translation registers (BATs), which operate in pairs. The 750CL
Supervisor supports an enhanced BAT facility with an additional 16 BAT registers. There are four pairs (eight pairs in
P enhanced mode) of data BATs (DBATSs) and four pairs (eight pairs in enhanced mode) of instruction BATs
(IBATs). BATs are used to define and configure blocks of memory.
User The CTR is decremented and tested by branch-and-count instructions.
Supervisor The optional data address breakpoint register (DABR) supports the data address breakpoint facility.
User The data address register (DAR) holds the address of an access after an alignment or DSI exception.
s . The decrementer register (DEC) is a 32-bit decrementing counter that provides a way to schedule time
upervisor )
delayed exceptions.
User The DSISR defines the cause of data access and alignment exceptions.
Supervisor The external access register (EAR) controls access to the external access facility through the External
P Control In Word Indexed (eciwx) and External Control Out Word Indexed (ecowx) instructions.
Supervisor The processor version register (PVR) is a read-only register that identifies the processor version and revi-
P sion level.
Supervisor SDR1 specifies the page table address and size used in virtual-to-physical page address translation.
s . The machine status save/restore register 0 (SRR0) saves the address used for restarting an interrupted
upervisor o ! ) .
program when a Return from Interrupt (rfi) instruction executes (i.e., exceptions).
Supervisor The machine status save/restore register 1 (SRR1) is used to save machine status on exceptions and to
P restore machine status when an rfi instruction is executed.
Supervisor SPRGO0-SPRGS are provided for operating system use.
User: read . . . . . L . . .
s .| The time base register (TB) is a 64-bit register that maintains the time and date variable. The TB consists
UPEIVISOr: | o o 32-bit fields—time base upper (TBU) and time base lower (TBL).
read/write
The XER contains the summary overflow bit, integer carry bit, overflow bit, and a field specifying the num-
User ber of bytes to be transferred by a Load String Word Indexed (Iswx) or Store String Word Indexed

(stswx) instruction.

Table 1-3 describes the SPRs in 750CL that are not defined by the PowerPC Architecture. Section 2.2.2
Alignment and Misaligned Accesses on page 80 gives detailed descriptions of these registers, including bit

descriptions.

Table 1-3. Implementation-Specific Registers (Page 1 of 2)

Register

DMAL, DMAU

GQRO0-GQR7

HIDO

HID1

750CL Overview
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Level Function
Supervisor | The DMA upper(DMAU) and DMA low (DMAL) registers are used to issue the DMA commands.
Subervisor The quantization registers (GQRO0-GQR?7) are used to determine the scaling factor and
P data type conversion for the quantization load/store instructions.
Supervisor The hardware implementation-dependent register 0 (HIDO) provides checkstop enables and
P other functions.
Supervisor The hardware implementation-dependent register 1 (HID1) allows software to read the configu-

ration of the PLL configuration signals.
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Table 1-3. Implementation-Specific Registers (Page 2 of 2)

Register Level Function

The hardware implementation-dependent register 2 (HID2) enables the paired-single floating-
HID2 Supervisor | point operations, L1 cache partition, write pipe and DMA, and controls the exceptions associ-
ated with the DMA and the locked cache operations.

The hardware implementation-dependent register 4 (HID4) controls the enhanced features in

HID4 Supervisor the 750CL design.

The instruction address breakpoint register (IABR) supports instruction address breakpoint
IABR Supervisor | exceptions. It can hold an address to compare with instruction addresses in the Q. An address
match causes an instruction address breakpoint exception.

The instruction cache-throttling control register (ICTC) has bits for controlling the interval at
ICTC Supervisor | which instructions are fetched into the instruction buffer in the instruction unit. This helps control
750CL’s overall junction temperature.

L2CR Supervisor | The L2 cache control register (L2CR) is used to configure and operate the L2 cache.
The monitor mode control registers (MMCRO-MMCR1) are used to enable various performance
MMCRO-MMCR1 Supervisor | monitoring interrupt functions. UMMCRO-UMMCR1 provide user-level read access to MMCRO—-
MMCR1.

The performance monitor counter registers (PMC1-PMC4) are used to count specified events.

PMC1-PMC4 Supervisor UPMC1-UPMC4 provide user-level read access to these registers.

The sampled instruction address register (SIA) holds the EA of an instruction executing at or
SIA Supervisor | around the time the processor signals the performance monitor interrupt condition. The USIA
register provides user-level read access to the SIA.

THRM1, THRM2, The thermal control registers are implemented for software compatibility, but the thermal assist

THRM3 Supervisor unit is not implemented in 750CL.
o The user monitor mode control registers (UMMCRO-UMMCRH1) provide user-level read access
UMMCRO0-UMMCR1 User to MMCRO-MMCRA.
UPMCA—UPMCA4 User The user performance monitor counter registers (UPMC1-UPMC4) provide user-level read
access to PMC1-PMC4.
The user sampled instruction address register (USIA) provides user-level read access to the
USIA User .
SIA register.
WPAR Supervisor Write gather pipe address register (WPAR) specifies the address of the noncacheable stores to

be gathered for burst transfer.

1.5 Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction formats are consistent
among all instruction types (primary op-code is always six bits, register operands always specified in the
same bit fields in the instruction), permitting efficient decoding to occur in parallel with operand accesses.
This fixed instruction length and consistent format greatly simplify instruction pipelining.

For more information, see Section 2 Programming Model on page 53.

1.5.1 PowerPC Instruction Set

The PowerPC instructions are divided into the following categories:
¢ Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions

— Integer compare instructions
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— Integer logical instructions
— Integer rotate and shift instructions

* Floating-point instructions—These include floating-point computational instructions, as well as instruc-
tions that affect the FPSCR.

Floating-point arithmetic instructions

Floating-point multiply/add instructions

Floating-point rounding and conversion instructions

Floating-point compare instructions

Floating-point status and control instructions

» Load/store instructions—These include integer and floating-point load and store instructions.

Integer load and store instructions

Integer load and store multiple instructions

Floating-point load and store

Primitives used to construct atomic memory operations (lwarx and stwex. instructions)

¢ Flow control instructions—These include branching instructions, condition register logical instructions,
trap instructions, and other instructions that affect the instruction flow.

— Branch and trap instructions
— Condition register logical instructions (sets conditions for branches)
— System Call

¢ Processor control instructions—These instructions are used for synchronizing memory accesses and
management of caches, TLBs, and the segment registers.

Move to/from SPR instructions
Move to/from MSR

Synchronize (processor and memory system)

Instruction synchronize

Order loads and stores

¢ Memory control instructions—To provide control of caches, TLBs, and SRs.

Supervisor-level cache management instructions

User-level cache instructions

Segment register manipulation instructions

Translation lookaside buffer management instructions

This grouping does not indicate the execution unit that executes a particular instruction or group of instruc-
tions.

Integer instructions operate on byte, half-word, and word operands. Floating-point instructions operate on
single-precision (one word) and double-precision (two word) floating-point operands. The PowerPC Architec-
ture uses instructions that are 4 bytes long and word-aligned. It provides for integer byte, half-word, and word
operand loads and stores between memory and a set of 32 GPRs. It also provides for single and double
precision loads and stores between memory and a set of 32 floating-point registers (FPRs).
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Computational instructions do not access memory. To use a memory operand in a computation and then
modify the same or another memory location, the memory contents must be loaded into a register, modified,
and then written back to the target location using three or more instructions.

PowerPC processors follow the program flow when they are in the normal execution state; however, the flow
of instructions can be interrupted directly by the execution of an instruction or by an asynchronous event.
Either type of exception causes the associated exception handler to be invoked.

Effective address computations for both data and instruction accesses use 32-bit signed two’s complement
binary arithmetic. A carry from bit 0 and overflow are ignored.

1.5.2 750CL Microprocessor Instruction Set

In addition to the 32-bit single-precision and the 64-bit double-precision floating-point operands, the 750CL
implements a new floating-point operand type: paired single-precision. The paired single operand uses a 64-
bit FPR to maintain two 32-bit single precision floating point operands. The PowerPC instruction set is
substantially extended to support the paired single data type.
750CL instruction set is defined as follows.

e 750CL provides hardware support for all 32-bit PowerPC instructions.

* 750CL implements the following instructions optional to the PowerPC Architecture:

External Control In Word Indexed (eciwx)

External Control Out Word Indexed (ecowx)

Floating Select (fsel)

Floating Reciprocal Estimate Single-Precision (fres)*.

Floating Reciprocal Square Root Estimate (frsqrte)*.

Store Floating-Point as Integer Word (stfiw).

e 750CL implements Data cache block zero and lock (debz_l), not included in the PowerPC Architecture to
support the cache line allocation in the locked cache.

¢ Floating point instructions to support the paired single operand data type. The 750CL implements the fol-
lowing instruction set extension not included in the PowerPC Architecture to support the paired single
data type.

— Quantization load instructions.
— Quantization store instructions.

— Floating point instructions to support the paired single operand data type.

* fres and frsqrte have a resolution of <1/4000.

1.6 On-Chip Cache Implementation

The following subsections describe the PowerPC Architecture’s treatment of cache in general, and 750CL-
specific implementation, respectively. A detailed description of 750CL L1 cache implementation is provided in
Section 3 750CL Instruction and Data Cache Operation on page 125.
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1.6.1 PowerPC Cache Model

The PowerPC Architecture does not define hardware aspects of cache implementations. For example,
PowerPC processors can have unified caches, separate instruction and data caches (Harvard architecture),
or no cache at all. PowerPC microprocessors control the following memory access modes on a virtual page
or block (BAT) basis.

¢ Write-back/write-through mode
¢ Caching-inhibited mode

e Memory coherency

The caches are physically addressed, and the data cache can operate in either write-back or write-through
mode, as specified by the PowerPC Architecture.

The PowerPC Architecture defines the term ‘cache block’ as the cacheable unit. The VEA and OEA define
cache management instructions that a programmer can use to affect cache contents.

1.6.2 750CL Microprocessor Cache Implementation

750CL cache implementation is described in Section 1.2.4 On-Chip Level 1 Instruction and Data Caches and
Section 1.2.5 On-Chip Level 2 Cache Implementation. The BPU also contains a 64-entry BTIC that provides
immediate access to an instruction pair for taken branches. For more information, see Section 1.2.2.2 Branch
Processing Unit.

1.7 Exception Model

The following sections describe the PowerPC exception model and 750CL implementation. A detailed
description of 750CL exception model is provided in Section 4 Exceptions on page 157.

1.7.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to interrupt the instruction flow to handle certain
situations caused by external signals, errors, or unusual conditions arising from the instruction execution.
When exceptions occur, information about the state of the processor is saved to certain registers, and the
processor begins execution at an address (exception vector) predetermined for each exception. System soft-
ware must complete the saving of the processor state prior to servicing the exception. Exception processing
proceeds in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more specific condition may
be determined by examining a register associated with the exception—for example the MSR, DSISR, and
FPSCR contain status bits which further identify the exception condition. Additionally, some exception condi-
tions can be explicitly enabled or disabled by software.

The PowerPC Architecture requires that exceptions be handled in specific priority and program order; there-
fore, although a particular implementation may recognize exception conditions out of order, they are handled
in program order. When an instruction-caused exception is recognized, any unexecuted instructions that
appear earlier in the instruction stream, including any that are undispatched, are required to complete before
the exception is taken, and any exceptions those instructions cause must also be handled first; likewise,
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asynchronous, precise exceptions are recognized when they occur but are not handled until the instructions
currently in the completion queue successfully retire or generate an exception, and the completion queue is
emptied.

Unless a catastrophic condition causes a system reset or machine check exception, only one exception is
handled at a time. For example, if one instruction encounters multiple exception conditions, those conditions
are handled sequentially in priority order. After the exception handler completes, the instruction processing
continues until the next exception condition is encountered. Recognizing and handling exception conditions
sequentially guarantees system integrity.

When an exception is taken, information about the processor state before the exception was taken is saved in
SRRO and SRR1. Exception handlers must save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset and machine check exception or due to an instruc-
tion-caused exception in the exception handler, and before re-enabling external interrupts. The exception
handler must also save and restore any GPR registers used by the handler.

The PowerPC Architecture supports four types of exceptions.

¢ Synchronous, precise—These are caused by instructions. All instruction-caused exceptions are handled
precisely; that is, the machine state at the time the exception occurs is known and can be completely
restored. This means that (excluding the trap and system call exceptions) the address of the faulting
instruction is provided to the exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream complete execution before the exception is taken. Once the exception is
processed, execution resumes at the address of the faulting instruction (or at an alternate address pro-
vided by the exception handler). When an exception is taken due to a trap or system call instruction, exe-
cution resumes at an address provided by the handler.

* Synchronous, imprecise—The PowerPC Architecture defines two imprecise floating-point exception
modes, recoverable and nonrecoverable. Even though 750CL provides a means to enable the imprecise
modes, it implements these modes identically to the precise mode (that is, enabled floating-point excep-
tions are always precise).

* Asynchronous, maskable—The PowerPC Architecture defines external and decrementer interrupts as
maskable, asynchronous exceptions. When these exceptions occur, their handling is postponed until the
next instruction, and any exceptions associated with that instruction, completes execution. If no instruc-
tions are in the execution units, the exception is taken immediately upon determination of the correct
restart address (for loading SRRO0). As shown in Table 1-4 on page 46, 750CL implements additional
asynchronous, maskable exceptions.

¢ Asynchronous, nonmaskable—There are two nonmaskable asynchronous exceptions: system reset and
the machine check exception. These exceptions may not be recoverable, or may provide a limited degree
of recoverability. Exceptions report recoverability through the MSR[RI] bit.

1.7.2 750CL Microprocessor Exception Implementation

750CL exception classes described above are shown in Table 1-4. Although exceptions have other charac-
teristics, such as priority and recoverability, Table 1-4 describes categories of exceptions 750CL handles
uniquely. Table 1-4 includes no synchronous imprecise exceptions; although the PowerPC Architecture
supports imprecise handling of floating-point exceptions, 750CL implements these exception modes
precisely.
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Table 1-4. 750CL Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Type
Asynchronous, nonmaskable Imprecise Machine check, system reset.
Asynchronous, maskable Precise External, decrementer, system management, performance monitor, and

thermal management interrupts.

Synchronous Precise Instruction-caused exceptions.

Table 1-5 lists 750CL exceptions and conditions that cause them. Exceptions specific to 750CL are indicated.

Table 1-5. Exceptions and Conditions

Exception Type VeCt(%re%ffset Causing Conditions
Reserved 00000 —
System reset 00100 Assertion of either HRESET or SRESET or at power-on reset.

Assertion of TEA during a data bus transaction, assertion of MCP, an
Machine check 00200 address, data or L2 double bit error, DMA queue overflow, DMA look-up
misses locked cache, or debz_I cache hit. MSR[ME] must be set.

As specified in the PowerPC Architecture. For TLB misses on load,

DSl 00300 store, or cache operations, a DSI| exception occurs if a page fault occurs.
1SI 00400 As defined by the PowerPC Architecture.
External interrupt 00500 MSRIEE] = ‘1" and INT is asserted.
* A floating-point load/store, stmw, stwex, Imw, lwarx, eciwx or
ecowx instruction operand is not word-aligned.
Alignment 00600 . gcr:'éuel-tiple/string load/store operation is attempted in little-endian
* The operand of debz or of debz_I is in memory that is write-
through-required or caching-inhibited or the cache is disabled.
Program 00700 As defined by the PowerPC Architecture.
Floating-point unavailable 00800 As defined by the PowerPC Architecture.
OoB0 e o o e e !
Reserved 00A00-00BFF —
System call 00C00 Execution of the System Call (sc¢) instruction.
Trace 00D00 MSR[SE] = 9’ or a branch instruction completes and MSR[BE] = 1, _
Unlike the architecture definition, isync does not cause a trace exception
coEoo 7800 doss ot generate an xcoptn to i vt Oter PowereC
Reserved 00E10-00EFF —
Performance monitor’ 00F00 :I:Ih’e limit specified in a PMC register is reached and MMCRO[ENINT] =
Instruction address breakpoint! 01300 I:‘;;}[PE]Z ga@%tgﬁsiﬁfgizgigf;g;gg i:n‘s%r,lljction to complete,
Reserved 01400-02FFF —

Note:
1. 750CL-specific.
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1.8 Memory Management

The following subsections describe the memory management features of the PowerPC Architecture, and
750CL implementation, respectively. A detailed description of 750CL MMU implementation is provided in
Section 5 Memory Management on page 181.

1.8.1 PowerPC Memory Management Model

The primary functions of the MMU are to translate logical (effective) addresses to physical addresses for
memory accesses and to provide access protection on blocks and pages of memory. There are two types of
accesses generated by 750CL that require address translation—instruction fetches, and data accesses to
memory generated by load, store, and cache control instructions.

The PowerPC Architecture defines different resources for 32 and 64-bit processors; the 750CL implements
the 32-bit memory management model. The memory-management unit provides two types of memory access
models: Block Address Translate (BAT) model and a virtual address model. The BAT block sizes have a
range of 128 KB - 256 MB and are selectable from high order effective address bits and have priority over the
virtual model. The virtual model employs a 52-bit virtual address space made up by a 24 bit segment address
space and a 28 bit effective address space. The virtual model utilizes a demand paging method with a 4K
byte page size. In both models address translation is done completely by hardware, in parallel with cache
accesses, with no additional cycles incurred.

The 750CL MMU also provides independent four-entry (eight-entry in enhanced mode) BAT arrays for
instructions and data that maintain address translations for blocks of memory. These entries define blocks
that can vary from 128 KB - 256 MB. The BAT arrays are maintained by system software. Instructions and
data share the same virtual address model, but could operate in separate segment spaces.

The PowerPC 750CL MMU and exception model support demand-paged virtual-memory. Virtual-memory
management permits execution of programs larger than the size of physical memory; demand-paged implies
that individual pages for data and instructions are loaded into physical memory from system disk only when
they are required by an executing program. Infrequently used pages in memory are returned to disk or
discarded if they have not been modified.

The hashed page table is a fixed-sized data structure (size should be determined by the amount of physical
memory available to the system) that contains 8-byte entries (PTEs) that define the mapping between virtual
pages and physical pages. The page table size is a power of 2, and is boundary aligned in memory based on
the size of the table. The page table contains a number of page table entry groups (PTEGs). A PTEG
contains eight page table entries (PTEs) of 8 bytes each; therefore, each PTEG is 64 bytes long. PTEG
addresses are entry points for table search operations. A given page translation can be found in one of two
possible PTEG’s. The size and location in memory of the page table is defined in the SDR1 register.

Setting MSRJ[IR] enables instruction address translations and MSR[DR] enables data address translations. If
the bit is cleared, the respective effective address is used as the physical address.

1.8.2 750CL Microprocessor Memory Management Implementation

750CL implements separate MMUs for instructions and data. It implements a copy of the segment registers in
the instruction MMU; however, read and write accesses (mfsr and mtsr) are handled through the segment
registers implemented as part of the data MMU. 750CL MMU is described in Section 1.2.3 Memory Manage-
ment Units (MMUs) on page 31.
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The R (referenced) bit is set in the PTE in memory during a page table search due to a TLB miss. Updates to
the changed (C) bit are treated like TLB misses. Again the page table is searched to find the correct PTE to
update when the C bit changes from ‘0’ to ‘1°.

1.9 Instruction Timing

750CL is a pipelined, superscalar processor. A pipelined processor is one in which instruction processing is
divided into discrete stages, allowing work to be done on multiple instructions in each stage. For example,
after an instruction completes one stage, it can pass on to the next stage leaving the previous stage available
to a subsequent instruction. This improves overall instruction throughput.

A superscalar processor is one that issues multiple independent instructions to separate execution units in a
single cycle, allowing multiple instructions to execute in parallel. 750CL has six independent execution units,
two for integer instructions, and one each for floating-point instructions, branch instructions, load and store
instructions, and system register instructions. Having separate GPRs and FPRs allows integer, floating-point
calculations, and load and store operations to occur simultaneously without interference. Additionally, rename
buffers are provided to allow operations to post completed results to be used by subsequent instructions
without committing them to the architected FPR and GPR register files.

As shown in Figure 1-3, the common pipeline of 750CL has four stages through which all instructions must
pass—fetch, decode/dispatch, execute, and complete/write back. Instructions flow sequentially through each
stage. However, at dispatch a position is made available in the completion queue at the same time it enters
the execution stage. This simplifies the completion operation when instructions are retired in program order.
Both the load/store and floating-point units have multiple stages to execute their instructions. An instruction
occupies only one stage at a time in all execution units. At each stage an instruction may proceed without
delay or may stall. Stalls are caused by the requirement of additional processing or other events. For example
divide instructions require multiple cycles to complete the operation, load and store instructions may stall
waiting for address translation (TLB reload, page fault, and so forth).
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Figure 1-3. Pipeline Diagram
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Note: Figure 1-3 does not show features, such as reservation stations and rename buffers that reduce stalls

and improve instruction throughput.

The instruction pipeline in 750CL has four major pipeline stages — fetch, dispatch, execute and complete —

described as follows.

* The fetch pipeline stage primarily involves fetching instructions from the memory system and keeping the

instruction queue full. The BPU decodes branches after they are fetched and removes (folds out) those
that do not update CTR or LR from the instruction stream. If the branch is taken or predicted as taken the
fetch unit is informed of the new address and fetching resumes along the taken patch. For branches not
taken or predicted as not taken sequential fetching continues.

The dispatch unit is responsible for taking instructions from the bottom two locations of the instruction
queue and delivering them to an execution unit for farther processing. Dispatch is responsible for decod-
ing the instructions and determining which instructions can be dispatched. To qualify for dispatch, a reser-
vation station, a rename buffer and a position in the completion queue all must be available. A branch
instruction could be processed by the BPU on the same clock cycle for a maximum of three-instruction
dispatch per cycle.

The dispatch stage accesses operands, assigns a rename buffer for operands that updates architected
registers (GPR, FPR, CR, and so forth) and delivers the instruction to the reservation registers of the
respective execution units. If a source operand is not available (a previous instruction is updating the item
through a rename buffer) dispatch provides a tag that indicates which rename buffer supplies the operand
when it becomes available. At the end of the dispatch stage, the instructions are removed from the
instructions queue, latched into reservation stations at the appropriate execution unit and assigned posi-
tions in the completion buffers in sequential program order.
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¢ The execution units process instructions from their reservations stations using the operands provided
from dispatch and notifies the completion stage when the instruction has finished execution. With the
exception of multiply and divide integer instructions complete execution in a single cycle.

¢ FPU has three stages for processing floating-point arithmetic. The FPU stages are multiply, add, and nor-
malize. All single precision arithmetic (add, subtract, multiply and multiply/add) instructions are processed
without stalls at each stage. They have a 1-cycle throughput and a 3-cycle latency. Three different arith-
metic instructions can be in execution at one time with one instruction completing execution each cycle.
Double-precision arithmetic multiply requires two cycles in the multiply stage and one cycle in add, and
one in normalize yielding a 2-cycle throughput and a 4 cycle latency. All divide instructions require multi-
ple cycles in the first stage for processing.

* The load/store unit has two reservation registers and two pipeline stages. The first stage is for effective
address calculation and the second stage is for MMU translation and accessing the L1 data cache. Load
instructions have a 1-cycle throughput and a 2-cycle latency.

¢ In the case of an internal exception, the execution unit reports the exception to the completion pipeline
stage and (except for the FPU) discontinues instruction execution until the exception is handled. The
exception is not signaled until it is determined that all previous instruction have completed to a point
where they do not signal an exception.

e The completion unit retires instruction from the bottom two positions of the completion queue in program
order. This maintains the correct architectural machine state and transfers execution results from the
rename buffers to the GPRs and FPRs (and CTR and LR, for some instructions) as instructions are
retired. If completion logic detects an instruction causing an exception, all following instructions are can-
celled, their execution results in rename buffers are discarded, and instructions are fetched from the
appropriate exception vector.

Because the PowerPC Architecture can be applied to such a wide variety of implementations, instruction
timing varies among PowerPC processors.

For a detailed discussion of instruction timing with examples and a table of latencies for each execution unit,
see Section 6 Instruction Timing on page 211.

1.10 Power Management

750CL provides four power modes, selectable by setting the appropriate control bits in the MSR and HIDO
registers. The four power modes are as follows.

¢ Full-power—This is the default power state of 750CL. 750CL is fully powered and the internal functional
units are operating at the full processor clock speed. If the dynamic power management mode is enabled,
functional units that are idle automatically enter a low-power state without affecting performance, software
execution, or external hardware.

* Doze—All the functional units of 750CL are disabled except for the time base/decrementer registers and
the bus snooping logic. When the processor is in doze mode, an external asynchronous interrupt, a sys-
tem management interrupt, a decrementer exception, a hard or soft reset, or machine check brings
750CL into the full-power state. 750CL in doze mode maintains the PLL in a fully powered state and
locked to the system external clock input (SYSCLK) so a transition to the full-power state takes only a few
processor clock cycles.

* Nap—The nap mode further reduces power consumption by disabling bus snooping, leaving only the
time base register and the PLL in a powered state. 750CL returns to the full-power state upon receipt of
an external asynchronous interrupt, a system management interrupt, a decrementer exception, a hard or
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soft reset, or a machine check input (MCP). A return to full-power state from a nap state takes only a few
processor clock cycles. When the processor is in nap mode, if QACK is negated, the processor is put in
doze mode to support snooping.

Sleep—Sleep mode minimizes power consumption by disabling all internal functional units, after which
external system logic may disable the PLL and SYSCLK. Returning 750CL to the full-power state requires
the enabling of the PLL and SYSCLK, followed by the assertion of an external asynchronous interrupt, a
system management interrupt, a hard or soft reset, or a machine check input (MCP) signal after the time
required to relock the PLL.

Section 10 Power and Thermal Management on page 329 provides information about power saving and
thermal management modes for 750CL.

1.11 Thermal Management

The thermal assist unit found on other PowerPC processors is not implemented on 750CL. The three thermal
registers, THRM1-3, are implemented for software compatibility, but have no control function.

Instruction cache throttling provides control of 750CL’s overall junction temperature by determining the
interval at which instructions are fetched. This feature is accessed through the ICTC register.

Section 10 Power and Thermal Management on page 329 provides information about power saving and
thermal management modes for 750CL.

1.12 Performance Monitor

750CL incorporates a performance monitor facility that system designers can use to help bring up, debug,
and optimize software performance. The performance monitor counts events during execution of code,
relating to dispatch, execution, completion, and memory accesses.

The performance monitor incorporates several registers that can be read and written to by supervisor-level
software. User-level versions of these registers provide read-only access for user-level applications. These
registers are described in Section 1.4 PowerPC Registers and Programming Model on page 38. Performance
monitor control registers, MMCRO or MMCR1, can be used to specify which events are to be counted and the
conditions for which a performance monitoring interrupt is taken. Additionally, the sampled instruction
address register, SIA (USIA), holds the address of the first instruction to complete after the counter over-
flowed.

Attempting to write to a user-read-only performance monitor register causes a program exception, regardless
of the MSR[PR] setting.

When a performance monitoring interrupt occurs, program execution continues from vector offset 0Ox00F0O.

Section 11 Performance Monitor on page 335 describes the operation of the performance monitor diagnostic
tool incorporated in 750CL.
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2. Programming Model

This chapter describes the 750CL programming model, emphasizing those features specific to the 750CL
processor and summarizing those that are common to PowerPC® processors. It consists of three major
sections, which describe the following:

* Registers implemented in the 750CL
¢ Operand conventions
e 750CL instruction set

For detailed information about architecture-defined features, see the PowerPC Microprocessor Family: The
Programming Environments manual.

2.1 750CL Processor Register Set

This section describes the registers implemented in the 750CL. It includes an overview of registers defined by
the PowerPC Architecture™, highlighting differences in how these registers are implemented in the 750CL,
and a detailed description of 750CL-specific registers. Full descriptions of the architecture-defined register
set are provided in Chapter 2, “PowerPC Register Set” in the PowerPC Microprocessor Family: The Program-
ming Environments manual.

Registers are defined at all three levels of the PowerPC Architecture—user instruction set architecture
(UISA), virtual environment architecture (VEA), and operating environment architecture (OEA). The PowerPC
Architecture defines register-to-register operations for all computational instructions. Source data for these
instructions are accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register distinct from the two
source registers, thus preserving the original data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and registers with explicit
load and store instructions only.

2.1.1 Register Set

The registers implemented in the 750CL are shown in Figure 2-1. The number to the right of the special-
purpose registers (SPRs) indicates the number that is used in the syntax of the instruction operands to
access the register (for example, the number used to access the integer exception register (XER) is SPR 1).
These registers can be accessed using the mtspr and mfspr instructions.
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Figure 2-1. Programming Model—750CL Microprocessor Registers
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1. These registers are processor-specific registers. They might not be supported by other PowerPC processors.
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The PowerPC UISA registers are user-level. General-purpose registers (GPRs) and floating-point registers
(FPRs) are accessed through instruction operands. Access to registers can be explicit (by using instructions
for that purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-Purpose
Register (mfspr) instructions) or implicit as part of the execution of an instruction. Some registers are
accessed both explicitly and implicitly.

Implementation Note—The 750CL fully decodes the SPR field of the instruction. If the SPR specified is
undefined, the illegal instruction program exception occurs. The PowerPC’s user-level registers are described
as follows:

¢ User-level registers (UISA)—The user-level registers can be accessed by all software with either user or
supervisor privileges. They include the following:

— General-purpose registers (GPRs). The thirty-two GPRs (GPR0O—GPR31) serve as data source or
destination registers for integer instructions and provide data for generating addresses. See “General
Purpose Registers (GPRs)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor
Family: The Programming Environments manual for more information.

— Floating-point registers (FPRs). The thirty-two FPRs (FPRO-FPR31) serve as the data source or
destination for all floating-point instructions. See “Floating-Point Registers (FPRs)” in Chapter 2,
“PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming Environments
manual.

— Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CRO—CR7, that reflect results of
certain arithmetic operations and provide a mechanism for testing and branching. See “Condition
Register (CR)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The
Programming Environments manual.

— Floating-point status and control register (FPSCR). The FPSCR contains all floating-point exception
signal bits, exception summary bits, exception enable bits, and rounding control bits needed for com-
pliance with the IEEE 754 standard. See “Floating-Point Status and Control Register (FPSCR)” in
Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming Envi-
ronments manual.

The remaining user-level registers are SPRs. Note that the PowerPC Architecture provides a separate
mechanism for accessing SPRs (the mtspr and mfspr instructions). These instructions are commonly
used to explicitly access certain registers, while other SPRs may be more typically accessed as the side
effect of executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries for integer operations. See
“XER Register (XER)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family:
The Programming Environments manual for more information.

Note: Implementation Note—To allow emulation of the Iscbx instruction defined by the POWER
architecture, XER[16-23] is implemented so that they can be read with mfspr[XER] and written with
mtxer[XER] instructions.

— Link register (LR). The LR provides the branch target address for the Branch Conditional to Link Reg-
ister (belrx) instruction, and can be used to hold the logical address of the instruction that follows a
branch and link instruction, typically used for linking to subroutines. See “Link Register (LR)” in
Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming Envi-
ronments manual.

— Count register (CTR). The CTR holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR can also provide the branch target address for the
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Branch Conditional to Count Register (beccetrx) instruction. See “Count Register (CTR)” in Chapter 2,
“PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming Environments
manual.

* User-level registers (VEA)—The PowerPC VEA defines the time base facility (TB), which consists of two
32-bit registers—time base upper (TBU) and time base lower (TBL). The time base registers can be writ-
ten to only by supervisor-level instructions but can be read by both user and supervisor-level software.
For more information, see “PowerPC VEA Register Set—Time Base” in Chapter 2, “PowerPC Register
Set” of the PowerPC Microprocessor Family: The Programming Environments manual.

* Supervisor-level registers (OEA)—The OEA defines the registers an operating system uses for mem-
ory management, configuration, exception handling, and other operating system functions. The OEA
defines the following supervisor-level registers for 32-bit implementations:

— Configuration registers

— Machine state register (MSR). The MSR defines the state of the processor. The MSR can be
modified by the Move to Machine State Register (mtmsr), System Call (sc), and Return from
Exception (rfi) instructions. It can be read by the Move from Machine State Register (mfmsr)
instruction. When an exception is taken, the contents of the MSR are saved to the machine status
save/restore register 1 (SRR1), which is described below. See “Machine State Register (MSR)”
in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming
Environments manual for more information.

Implementation Note—Table 2-1 describes MSR bits the 750CL implements that are not
required by the PowerPC Architecture.

Table 2-1. Additional MSR Bits

Bit Name Description

Power management enable. Optional to the PowerPC Architecture.
0 Power management is disabled.

13 POW 4 Power management is enabled. The processor can enter a power-saving mode when additional conditions
are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in the hardware implementation-
dependent register 0 (HIDO), described in Table 2-4 on page 61.

Performance monitor marked mode. This bit is specific to the 750CL, and is defined as reserved by the PowerPC
Architecture. See Section 11 Performance Monitor on page 335 in this manual.

0 Process is not a marked process.
1 Process is a marked process.

29 PM

Note: Setting MSR[EE] masks not only the architecture-defined external interrupt and decrementer excep-
tions but also the 750CL-specific system management and performance monitor exceptions.

— Processor version register (PVR). This register is a read-only register that identifies the version
(model) and revision level of the PowerPC processor. For more information, see “Processor Ver-
sion Register (PVR)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Fam-
ily: The Programming Environments manual.

— Memory management registers

— Block-address translation (BAT) registers. The PowerPC OEA includes an array of block address
translation registers that can be used to specify four blocks of instruction space and four blocks of
data space. The BAT registers are implemented in pairs—four pairs of instruction BATs
(IBATOU - IBAT3U and IBATOL - IBAT3L) and four pairs of data BATs (DBATOU - DBAT3U and
DBATOL - DBAT3L). The 750CL processor supports an enhanced BAT facility that allows specifi-
cation of eight blocks of instruction space and eight blocks of data space. In this mode, the eight
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instruction BAT register pairs are IBATOU - IBAT7U and IBATOL - IBAT7L, and the eight data BAT
register pairs are DBATOU - DBAT7U and DBATOL - DBAT7L. Figure 2-1 on page 54 lists the
SPR numbers for the BAT registers. For more information, see “BAT Registers” in Chapter 2,
“PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming Environ-
ments manual. Because BAT upper and lower words are loaded separately, software must
ensure that BAT translations are correct during the time that both BAT entries are being loaded.

The 750CL implements the G bit in the IBAT registers; however, attempting to execute code from
an IBAT area with G = 1 causes an IS exception. This complies with the revision of the architec-
ture described in the PowerPC Microprocessor Family: The Programming Environments manual.

— SDR1. The SDR1 register specifies the page table base address used in virtual-to-physical
address translation. See “SDR1” in Chapter 2, “PowerPC Register Set” of the PowerPC Micro-
processor Family: The Programming Environments manual.

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment registers (SR0—
SR15). Note that the SRs are implemented on 32-bit implementations only. The fields in the seg-
ment register are interpreted differently depending on the value of bit 0. See “Segment Registers”
in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming
Environments manual for more information.

Note: The 750CL implements separate memory management units (MMUSs) for instruction and
data. It associates the architecture-defined SRs with the data MMU (DMMU). It reflects the val-
ues of the SRs in separate, so-called ‘shadow’ segment registers in the instruction MMU (IMMU).

— Exception-handling registers

— Data address register (DAR). After a DSI or an alignment exception, DAR is set to the effective
address (EA) generated by the faulting instruction. See “Data Address Register (DAR)” in
Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming
Environments manual for more information.

— SPRGO0-SPRGS. The SPRGO0-SPRGS registers are provided for operating system use. See
“SPRG0-SPRG3” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family:
The Programming Environments manual for more information.

— DSISR. The DSISR register defines the cause of DSI and alignment exceptions. See “DSISR” in
Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming
Environments manual for more information.

— Machine status save/restore register 0 (SRR0). The SRRO register is used to save the address of
the instruction at which execution continues when rfi executes at the end of an exception handler
routine. See “Machine Status Save/Restore Register 0 (SRR0)” in Chapter 2, “PowerPC Register
Set” of the PowerPC Microprocessor Family: The Programming Environments manual for more
information.

— Machine status save/restore register 1 (SRR1). The SRR1 register is used to save machine sta-
tus on exceptions and to restore machine status when rfi executes. See “Machine Status
Save/Restore Register 1 (SRR1)” in Chapter 2, “PowerPC Register Set” of the PowerPC Micro-
processor Family: The Programming Environments manual for more information.

Implementation Note—When a machine check exception occurs, the 750CL sets one or more
error bits in SRR1. Table 2-2 describes the SRR1 bits the 750CL implements that are not
required by the PowerPC Architecture.
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Table 2-2. Additional SRR1 Bits

Bit
10
11
12
13

Name Description
DMA | Set by a dcbz_| or DMA error

L2DP |Set by a double bit ECC error in the L2

MCPIN | Set by the assertion of MCP
TEA | Set by a TEA assertion on the 60x bus

Miscellaneous registers

— Time base (TB). The TB is a 64-bit structure provided for maintaining the time of day and operat-
ing interval timers. The TB consists of two 32-bit registers—time base upper (TBU) and time base
lower (TBL). The time base registers can be written to only by supervisor-level software, but can
be read by both user and supervisor-level software. See “Time Base Facility (TB)—OEA” in
Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Programming
Environments manual for more information.

— Decrementer register (DEC). This register is a 32-bit decrementing counter that provides a mech-
anism for causing a decrementer exception after a programmable delay; the frequency is a subdi-
vision of the processor clock. See “Decrementer Register (DEC)” in Chapter 2, “PowerPC
Register Set” of the PowerPC Microprocessor Family: The Programming Environments manual
for more information.

Implementation Note—In the 750CL, the decrementer register is decremented and the time
base is incremented at a speed that is one-fourth the speed of the bus clock.

— Data address breakpoint register (DABR)—This optional register is used to cause a breakpoint
exception if a specified data address is encountered. See “Data Address Breakpoint Register
(DABR)” in Chapter 2, “PowerPC Register Set” of the PowerPC Microprocessor Family: The Pro-
gramming Environments manual.”

— External access register (EAR). This optional register is used in conjunction with eciwx and
ecowx. Note that the EAR register and the eciwx and ecowx instructions are optional in the
PowerPC Architecture and may not be supported in all PowerPC processors that implement the
OEA. See “External Access Register (EAR)” in Chapter 2, “PowerPC Register Set” of the Pow-
erPC Microprocessor Family: The Programming Environments manual for more information.

» 750CL-specific registers—The PowerPC Architecture allows implementation-specific SPRs. Those
incorporated in the 750CL are described as follows. Note that in the 750CL, these registers are all super-
visor-level registers.

Instruction address breakpoint register (IABR)—This register can be used to cause a breakpoint
exception if a specified instruction address is encountered.

Hardware implementation-dependent register 0 (HIDO)—This register controls various functions,
such as enabling checkstop conditions, and locking, enabling, and invalidating the instruction and
data caches.

Hardware implementation-dependent register 1 (HID1)—This register reflects the state of
PLL_CFG[0-4] clock signals.

Hardware implementation-dependent register 2 (HID2)—This register controls the graphics enhance-
ment facilities, including the locked cache and DMA, the write gather pipe and paired-single process-
ing in the floating-point unit.
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— Hardware implementation-dependent register 4 (HID4)—This register controls enhanced cache and
bus features.

— Direct memory access (DMA) registers—The pair of DMA registers, DMAU and DMAL, is used to
specify and issue a DMA command. Each DMA command consists of a locked cache address, an
external memory address, transfer length and transfer direction.

— Graphics quantization registers (GQRs)—This array of eight registers is used to specify the conver-
sion parameters used by the paired-single quantized load and store instructions.

— Write pipe address register (WPAR)—This register is used to specify the target address of noncache-
able store transactions to be gathered by the write gather pipe facility.

— The L2 cache control register (L2CR) is used to configure and operate the L2 cache.

— Performance monitor registers. The following registers are used to define and count events for use by
the performance monitor:

— The performance monitor counter registers (PMC1 - PMC4) are used to record the number of
times a certain event has occurred. UPMC1 - UPMC4 provide user-level read access to these
registers.

— The monitor mode control registers (MMCRO - MMCR1) are used to enable various performance
monitor interrupt functions. UMMCRO - UMMCRT1 provide user-level read access to these regis-
ters.

— The sampled instruction address register (SIA) contains the effective address of an instruction
executing at or around the time that the processor signals the performance monitor interrupt con-
dition. USIA provides user-level read access to the SIA.

— The 750CL does not implement the sampled data address register (SDA) or the user-level, read-
only USDA registers. However, for compatibility with processors that do, those registers can be
written to by boot code without causing an exception. SDA is SPR 959; USDA is SPR 943.

— The instruction cache throttling control register (ICTC) has bits for enabling the instruction cache
throttling feature and for controlling the interval at which instructions are forwarded to the instruction
buffer in the fetch unit. This provides control over the processor’s overall junction temperature.

— Thermal management registers (THRM1, THRM2 and THRMS3). The thermal assist unit is not imple-
mented in the 750CL. These three registers are implemented for software compatibility but have no
control function.

Note: While it is not guaranteed that the implementation of the 750CL-specific registers is consistent among
PowerPC processors, other processors might implement similar or identical registers.

2.1.2 750CL-Specific Registers

This section describes registers that are defined for the 750CL but are not included in the PowerPC Architec-
ture.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The address breakpoint register (IABR), shown in Figure 2-2, supports the instruction address breakpoint
exception. When this exception is enabled, instruction fetch addresses are compared with an effective
address stored in the IABR. If the word specified in the IABR is fetched, the instruction breakpoint handler is
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invoked. The instruction that triggers the breakpoint does not execute before the handler is invoked. For more
information, see Section 4.5.14 Instruction Address Breakpoint Exception (0x01300) on page 177. The IABR
can be accessed with mtspr and mfspr using the SPR1010.

Figure 2-2. Instruction Address Breakpoint Register

Address BE | TE

0 29 30 31
The IABR bits are described in Table 2-3.

Table 2-3. Instruction Address Breakpoint Register Bit Settings

Bits Name Description

0:29 | Address |Word address to be compared

30 BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.
31 TE Translation enabled. An IABR match is signaled if this bit matches MSR[IR].

2.1.2.2 Hardware Implementation-Dependent Register 0

The hardware implementation-dependent register 0 (HIDO) controls the state of several functions within the
750CL. The HIDO register is shown in Figure 2-3.

Figure 2-3. Hardware Implementation-Dependent Register 0 (HIDO)

DLOCK \:| Reserved
EMCP BCLK ECLK DOZE SLEEP ILOCK NOOPTI
DBP|EBA/EBD 0 PAR| [NAP| DPM| 0 0 0 |NHR|ICE|DCE ICFI| DCFI SPD‘IFEM SGE|DCFA|BTIC| 0 [ABE|BHT| 0

01t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The HIDO bits are described in Table 2-4.
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Table 2-4. HIDO Bit Functions (Page 1 of 4)

Bit Name
0 EMCP
1 DBP
2 EBA
3 EBD
4 BCLK
5 J—
6 ECLK
7 PAR
8 DOZE
9 NAP
10 SLEEP
11 DPM
12:14 —

02_750CL.fm.1.0
August 8, 2007

Function

Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused by assertion of
MCP, similar to how MSR[EE] can mask external interrupts.

0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes checkstop if MSR[ME] = ‘0’ or a machine check exception if ME = 1.
Enable/disable 60x bus address and data parity generation.

0 Parity generation enabled.

1 Parity generation disabled.

NOTE: 60x bus parity signals are not pinned out on the 750CL; so, parity generation can be enabled or disabled.

Enable/disable 60x bus address parity checking

0 Prevents address parity checking.
1 Allows a address parity error to cause a checkstop if MSR[ME] = ‘0’ or a machine check exception if
MSR[ME] = 1.

EBA must remain set to 0.

Enable 60x bus data parity checking

0 Parity checking is disabled.
1 Allows a data parity error to cause a checkstop if MSR[ME] = ‘0’ or a machine check exception if
MSR[ME] = 1.

EBA must remain set to 0.
CLK_OUT enable. Used in conjunction with HIDO[ECLK] to configure CLK_OUT. See Table 2-5 on page 64.
Not used. Defined as EICE on some earlier processors.

CLK_OUT enable. Used in conjunction with HIDO[BCLK] to configure CLK_OUT. See Table 2-5.

Disable precharge of ARTRY.
0 Precharge of ARTRY enabled

1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high (negated) state. If this is
done, the system must restore the signals to the high state.

Doze mode enable. Operates in conjunction with MSR[POW].
0 Doze mode disabled.

1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze mode, the
PLL, time base, and snooping remain active.

Nap mode enable. Operates in conjunction with MSR[POW].
0 Nap mode disabled.

1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In nap mode, the PLL
and the time base remain active.

Sleep mode enable. Operates in conjunction with MSR[POW].

0 Sleep mode disabled.

1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. QREQ is asserted to
indicate that the processor is ready to enter sleep mode. If the system logic determines that the processor may enter
sleep mode, the quiesce acknowledge signal, QACK, is asserted back to the processor. Once QACK assertion is
detected, the processor enters sleep mode after several processor clocks. At this point, the system logic may turn off
the PLL by first configuring PLL_CFG[0—4] to PLL bypass mode, then disabling SYSCLK.

Dynamic power management enable.
0 Dynamic power management is disabled.

1 Functional units may enter a low-power mode automatically if the unit is idle. This does not affect operational
performance and is transparent to software or any external hardware.

Not used.
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Table 2-4. HIDO Bit Functions (Page 2 of 4)

Bit

15

16

17

18

19

20

Name

NHR

ICE

DCE

ILOCK

DLOCK

ICFI

Function

Not hard reset (software-use only)—Helps software distinguish a hard reset from a soft reset.
0 A hard reset occurred if software had previously set this bit.

1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs and this bit
remains set, software can tell it was a soft reset.

Instruction cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache operations) are ignored. In
the disabled state for the L1 caches, the cache tag state bits are ignored and all accesses are propagated to the L2
cache or bus as single-beat transactions. For those transactions, however, Cl reflects the original state determined
by address translation regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled.

Data cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked cache-
inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache operations) are ignored. In the dis-
abled state for the L1 caches, the cache tag state bits are ignored and all accesses are propagated to the L2 cache or
bus as single-beat transactions. For those transactions, however, Cl reflects the original state determined by address
translation regardless of cache disabled status. DCE is zero at power-up.

1 The data cache is enabled.

Instruction cache lock

0 Normal operation

1 Instruction cache is locked. A locked cache supplies data normally on a hit, but are treated as a cache-inhib-
ited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is single-beat, however, Cl still
reflects the original state as determined by address translation independent of cache locked or disabled status.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

Data cache lock.

0 Normal operation

1 Data cache is locked. A locked cache supplies data normally on a hit but is treated as a cache-inhibited
transaction on a miss. On a miss, the transaction to the bus or the L2 cache is single-beat, however, Cl still reflects
the original state as determined by address translation independent of cache locked or disabled status. A snoop hit to
a locked L1 data cache performs as if the cache were not locked. A cache block invalidated by a snoop remains
invalid until the cache is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

Instruction cache flash invalidate

0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation begins (usually the
next cycle after the write operation to the register). The instruction cache must be enabled for the invalidation to
occur.

1 An invalidate operation is issued that marks the state of each instruction cache block as invalid without writ-
ing back modified cache blocks to memory. Cache access is blocked during this time. Bus accesses to the cache are
signaled as a miss during invalidate-all operations. Setting ICFI clears all the valid bits of the blocks and the PLRU
bits to point to way L0 of each set. Once the L1 flash invalidate bits are set through a mtspr operations, hardware
automatically resets these bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO).
Note: In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits was to set them
and clear them in two consecutive mtspr operations. Software that already has this sequence of operations does not
need to be changed to run on the 750CL.
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Table 2-4. HIDO Bit Functions (Page 3 of 4)

Bit Name Function

Data cache flash invalidate

0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins (usually the next
cycle after the write operation to the register). The data cache must be enabled for the invalidation to occur.
1 An invalidate operation is issued that marks the state of each data cache block as invalid without writing

back modified cache blocks to memory. Cache access is blocked during this time. Bus accesses to the cache are sig-
naled as a miss during invalidate-all operations. Setting DCFI clears all the valid bits of the blocks and the PLRU bits

21 DCFI to point to way LO of each set. Once the L1 flash invalidate bits are set through a mtspr operations, hardware auto-
matically resets these bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO).
Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set.
Note that in the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits was to set
them and clear them in two consecutive mtspr operations. Software that already has this sequence of operations
does not need to be changed to run on the 750CL.
Speculative cache access disable

2 SPD 0 Speculative bus accesses to nonguarded space (G = ‘0’) from both the instruction and data caches is
enabled
1 Speculative bus accesses to nonguarded space in both caches is disabled
Enable M bit on bus for instruction fetches.

23 IFEM |0 M bit disabled. Instruction fetches are treated as nonglobal on the bus
1 Instruction fetches reflect the M bit from the WIM settings.
Store gathering enable
0 Store gathering is disabled

24 sge |1 Integer store gathering is performed for write-through to nonguarded space or for cache-inhibited stores to
nonguarded space for 4-byte, word-aligned stores. The LSU combines stores to form a doubleword that is sent out on
the 60x bus as a single-beat operation. Stores are gathered only if successive, eligible stores, are queued and pend-
ing. Store gathering is performed regardless of address order or endian mode.
Data cache flush assist. (Force data cache to ignore invalid sets on miss replacement selection.)
0 The data cache flush assist facility is disabled

25 DCFA |1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence defined by
the PLRU bits. This reduces the series of uniquely addressed load or debz instructions to eight per set. The bit
should be set just before beginning a cache flush routine and should be cleared when the series of instructions is
complete.
Branch Target Instruction Cache enable—used to enable use of the 64-entry branch instruction cache.

26 BTIC 0 The BTIC isldisabled, the contents are invalidated, and the BTIC behaves as if it was empty. New entries
cannot be added until the BTIC is enabled.
1 The BTIC is enabled, and new entries can be added.

27 — Not used. Defined as FBIOB on earlier 603-type processors.
Address broadcast enable—controls whether certain address-only operations (such as cache operations, eieio, and
sync) are broadcast on the 60x bus.
0 Address-only operations affect only local L1 and L2 caches and are not broadcast.
1 Address-only operations are broadcast on the 60x bus.Affected instructions are eieio, sync, dcbi, dcbf, and

28 ABE |dcbst. A sync instruction completes only after a successful broadcast. Execution of eieio causes a broadcast that
may be used to prevent any external devices, such as a bus bridge chip, from store gathering.
Note that debz (with M = 1, coherency required) always broadcasts on the 60x bus regardless of the setting of this bit.
An icbi is never broadcast. No cache operations, except dcbz, are snooped by the 750CL regardless of whether the
ABE is set. Bus activity caused by these instructions results directly from performing the operation on the 750CL
cache.
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Table 2-4. HIDO Bit Functions (Page 4 of 4)

Bit Name Function

Branch history table enable

0 BHT disabled. The 750CL uses static branch prediction as defined by the PowerPC Architecture (UISA) for

those branch instructions the BHT would have otherwise used to predict (that is, those that use the CR as the only
29 BHT |mechanism to determine direction). For more information on static branch prediction, see “Conditional Branch Con-

trol,” in Chapter 4 of the PowerPC Microprocessor Family: The Programming Environments manual.

1 Allows the use of the 512-entry branch history table (BHT).
The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.
30 — Not used

No-op the data cache touch instructions.
31 |NOOPTI |0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and dcbtst instructions are no-oped globally.

Table 2-5 shows how HIDO[BCLK] and HIDO[ECLK] are used to configure CLK_OUT. See Section 7.2.13.2
Clock Out (CLK_OUT)—Output for more information.

Table 2-5. HIDO[BCLK] and HIDO[ECLK] Configuration

HRESET BCLK ECLK CLK_OUT Frequency
0 Driven with TBD during hreset# assertion, and typically for 25K sysclk
X X ; ;
cycles following the deassertion of hreset#.
1 0 0 High impedance
1 0 1 freq = core clock’
1 1 0 freq = SYSCLK/2
1 1 1 freq = SYSCLK

1. Intended for IBM use only. The CLK_OUT driver may not be capable of driving to correct logic levels at frequencies greater than
200 MHz. Above 200 MHz, analog methods may be necessary to reconstruct the core clock frequency. In some cases, the core
clock frequency may be too high for the CLK_OUT driver to respond to in a useful manner.

HIDO can be accessed with mtspr and mfspr using SPR1008.

2.1.2.3 Hardware Implementation-Dependent Register 1

The hardware implementation-dependent register 1 (HID1) reflects the state of the PLL_CFG[0—4] signals.
The HID1 bits are shown in Figure 2-4.

Figure 2-4. Hardware Implementation-Dependent Register 1 (HID1)

|| Reserved
PCO|PC1|PC2|PC3PC40 0 0 0 0 0 O O O O O 0 O O O O O O O O O 0O O O O O O
01 2 3 45 31
The HID1 bits are described in Table 2-6.
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Table 2-6. HID1 Bit Functions

Bits Name Description
0 PCO | PLL configuration bit 0 (read-only)
1 PC1 | PLL configuration bit 1 (read-only)

2 PC2 |PLL configuration bit 2 (read-only)
3 PC3 | PLL configuration bit 3 (read-only)
4 PC4 |PLL configuration bit 4 (read-only)
3

5:31 — Reserved

HID1 can be accessed with mtspr and mfspr using SPR 1009.

2.1.2.4 Hardware Implementation-Dependent Register 2

The hardware implementation-dependent register 2 (HID2) controls the state of the graphics enhancement
features in the 750CL. The HID2 register is shown in Figure 2-5.

Figure 2-5. Hardware Implementation-Dependent Register 2 (HID2)

DNCERR DQOERR DNCEE DQOEE [ ] Reserved

DCHERR | DCN!ERR| DCHEE | D(I:MEE|
WPE PSE/LCE|  DMAQL 00 00 0O OO OOO0TO0UO0UO0TO OO 0O 00
01 2 3 4 7 8 9 10 11 12 13 14 15 16 31

The HID2 bits are described in Table 2-7.

Table 2-7. HID2 Bit Settings (Page 1 of 2)

Bit Name Function
0 Reserved  Initialized to 0. Must remain set to 0.

Write pipe enable.

1 WPE 0 Write gathering is disabled.
1 Write gather pipe is enabled. Noncacheable stores to the WPAR address are gathered and transferred in
32-byte blocks over the 60x bus.
Paired-single enable.
2 PSE |0 All paired-single instructions are illegal.
1 Paired-single instructions can be used.
Locked cache enable.
0 Cache is not partitioned. Data cache is 32 KB. dcbz_l instruction is illegal. DMA facility is disabled.

3 Lce |1 Data cache is partitioned into 16 KB of normal cache and 16 KB of locked cache. dcbz_l instruction allo-
cates lines in the locked cache. DMA facility can be used to move data between the locked cache and external
memory. In the 750CL, locked cache and bus snoop are incompatible. LCE shall be kept at O for systems which
generate snoop transactions.

4:7 DMAQL DMA queue length (read only). The DMAQL value indicates the number of DMA commands outstanding. A value of

zero indicates an empty DMA command queue. A value of 15 indicates the DMA command queue is full.
8 DCHERR |dcbz_I cache hit error (sticky).
9 DNCERR | DMA access to normal cache error (sticky).
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Table 2-7. HID2 Bit Settings (Page 2 of 2)

Bit Name Function
10 | DCMERR DMA cache miss error (sticky).
11 | DQOERR | DMA queue overflow error (sticky).
12 DCHEE | dcbz_l cache hit error enable.
13 DNCEE | DMA access to normal cache error enable.
14 DCMEE 'DMA cache miss error enable.
15 DQOEE DMA queue overflow error enable.
16:31 — Reserved.

HID2 can be accessed with mtspr and mfspr using SPR 920.

When using mtspr to set any of the enable bits, PSE and LCE, the i-cache must be invalidated before using
any of the corresponding 750CL graphics extension instructions.

It is not expected that the HID2[WPE] bit is changed after it is initially configured. Once enabled, it is a
programming error to dynamically disable this facility, as it can interfere with active write gathering opera-
tions.

Note: The paired-singles facility, enabled by setting HID2[PSE] = ‘1’, is incompatible with little endian mode,
enabled by setting MSR[LE] = ‘1’. Two additional bits in the HID4 register (HID4[PS1_CTL] and
HID4[PS2_CTL]) must be set to ‘1’ for correct paired-singles operation.

2.1.2.5 Hardware Implementation-Dependent Register 4

The hardware implementation-dependent register 4 (HID4) controls the enhanced features of the 750CL
design. The HID4 register is shown in Figure 2-6.

Figure 2-6. Hardware Implementation-Dependent Register 4 (HID4)

L2_CCFlI
PST CTL  L2MUM |PS2_CTL [ JReserved
| | |
1| L2FM | BPD [BCO/SBE 0 |DBP| 0 000OOOO OGO OOOOGOOGOOUO OO OUO0O
01 23 4 5 6 7 8 9 10 11 12 13 31
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The HID4 bits are described in Table 2-8.

Table 2-8. HID4 Bit Settings

Bit Name

0 J—

1:2 L2FM
3:4 BPD

5 BCO

6 SBE

7 PS1_CTL
8 J—

9 DBP
10 L2MUM
11 L2_CCFlI
12 | PS2_CTL

13:31 —

Function
Reserved. This bit is always read as '1' and must always be written as '1".

L2 fetch mode

00 - 32-byte fetch mode
01 - 64-byte fetch mode
10 - 128-byte fetch mode
11 - Reserved

Bus pipeline depth

00 - maximum depth is 2
01 - maximum depth is 3
10 - maximum depth is 4
11 - reserved

L2 second castout buffer enable
0 = L2 uses a single 64-byte castout buffer
1 = L2 uses dual 64-byte castout buffers

Secondary BAT enable
0 - four data and four instruction BATs are available
1 - eight data and eight instruction BATs are available

Paired-singles control bit 1
This bit must be set to 1 in order to use paired-singles instructions.

Reserved. Initialize to 0. Must remain set to 0.

Data bus parking
0 - data bus grant is latched when detected, so the processor attempts to take next ownership of the bus
1 - data bus grant is sampled just before attempting to take next ownership of the bus

L2 MUM enable
0 - the L2 cache is configured as a hit-under-miss cache
1 - the L2 cache is configured as a 2-deep miss-under-miss cache

L2CFI - L2 complete castout prior to L2 flash invalidate
0 - L2 flash invalidate operations begin immediately after writing L2CR[L2I]

1 - L2 flash invalidate operations are delayed until after the L2 castout buffer is emptied. Setting this bit to 1 avoids
the potential for the flash invalidate to cause incorrect address information in a pending L2 castout.

Paired-singles control bit 2
This bit must be set to 1 in order to use paired-singles instructions.

Reserved. Initialize to 0. Must remain set to 0.

The HID4 register controls enhanced features of the 750CL. On startup (when HRESET is negated), the initial
state of this register is 0x‘8000 0000’. That is, bit [0] is initialized to ‘1’, and all other bits are initialized to ‘0’.

After initialization, do not change HID4 in any way that would reduce or disable the HID4 features, because
such reduction could interfere with active operations, causing unexpected and undesirable results. For
example, bus pipeline depth cannot be reduced from a maximum of 4 to 3 or 2, or from a maximum of 3 to 2.
also, the L2 cache miss-under-miss feature cannot be dynamically disabled. In these cases, a hard reset and
reinitialization is required to achieve the reduction in functionality. On the other hand, dynamic changes to the
HID4 control bits that increase or enable the enhancement features described above are allowed, as are
changes to the other HID4 bits.
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HID4 can be accessed with a mtspr and mfspr using SPR 1011.

2.1.2.6 Performance Monitor Registers

This section describes the registers used by the performance monitor, which is described in Section 11
Performance Monitor on page 335.

Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO), shown in Table 2-7, is a 32-bit SPR provided to specify
events to be counted and recorded. The MMCRO can be accessed only in supervisor mode. User-level soft-
ware can read the contents of MMCRO by issuing an mfspr instruction to UMMCRO, described in the next

section.

Figure 2-7. Monitor Mode Control Register 0 (MMCRO)

INTONBITTRANS
RTCSELECT
DISCOUNT PMC2INTCONTROL
ENINT T PMC1INTCONTROL T F PMCTRIGGER
DIS| DP | DU |DMS|DMR THRESHOLD PMC1SELECT PMC2SELECT
01 2 3 4 5 8 9 10 15 16 17 18 19 25 26 31

This register must be cleared at power up. Reading this register does not change its contents. The bits of the
MMCRQO register are described in Table 2-9.

Table 2-9. MMCRO Bit Settings (Page 1 of 2)

Bit Name
0 DIS
1 DP
2 DU
3 DMS
4 DMR

Programming Model
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Description
Disables counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.
Disables counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PRY] is cleared), the counters are not changed
by hardware.
Disables counting while in user mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not changed by
hardware.
Disables counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.
Disables counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.
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Table 2-9. MMCRO Bit Settings (Page 2 of 2)

Bit

7-8

10:15

19:25
26:31

Name

ENINT

DISCOUNT

RTCSELECT

INTONBITTRANS

THRESHOLD

PMC1INTCONTROL

PMCINTCONTROL

PMCTRIGGER

PMC1SELECT
PMC2SELECT

Description

Enables performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.

Cleared by hardware when a performance monitor interrupt is signaled. To reenable these interrupt
signals, software must set this bit after handling the performance monitor interrupt. The IPL ROM
code clears this bit before passing control to the operating system.

Disables counting of PMCn when a performance monitor interrupt is signaled (that is, (PMCnINT-
CONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an enabled time base transition
with (INTONBITTRANS =1) & (ENINT = 1)).

0 Signaling a performance monitor interrupt does not affect counting status of PMCn.

1 The signaling of a performance monitor interrupt prevents changing of PMC1 counter. The
PMCn counter do not change if PMC2COUNTCTL = ‘0’.

Because a time base signal could have occurred along with an enabled counter overflow condition,
software should always reset INTONBITTRANS to zero, if the value in INTONBITTRANS was a one.
64-bit time base, bit selection enable

00 Pick bit 63 to count.

01 Pick bit 55 to count.

10 Pick bit 51 to count.

11 Pick bit 47 to count.

Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to on
0 Do not allow interrupt signal if chosen bit transitions.

1 Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing INTONBITTRANS.

Threshold value. The 750CL supports all 6 bits, allowing threshold values from 0-63. The intent of
the THRESHOLD support is to characterize L1 data cache misses.

Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow
1 Enable PMC1 Interrupt signaling due to PMC1 counter overflow

Enable interrupt signaling due to any PMC2-PMC4 counter overflow. Overrides the setting of DIS-
COUNT.

0 Disable PMC2-PMC4 interrupt signaling due to PMC2—-PMC4 counter overflow.
1 Enable PMC2—-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow.

Can be used to trigger counting of PMC2—-PMC4 after PMC1 has overflowed or after a performance
monitor interrupt is signaled.

0 Enable PMC2-PMC4 counting.
1 Disable PMC2-PMC4 counting until either PMC1[0] = 1 or a performance monitor interrupt
is signaled.

PMC1 input selector, 128 events selectable. See Table 2-11.
PMC2 input selector, 64 events selectable. See Table 2-11.

MMCRO can be accessed with mtspr and mfspr using SPR 952.

User Monitor Mode Control Register 0 (UMMCRO)

The contents of MMCRO are reflected to UMMCRO, which can be read by user-level software. MMCRO can
be accessed with mfspr using SPR 936.
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Monitor Mode Control Register 1(MMCR1)

The monitor mode control register 1 (MMCR1) functions as an event selector for performance monitor
counter registers 3 and 4 (PMC3 and PMC4). The MMCRH1 register is shown in Table 2-8.

Figure 2-8. Monitor Mode Control Register 1 (MMCR1)

|| Reserved
PMC3SELECT PMC4SELECT o 0o 0o o o o 0o 0 000 0 0 0 0O O OTUOTUOTG OGO OO
0 4 5 9 10 31

Bits for MMCR1 are shown in Table 2-10; the corresponding events are described in Performance Monitor
Counter Registers (PMC1-PMC4).

Table 2-10. MMCR1 Bits

Bits Name Description

0:4 PMC3SELECT PMCS input selector. 32 events selectable. See Table 2-11for defined selections.

5:9 PMCA4SELECT PMC4 input selector. 32 events selectable. See Table 2-11for defined selections.
10:31 — Reserved

MMCR1 can be accessed with mtspr and mfspr using SPR 956. User-level software can read the contents
of MMCR1 by issuing an mfspr instruction to UMMCR1, described in the following section.

User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCR1 are reflected to UMMCR1, which can be read by user-level software. MMCR1 can
be accessed with mfspr using SPR 940.

Performance Monitor Counter Registers (PMC1-PMC4)

PMC1-PMC4, shown in Figure 2-9, are 32-bit counters that can be programmed to generate interrupt signals
when they overflow.

Figure 2-9. Performance Monitor Counter Registers (PMC1-PMC4)

ov Counter Value

The bits contained in the PMCn registers are described in Table 2-11.

Table 2-11. PMCn Bits

Bits Name Description
0 ov Overflow. When this bit is set it indicates that this counter has reached its maximum value.
1:31 Counter Value Indicates the number of occurrences of the specified event.
Programming Model 02_750CL.fm.1.0
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Counters are considered to overflow when the high-order bit (the sign bit) becomes set; that is, they reach the
value 2147483648 (0x8000_0000). However, an interrupt is not signaled unless both PMCAh[INTCONTROL]
and MMCRO[ENINT] are also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition may occur with
MSRI[EE] cleared, but the exception is not taken until EE is set. Setting MMCRO[DISCOUNT] forces counters
to stop counting when a counter interrupt occurs.

Software is expected to use mtspr to set PMC explicitly to nonoverflow values. If software sets an overflow
value, an erroneous exception may occur. For example, if both PMCA[INTCONTROL] and MMCRO[ENINT]
are set and mtspr loads an overflow value, an interrupt signal may be generated without any event counting
having taken place.

The event to be monitored by PMC1 can be chosen by setting MMCRO[19-25]. The event to be monitored by
PMC2 can be chosen by setting MMCRO0[26-31]. The event to be monitored by PMC3 can be chosen by
setting MMCR1[0-4]. The event to be monitored by PMC4 can be chosen by setting MMCR1[5-9]. The
selected events are counted beginning when MMCRO is set until either MMCRO is reset or a performance
monitor interrupt is generated.
The PMC registers can be accessed with mtspr and mfspr using following SPR numbers:

* PMC1 is SPR 953

* PMC2is SPR 954

* PMC3is SPR 957

* PMC4 is SPR 958

User Performance Monitor Counter Registers (UPMC1-UPMC4)

The contents of the PMC1-PMC4 are reflected to UPMC1-UPMC4, which can be read by user-level soft-
ware. The UPMC registers can be read with mfspr using the following SPR numbers:

* UPMC1 is SPR 937
* UPMC2 is SPR 938
* UPMC3 is SPR 941
* UPMC4 is SPR 942
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Sampled Instruction Address Register (SIA)

The sampled instruction address register (SIA) is a supervisor-level register that contains the effective
address of an instruction executing at or around the time that the processor signals the performance monitor
interrupt condition. The SIA is shown in Figure 2-10.

Figure 2-10. Sampled Instruction Address Registers (SIA)

Instruction Address

0 31

If the performance monitor interrupt is triggered by a threshold event, the SIA contains the exact instruction
(called the sampled instruction) that caused the counter to overflow.

If the performance monitor interrupt was caused by something besides a threshold event, the SIA contains
the address of the last instruction completed during that cycle. SIA can be accessed with the mtspr and
mfspr instructions using SPR 955.

User Sampled Instruction Address Register (USIA)
The contents of SIA are reflected to USIA, which can be read by user-level software. USIA can be accessed
with the mfspr instructions using SPR 939.

Sampled Data Address Register (SDA) and User Sampled Data Address Register (USDA)

The 750CL does not implement the sampled data address register (SDA) or the user-level, read-only USDA
registers. However, for compatibility with processors that do, those registers can be written to by boot code
without causing an exception. SDA is SPR 959; USDA is SPR 943.

2.1.2.7 Instruction Cache Throttling Control Register (ICTC)

Reducing the rate of instruction fetching can control junction temperature without the complexity and over-
head of dynamic clock control. System software can control instruction forwarding by writing a nonzero value
to the ICTC register, a supervisor-level register shown in Table 2-11. The overall junction temperature reduc-
tion comes from the dynamic power management of each functional unit when the 750CL is idle in between
instruction fetches. PLL (phase-locked loop) and DLL (delay-locked loop) configurations are unchanged.

Figure 2-11. Instruction Cache Throttling Control Register (ICTC)

l:’ Reserved
000 0O0O0OO0OUOTG OO OOOTUO0O0O0O0OO0O0O0O0 0 0 FI E
0 2 23 30 31
Table 2-12 describes the bit fields for the ICTC register.
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Table 2-12. ICTC Bit Settings

Bits Name Description
0:22 — Reserved

Instruction forwarding interval expressed in processor clocks.
0x00 O clock cycle.
0x01 1 clock cycle

23:30 Fl
OxFF 255 clock cycles
Cache throttling enable
31 E 0 Disable instruction cache throttling.

1 Enable instruction cache throttling.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction forwarding interval into
ICTCIFI]. Enabling, disabling, and changing the instruction forwarding interval affect instruction forwarding
immediately.

The ICTC register can be accessed with the mtspr and mfspr instructions using SPR 1019.

2.1.2.8 Thermal Management Registers (THRM1-THRM3)

The thermal assist unit is not implemented in the 750CL. The three thermal management registers are imple-
mented for software compatibility, but have no control function. Figure 2-12 shows the THRM1 and THRM2
registers, while Figure 2-13 shows the THRMS3 register.

Figure 2-12. Thermal Management Registers 1-2 (THRM1-THRM2)

|| Reserved
0|0 Unused o 0 0 00O OO O O OO OOTOTUOTOTUO O O 0] Unused
0 1 2 8 9 28 29 31
The bits in THRM1 and THRM2 are described inTable 2-13.
Table 2-13. THRM1-THRM2 Bit Settings
Bits Field Description
0:1 — Read as ‘00'.
2:8 — Unused.
9:28 — Reserved.
29:31 — Unused.
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Figure 2-13. Thermal Management Register 3 (THRM3)

|| Reserved

0 0 0 OO OOOTOUOTOUOOOTOOTUOSTGOo Unused

0 17 18 31

The bits in THRMS3 are described in Table 2-14.

Table 2-14. THRMS3 Bit Settings

Bits Name Description
0:17 — Reserved.
18:31 — Unused.

The THRM registers can be accessed with the mtspr and mfspr instructions using the following SPR
numbers:

e THRM1 is SPR 1020
* THRM2 is SPR 1021
e THRMS3 is SPR 1022

2.1.2.9 Thermal Diode Calibration (TDC) Registers

The TDCL and TDCH registers hold the thermal diode calibration data, corresponding to low and elevated
temperatures, respectively. This data is fused in the processor during module test. TDCL and TDCH are
read-only registers.

Refer to the 750CL RISC Microprocessor Datasheet for details on how this data is used to calibrate the
thermal diode in a system.

Figure 2-14 and Figure 2-15 show the format of the TDCL and TDCH registers, respectively. Table 2-15 and
Table 2-16 describe the bit fields for the corresponding TDC registers.

Figure 2-14. TDCL Register

D Reserved

00000000O0 TC 0000 Ve
0 8 9 15 16 19 20 31
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Table 2-15. TDCL Bit Settings

Bits Name Description
0:8 — Reserved.

Temperature code. Specifies the low temperature in degrees Celsius, offset by -40°C. The range of tem-

9:15 TC peratures that can be specified is -40°C to 87°C.
16:19 — Reserved.
20:31 Ve Voltage code. Specifies the diode voltage at the low temperature in half millivolts, offset by 300 mV. The

range of voltages that can be specified is 300 mV to 2347.5 mV.
Figure 2-15. TDCH Register

|:| Reserved

00000000O0 TC 0000 Ve
0 8 9 15 16 19 20 31

Table 2-16. TDCH Bit Settings

Bits Name Description
0:8 — Reserved.
9:15 TC Temperature code. Specifies the elevated temperature in degrees Celsius. The range of temperatures

that can be specified is 0°C to 127°C.
16:19 — Reserved.

Voltage code. Specifies the diode voltage at the low temperature in half millivolts, offset by 300 mV. The

20:31 ve range of voltages that can be specified is 300 mV to 2347.5 mV.

TDCL can be accessed with the mfspr instruction using SPR 1012. TDCH can be accessed with the mfspr
instruction using SPR 1018.

2.1.2.10 Direct Memory Access (DMA) Registers

The pair of DMA registers, DMAU and DMAL, is used to specify and issue a DMA command. A DMA
command specifies the transfer of a contiguous block of data, up to 4 KB, between the locked cache and
external memory. Each DMA command consists of the starting address in locked cache, the starting address
in external memory, the length of the transfer in cache lines, and the direction of the transfer.

The DMA facility is enabled using the HID2[LCE] bit. When HID2[LCE] = 0, the mtspr and mfspr instructions
can be used to read and write the DMA registers, but the DMA commands associated with these registers are
ignored. In particular, the DMA_T and DMA_F bits in DMAL are always forced to zero in this mode. When
HID2[LCE] = 1, a mtspr to DMAL with the DMA_F bit = 1 causes the DMA command queue to be flushed,
otherwise a mtspr DMAL with the DMA_T bit = 1 causes the DMA command specified in the DMA registers
to be added to the DMA command queue.

Figure 2-16 and Figure 2-17 show the format of the upper and lower DMA registers.
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Figure 2-16. Direct Memory Access Upper (DMAU) register

MEM_ADDR DMA_LEN_U

0 26 27 31

Figure 2-17. Direct Memory Access Lower (DMAL) register

DMA_F
DMA_LD DMA_T
‘ DMA_LEN_L‘
|
LC_ADDR
0 26 27 28 29 30 31
Table 2-17 and Table 2-18 describe the bit fields for the DMA registers.
Table 2-17. DMAU Bit Settings
Bits Name Description
0:96 MEM ADDR High order address bits of starting address in external memory of the DMA transfer. The low order
’ - address bits are zero, forcing the starting address to be cache line aligned.
27:31 DMA_LEN_U |High order bits of transfer length, in cache lines. Low order bits are in DMAL.
Table 2-18. DMAL Bit Settings
Bits Name Description
0:96 LC_ADDR High order address bits of starting address in locked cache of the DMA transfer. The low order address

bits are zero, forcing the starting address to be cache line aligned.

DMA load command
27 DMA_LD |0 Store - transfer from locked cache to external memory
1 Load - transfer from external memory to locked cache

28:29 DMA_LEN_L |Low order bits of transfer length, in cache lines. High order bits are in DMAU.

Trigger bit
30 DMA_T 0 DMA command inactive.
1 mtspr DMAL instruction with this bit active enqueues this DMA command.
Flush bit
31 DMA_F 0 Normal DMA operation.
1 mtspr DMAL instruction with this bit active flushes the DMA queue.

DMAU can be accessed with mtspr and mfspr using SPR 922. DMAL can be accessed with mtspr and
mfspr using SPR 923.
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2.1.2.11 Graphics Quantization Registers (GQRs)

The eight graphics quantization registers, GQRO to GQR?7, are used to specify the data type and scaling
factor used to convert operands in paired-single quantized load and store instructions. The specific GQR
used for a particular instruction is specified by the 3 bit | field in the instruction. Figure 2-18 shows the format
of a GQR.

Figure 2-18. Graphics Quantization Register

|| Reserved
0 0 LD_SCALE 00 0 O O|LDTYPE |[O O ST_SCALE 0 0 0 0 0 ST_TYPE
0 1 2 7 8 12 13 15 16 17 18 23 24 28 29 31

Table 2-9 describes the bit fields for the GQR registers, and Table 2-20 lists the encoding of the type fields in
the GQR for the various quantized data types.

Table 2-19. Graphics Quantization Register Bit Settings

Bits Name Description

0:1 — Reserved

2:7 LD_SCALE |Scale value used by a load instruction.

8:12 — Reserved
13:15 LD_TYPE Type of operand in memory to be converted by a load instruction. See Figure 2-20.
16:17 — Reserved
18:23 ST_SCALE  Scale value used by a store instruction.
24:28 — Reserved
29:31 ST_TYPE | Type of operand resulting from a conversion by a store instruction. See Figure 2-20.

Table 2-20. Quantized Data Types

Code Type
0 Single-precision floating-point (no conversion)
1:3 Reserved
4 Unsigned 8-bit integer
5 Unsigned 16-bit integer
6 Signed 8-bit integer
7 Signed 16-bit integer

GQRO through GQR7 can be accessed with mtspr and mfspr using SPR 912 through 919, respectively.
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2.1.2.12 Write Pipe Address Register (WPAR)

The write pipe address register, shown in Figure 2-19 holds the physical address of operands to be gathered
by the write gather pipe facility. A mtspr to the WPAR establishes the gather address and resets the state of
the facility, discarding any data in the buffer. A mfspr WPAR is used to read the BNE bit to check for any
outstanding data transfers.

Figure 2-19. Write Pipe Address Register (WPAR)

D Reserved
GB_ADDR 0 0 0 O|[BNE
0 26 27 30 31

Table 2-21 describes the bit fields for the WPAR register.

Table 2-21. Write Pipe Address Register Bit Settings

Bits Name Description

High order address bits of the data to be gathered. The low order address bits are zero, forcing the
address to be cache line aligned. Note that only these 27 bits are compared to determine if a noncache-

0:26 GB_ADDR able store is gathered. If the address of the noncacheable store has a nonzero value in the low order five
bits, incorrect data is gathered.
27:30 — Reserved
31 BNE Buffer not empty (read only)

WPAR can be accessed with mtspr and mfspr using SPR 921.

2.1.2.13 L2 Cache Control Register (L2CR)

The L2 cache control register, shown in Figure 2-20, is a supervisor-level, implementation-specific SPR used
to configure and operate the L2 cache. It is cleared by a hard reset or power-on reset.

Figure 2-20. L2 Cache Control Register (L2CR)

L2WT |:| Reserved

L2CE L2D0 L2TS L2IP
L2E 00 0 0 O0 OO L2l o o 0o 00O 0O0OO O 0 0O0OO0OT OTU OO O

0o 1 2 8 9 10 11 12 13 14 30 31

The L2 cache interface is described in Section 9 L2 Cache, Locked D-Cache, DMA, and Write Gather Pipe on
page 315.

The L2CR bits are described in Table 2-22.
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Table 2-22. L2CR Bit Settings

Bit Name Function

L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction the L2
0 L2E cache unit receives. Before enabling the L2 cache, all other L2CR bits must be set appropriately. The L2
cache may need to be invalidated globally.

L2 Checkstop enable

1 L2CE 0 ECC double bit error does not cause a Machine Check.
1 ECC double bit error causes a machine check exception.
2:8 — Reserved

L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation, only trans-
actions from the L1 data cache can be cached in the L2 cache, which treats all transactions from the L1

9 L2D0 instruction cache as cache-inhibited (bypass L2 cache, no L2 checking done). This bit is provided for L2
testing only.

10 Lol L2 global invalidate. Setting L2l invalidates the L2 cache globally by clearing the L2 bits including status
bits. This bit must not be set while the L2 cache is enabled.

11 — Reserved

L2 write-through. Setting L2WT selects write-through mode (rather than the default write-back mode) so
all writes to the L2 cache also write through to the 60x bus. For these writes, the L2 cache entry is always

12 L2WT marked as clean (valid unmodified) rather than dirty (valid modified). This bit must never be asserted
after the L2 cache has been enabled as previously-modified lines can get remarked as clean during nor-
mal operation.

L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that result from dcbf
and dcbst instructions to be written only into the L2 cache and marked valid, rather than being written

13 L2TS only to the 60x bus and marked invalid in the L2 cache in case of hit. This bit allows a dcbz/dcbf instruc-
tion sequence to be used with the L1 cache enabled to easily initialize the L2 cache with any address
and data information. This bit also keeps dcbz instructions from being broadcast on the 60x and single-
beat cacheable store misses in the L2 from being written to the 60x bus.

14:30 — Reserved

L2 global invalidate in progress (read only). This read-only bit indicates whether an L2 global invalidate is
31 L2IP occurring. It should be monitored after an L2 global invalidate has been initiated by the L2l bit to deter-
mine when it has completed.

The L2CR register can be accessed with the mtspr and mfspr instructions using SPR 1017.

Programming Note: The HID4 register contains several control bits that affect the operation of the L2 cache.
The HID4 register must be initialized before enabling the L2 cache. In particular, HID4[L2_CCFI] must be set
to 1 for correct operation of the L2 cache.

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the PowerPC Archi-
tecture—UISA and VEA. Detailed descriptions of conventions used for storing values in registers and
memory, accessing PowerPC registers, and representation of data in these registers can be found in
Chapter 3, “Operand Conventions” in the PowerPC Microprocessor Family: The Programming Environments
manual.

2.2.1 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.
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Memory operands may be bytes, half words, words, or doublewords, or, for the load/store multiple and
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the address
of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction.

2.2.2 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has an alignment boundary equal to its length.
An operand’s address is misaligned if it is not a multiple of its width. Operands for single-register memory
access instructions have the characteristics shown in Table 2-23. Although not permitted as memory oper-
ands, quadwords are shown because quad-word alignment is desirable for certain memory operands.

Table 2-23. Memory Operands

Operand Length Addr[28-31] If Aligned
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Doubleword 8 bytes x000
Quadword 16 bytes 0000

Note: An “x” in an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in the address.

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte data item
is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition, alignment may affect
performance. For single-register memory access instructions, the best performance is obtained when
memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

The 750CL does not provide hardware support for floating-point memory that is not word-aligned. If a floating-
point operand is not aligned, the 750CL invokes an alignment exception, and it is left up to software to break
up the offending storage access operation appropriately. In addition, some non-double-word—-aligned memory
accesses suffer performance degradation as compared to an aligned access of the same type.

In general, floating-point word accesses should always be word-aligned and floating-point double-word
accesses should always be double-word—aligned. Frequent use of misaligned accesses is discouraged since
they can degrade overall performance.

2.2.3 Floating-Point Operand and Execution Models—UISA

The IEEE 754 standard defines conventions for 64 and 32-bit arithmetic. The standard requires that single-
precision arithmetic be provided for single-precision operands. The standard permits double-precision arith-
metic instructions to have either (or both) single-precision or double-precision operands, but states that
single-precision arithmetic instructions should not accept double-precision operands.

The PowerPC UISA follows these guidelines:

¢ Double-precision arithmetic instructions may have single-precision operands but always produce double-
precision results.
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* Single-precision arithmetic instructions require all operands to be single-precision and always produce
single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done explicitly by software,
while conversion from single- to double-precision is done implicitly by the processor.

All PowerPC implementations provide the equivalent of the execution models described in Section 3.3 of the
PowerPC Microprocessor Family: The Programming Environments manual to ensure that identical results are
obtained. The definition of the arithmetic instructions for infinities, denormalized numbers, and NaNs follow
conventions described in that section.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two additional
bit positions to avoid potential transient overflow conditions. An extra bit is required when denormalized
double-precision numbers are prenormalized. A second bit is required to permit computation of the adjusted
exponent value in the following examples when the corresponding exception enable bit is one:

* Underflow during multiplication using a denormalized operand

* Overflow during division using a denormalized divisor

The 750CL provides hardware support for all single- and double-precision floating-point operations for most
value representations and all rounding modes. This architecture provides for hardware to implement a
floating-point system as defined in ANSI/IEEE standard 754-1985, IEEE Standard for Binary Floating Point
Arithmetic. Detailed information about the floating-point execution model for non-paired-single mode
(HID2[PSE] = 0) can be found in Chapter 3, “Operand Conventions” in the PowerPC Microprocessor Family:
The Programming Environments manual.

The 750CL supports non-IEEE mode whenever FPSCR[29] is set. In this mode, denormalized numbers,
NaNs, and some IEEE invalid operations are treated in a non-IEEE conforming manner. This is accomplished
by delivering results that approximate the values required by the IEEE standard.

Table 2-24 summarizes the conditions and mode behavior for operands.

Table 2-24. Floating-Point Operand Data Type Behavior (Page 1 of 2)

Operand A
Data Type

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero

Normalized or zero

Operand B
Data Type

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero

Normalized or zero

Single denormalized
Double denormalized

Normalized or zero

Operand C
Data Type

Single denormalized
Double denormalized

Normalized or zero

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero

Normalized or zero

Single denormalized
Double denormalized

IEEE Mode
(NI=0)

Normalize all three

Normalize A and B

Normalize B and C

Normalize A and C

Normalize A

Normalize B

Normalize C

Non-lIEEE Mode
(NI=1)

Zero all three

Zero A and B

ZeroBand C

ZeroAand C

Zero A

Zero B

Zero C

1. Prioritize according to Chapter 3, “Operand Conventions,” in the PowerPC Microprocessor Family: The Programming Environ-

ments manual.
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Table 2-24. Floating-Point Operand Data Type Behavior (Page 2 of 2)

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type Data Type (NI'=0) (NI'=1)
Single QNaN
Single SNaN , ) 1 1
Double QNaN Don’t care Don't care QNaN QNaN
Double SNaN
Single QNaN
, Single SNaN , 1 1
Don'’t care Double QNaN Don’t care QNaN QNaN
Double SNaN
Single QNaN
, , Single SNaN 1 1
Don't care Don’t care Double QNaN QNaN QNaN
Double SNaN
Single normalized Single normalized Single normalized
Single infinity Single infinity Single infinity
Single zero Single zero Single zero ) )
Double normalized Double normalized Double normalized Do the operation Do the operation
Double infinity Double infinity Double infinity
Double zero Double zero Double zero

1. Prioritize according to Chapter 3, “Operand Conventions,” in the PowerPC Microprocessor Family: The Programming Environ-
ments manual.

Table 2-25 summarizes the mode behavior for results.

Table 2-25. Floating-Point Unit Result Data Type Behavior

Precision Data Type IEEE Mode (NI =0) Non-IEEE Mode (NI = 1)
Single Denormalized tFr{;tlrr:'g g;r;gﬁ-precision denormalized number with Return zero. !
Single Normalized, Return the result. Return the result. !
infinity, zero
Single QNaN, SNaN | Return QNaN. Return QNaN.
If (Invalid Operation)
then
Single INT Place integer into low word of FPR. Place (0x80000000) into FPR[32-63]
elsIgzlace integer into FPR[32—-63].
Double Denormalized | Return double-precision denormalized number. Return zero.
Double ::l‘ng:iT;";ee?c; Return the result. Return the result. !
Double QNaN, SNaN | Return QNaN. Return QNaN.
Double INT Not supported by the 750CL Not supported by the 750CL.
Note:

1. The detection of a denorm result occurs prior to rounding. A result that is a denorm before it is rounded is returned as zero.

2.2.4 Paired-Single Precision Floating Point

In addition to single- and double-precision operands, the 750CL supports a third format, called paired-single,
when HID2[PSE] = 1. Paired-single operands are represented in the 64-bit floating-point registers as two
32-bit single-precision floating-point values.
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As shown in Figure 2-21, the single-precision floating-point value in the high order word is referred to as ps0,
and that in the low order word as ps1.

Figure 2-21. Floating-Point Register Containing a Paired-Single Operand

psO psi
0 3 32 63

Most of the new instructions for manipulating these operands allow both values to be processed in parallel in
the execution unit. For example, the paired-single multiply-add instruction (ps_madd) multiplies ps0 in frA by
ps0 in frC, then adds it to ps0O in frB to get a result that is placed in ps0 in frD. Simultaneously, the same oper-
ations are applied to the corresponding ps1 values. Note that paired-single instructions, including loads,

stores and moves, cause a floating-point unavailable exception if execution is attempted when MSR[FP] = 0.

Many of the new paired-single instructions perform an operation comparable to one of the existing double-
precision instructions. For example, fadd adds double-precision operands from two registers and places the
result into a third register. In the corresponding paired-single instruction, ps_add, two such operations are
performed in parallel, one on the ps0 values, and one on the ps1 values. Several other paired-single instruc-
tions are supported that do not have exact analogs to existing double-precision instructions. See Section 12
PowerPC Instruction Set for the 750CL on page 347 for a detailed description of the paired-single instruc-
tions.

Most paired-single instructions produce a pair of result values. The Floating-Point Status and Control
Register (FPSCR) contains a number of status bits that are affected by the floating-point computation.
FPSCR bits 15-19 are the result bits. They are determined by the result of the psO computation, except for
ps_cmpui, ps_cmpo1, and ps_sum1 where the result bits are determined by the result of the ps1 computa-
tion.The FPSCR bits that reflect exceptional conditions in the computation are bits 0-14, and 22-23. For
paired-single instructions that affect any of these bits, either the psO or the ps1 computation can set the bit.
For the Condition Register (CR), the field specified by crD is affected by the psO computation for ps_cmpo0
and ps_cmpu0, and by the ps1 computation for ps_cmpo1 and ps_cmpu1. For all other paired-single
instructions, when RC = 1, the CR1 field of the CR is set from FPSCR bits 0-3, which can be set by either the
ps0 or the ps1 computation.

When in paired-single mode (HID2[PSE] = 1), all the double-precision instructions are still valid, and execute
as in non-paired-single mode. In paired-single mode, all the single-precision floating-point instructions
(fadds, fsubs, fmuls, fdivs, fmadds, fmsubs, fnmadds, fnmsubs, fres, frsp) are valid, and operate on the
ps0 operand (the double-precision operand, in the case of frsp) of the specified registers. The ps1 value in
the destination register is duplicated from the ps0 result in such an operation. (See 84 for an exception about
frsp.) The load floating-point single instructions (Ifs[u][x]) load a single-precision floating-point value into the
ps0 position of the FPR, and duplicate that value in the ps1 position. The store floating-point single instruc-
tions (stfs[u][x]) store the psO value only.

Note: The relationship between the internal format for paired-single operands and that for double-precision
floating-point operands is unspecified. It is a programming error to apply double-precision instructions to
paired-single operands and vice versa. In particular, loading an operand as a double and then storing it as a
paired-single does not yield the original value back in memory.”
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Programming Note—Conversion from a double-precision operand to a single-precision operand when
HID2[PSE] = 1 is accomplished using frsp, which takes a double-precision operand as input and produces a
single-precision result in psO of the destination register. Conversion from a single-precision operand to a
double-precision operand, on the other hand, generally requires a software conversion routine. However, the
750CL processor supports the following performance enhancement to implement this conversion. Any single-
precision value in psO can be used as the input operand to a double-precision floating-point instruction,
including a store.

Note that when HID2[PSE] = 1, the fctiw and fctiwz instructions give the expected result when used with the
stfiwx instruction to store the resultant integer. Since these are both classified as double-precision instruc-
tions, the integer result is placed in the low order word of the double-precision operand in the destination
FPR. Like other double-precision results, these cannot then be operated on or stored using paired-single
operations.

Each of the paired-single operands or result values behave the same way as single-precision operands or
results in the following two tables. Table 2-24 summarizes the conditions and mode behavior for operands.

2.3 Instruction Set Summary

This chapter describes instructions and addressing modes defined for the 750CL. These instructions are
divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more information, see
Section 2.3.4.1 Integer Instructions.

* Floating-point instructions—These include floating-point arithmetic instructions (single-precision, double-
precision and paired-single), as well as instructions that affect the floating-point status and control regis-
ter (FPSCR). For more information, see Section 2.3.4.2 Floating-Point Instructions.

¢ Load and store instructions—These include integer and floating-point (including quantized) load and
store instructions. For more information, see Section 2.3.4.3 Load and Store Instructions.

¢ Flow control instructions—These include branching instructions, condition register logical instructions,
trap instructions, and other instructions that affect the instruction flow. For more information, see
Section 2.3.4.4 Branch and Flow Control Instructions.

¢ Processor control instructions—These instructions are used for synchronizing memory accesses and
managing caches, TLBs, and segment registers. For more information, see Section 2.3.4.6 Processor
Control Instructions—UISA, Section 2.3.5.1 Processor Control Instructions—VEA, and Section 2.3.6.2
Processor Control Instructions—OEA.

¢ Memory synchronization instructions—These instructions are used for memory synchronizing. For more
information, see Section 2.3.4.7 Memory Synchronization Instructions—UISA and Section 2.3.5.2 Mem-
ory Synchronization Instructions—VEA.

* Memory control instructions—These instructions provide control of caches, TLBs, and segment registers.
For more information, see Section 2.3.5.3 Memory Control Instructions—VEA and Section 2.3.6.3 Mem-
ory Control Instructions—OEA.

» External control instructions—These include instructions for use with special input/output devices. For
more information, see Section 2.3.5.4 Optional External Control Instructions.

Note: This grouping of instructions does not necessarily indicate the execution unit that processes a particu-
lar instruction or group of instructions. That information, which is useful for scheduling instructions most effec-
tively, is provided in Section 6 Instruction Timing on page 211.
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Integer instructions operate on word operands. Floating-point instructions operate on single-precision,
double-precision and paired-single floating-point operands. The PowerPC Architecture uses instructions that
are 4 bytes long and word-aligned. It provides for byte, half-word, and word operand loads and stores
between memory and a set of 32 general-purpose registers (GPRs). It provides for word and double-word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs). In addition, the
750CL implementation provides for byte, half word, word and doubleword quantized loads and stores
between memory and the FPRs.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in
a computation and then modify the same or another memory location, the memory contents must be loaded
into a register, modified, and then written to the target location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided for some of the
frequently-used instructions; see Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor
Family: The Programming Environments manual for a complete list of simplified mnemonics. Note that the
architecture specification refers to simplified mnemonics as extended mnemonics. Programs written to be
portable across the various assemblers for the PowerPC Architecture should not assume the existence of
mnemonics not described in that document.
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2.3.1 Classes of Instructions

The 750CL instructions belong to one of the following three classes:
* Defined
¢ lllegal
* Reserved
Note that while the definitions of these terms are consistent among the PowerPC processors, the assignment

of these classifications is not. For example, PowerPC instructions defined for 64-bit implementations are
treated as illegal by 32-bit implementations such as the 750CL.

The class is determined by examining the primary opcode and the extended opcode, if any. If the opcode, or
combination of opcode and extended opcode, is not that of a defined instruction or of a reserved instruction,
the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the architecture or may be
reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on execution can be said to
be boundedly undefined. If a user-level program executes the incorrectly coded instruction, the resulting
undefined results are bounded in that a spurious change from user to supervisor state is not allowed, and the
level of privilege exercised by the program in relation to memory access and other system resources cannot
be exceeded. Boundedly-undefined results for a given instruction may vary between implementations, and
between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations, except as stated in the
instruction descriptions in Section 12 PowerPC Instruction Set for the 750CL on page 347. The 750CL
provides hardware support for all instructions defined for 32-bit implementations.

The 750CL does not support the optional fsqrt, fsqrts, and tlbia instructions.

A PowerPC processor invokes the illegal instruction error handler (part of the program exception) when the
unimplemented PowerPC instructions are encountered so they may be emulated in software, as required.
Note that the architecture specification refers to exceptions as interrupts.

A defined instruction can have invalid forms. The 750CL provides limited support for instructions represented
in an invalid form.
2.3.1.3 lllegal Instruction Class

lllegal instructions can be grouped into the following categories:

* Instructions not defined in the PowerPC Architecture.The following primary opcodes are defined as illegal
but may be used in future extensions to the architecture: 1, 5, 6, 9, 22

Future versions of the PowerPC Architecture may define any of these instructions to perform new func-
tions.
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¢ Instructions defined in the PowerPC Architecture but not implemented in a specific PowerPC implementa-
tion. For example, instructions that can be executed on 64-bit PowerPC processors are considered illegal
by 32-bit processors such as the 750CL.

The following primary opcodes are defined for 64-bit implementations only and are illegal on the 750CL.:
2, 30, 58, 62

¢ All unused extended opcodes are illegal. The unused extended opcodes can be determined from infor-
mation in Section 2.3.1.4 on page 87 and Section A.1 on page 551. Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit implementations, and vice versa.
The following primary opcodes have unused extended opcodes: 4, 17, 19, 31, 59, 63 (primary opcodes
30 and 62 are illegal for all 32-bit implementations, but as 64-bit opcodes they have some unused
extended opcodes.)

* An instruction consisting of only zeros is guaranteed to be an illegal instruction. This increases the proba-
bility that an attempt to execute data or uninitialized memory invokes the system illegal instruction error
handler (a program exception). Note that if only the primary opcode consists of all zeros, the instruction is
considered a reserved instruction, as described in Section 2.3.1.4.

The 750CL invokes the system illegal instruction error handler (a program exception) when it detects any
instruction from this class or any instructions defined only for 64-bit implementations.

See Section 4.5.7 Program Exception (0x00700) for additional information about illegal and invalid instruction
exceptions. Except for an instruction consisting of binary zeros, illegal instructions are available for additions
to the PowerPC Architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not defined by the
PowerPC Architecture. Attempting to execute an unimplemented reserved instruction invokes the illegal
instruction error handler (a program exception). See Section 4.5.7 Program Exception (0x00700) for informa-
tion about illegal and invalid instruction exceptions.

The PowerPC Architecture defines four types of reserved instructions:

¢ Instructions in the POWER architecture not part of the PowerPC UISA. For details on POWER architec-
ture incompatibilities and how they are handled by PowerPC processors, see Appendix B, “POWER
Architecture Cross Reference” in the PowerPC Microprocessor Family: The Programming Environments
manual.

* Implementation-specific instructions required for the processor to conform to the PowerPC Architecture
(none of these are implemented in the 750CL)

¢ All other implementation-specific instructions

¢ Architecturally-allowed extended opcodes

2.3.1.5 750CL Implementation-Specific Instructions

The 750CL processor includes extensions to the PowerPC Architecture to enhance the performance of
graphics applications. The new instructions include a new cache control instruction, debz_I, four quantized
load and four quantized store instructions, and 29 paired-single floating-point instructions. These new instruc-
tions are implemented using primary opcodes 4, 56, 57, 60 and 61. See Section 9 L2 Cache, Locked D-
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Cache, DMA, and Write Gather Pipe on page 315 for a description of the graphics enhancement features and
Section 12 PowerPC Instruction Set for the 750CL on page 347 for a detailed description of the new instruc-
tions.

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for calculating effective
addresses as defined by the PowerPC Architecture for 32-bit implementations. For more detailed information,
see “Conventions” in Chapter 4, “Addressing Modes and Instruction Set Summary” of the PowerPC Micropro-
cessor Family: The Programming Environments manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a memory access or branch instruction or when it fetches the next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the address of the corre-
sponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or doublewords, or, for the load/store multiple and
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the address
of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction. The
PowerPC Architecture supports both big-endian and little-endian byte ordering. The default byte and bit
ordering is big-endian. See “Byte Ordering” in Chapter 3, “Operand Conventions” of the PowerPC Micropro-
cessor Family: The Programming Environments manual for more information about big- and little-endian byte
ordering.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the “natural” address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned.

For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions” of the PowerPC
Microprocessor Family: The Programming Environments manual.

2.3.2.3 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a memory access or
branch instruction or when fetching the next sequential instruction. For a memory access instruction, if the
sum of the effective address and the operand length exceeds the maximum effective address, the memory
operand is considered to wrap around from the maximum effective address through effective address 0, as
described in the following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit signed 2’s complement
binary arithmetic. A carry from bit 0 and overflow are ignored.

Load and store operations have the following modes of effective address generation:

e EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)
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e EA = (rA|0) + rB (register indirect with index)

See Integer Load and Store Address Generation on page 99 for a detailed description of effective address
generation for load and store operations.
Branch instructions have three categories of effective address generation:

¢ Immediate

¢ Link register indirect

* Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is performing the
synchronization.

Context Synchronization

The System Call (sc¢) and Return from Interrupt (rfi) instructions perform context synchronization by allowing
previously issued instructions to complete before performing a change in context. Execution of one of these
instructions ensures the following:

* No higher priority exception exists (sc).

¢ All previous instructions have completed to a point where they can no longer cause an exception. If a
prior memory access instruction causes direct-store error exceptions, the results are guaranteed to be
determined before this instruction is executed.

¢ Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

* The instructions following the sc or rfi instruction execute in the context established by these instructions.

Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to have completed
before the instruction is initiated or, in the case of sync and isync, before the instruction completes. For
example, the Move to Machine State Register (mtmsr) instruction is execution synchronizing. It ensures that
all preceding instructions have completed execution and cannot cause an exception before the instruction
executes, but does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the mtmsr instruction, a
privileged instruction could be executed or privileged access could be performed without causing an excep-
tion even though the MSR[PR] bit indicates user mode.

Instruction-Related Exceptions

There are two kinds of exceptions in the 750CL—those caused directly by the execution of an instruction and
those caused by an asynchronous event (or interrupts). Either may cause components of the system soft-
ware to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:
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¢ An attempt to execute an illegal instruction causes the illegal instruction (program exception) handler to
be invoked. Note that the debz_l instruction is illegal when HID2[LCE] = 0, and all paired-single instruc-
tions are illegal when HID2[PSE] = 0. An attempt by a user-level program to execute the supervisor-level
instructions listed below causes the privileged instruction (program exception) handler to be invoked. The
750CL provides the following supervisor-level instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr,
mtspr, mtsr, mtsrin, rfi, tibie, and tlbsync. Note that the privilege level of the mfspr and mtspr instruc-
tions depends on the SPR encoding.

e Any mtspr, mfspr, or mftb instruction with an invalid SPR (or TBR) field causes an illegal type program
exception. Likewise, a program exception is taken if user-level software tries to access a supervisor-level
SPR. An mtspr instruction executing in supervisor mode (MSR[PR] = 0) with the SPR field specifying
HID1 or PVR (read-only registers) executes as a no-op.

* An attempt to access memory that is not available (page fault) causes the IS or DSI exception handler to
be invoked.

* The execution of an sc instruction invokes the system call exception handler that permits a program to
request the system to perform a service.

¢ The execution of a trap instruction invokes the program exception trap handler.
* The execution of an instruction that causes a floating-point exception while exceptions are enabled in the
MSR invokes the program exception handler.

A detailed description of exception conditions is provided in Section 4 Exceptions on page 157.

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the 750CL and highlights
any special information with respect to how the 750CL implements a particular instruction. Note that the cate-
gories used in this section correspond to those used in Chapter 4, “Addressing Modes and Instruction Set
Summary” in the PowerPC Microprocessor Family: The Programming Environments manual. These categori-
zations are somewhat arbitrary and are provided for the convenience of the programmer and do not neces-
sarily reflect the PowerPC Architecture specification.
Note that some instructions have the following optional features:

¢ CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.

* Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level cache control,
synchronization, and time base instructions), user-level registers, programming model, data types, and
addressing modes. This section discusses the instructions defined in the UISA.

2.3.4.1 Integer Instructions
» This section describes the integer instructions. These consist of the following:
* Integer arithmetic instructions
* Integer compare instructions

* Integer logical instructions
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Integer instructions use the content of the GPRs as source operands and place results into GPRs, into the
integer exception register (XER), and into condition register (CR) fields.

Integer Arithmetic Instructions

Table 2-26 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-26. Integer Arithmetic Instructions

Name Mnemonic Syntax

Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low mullw  (mullw. mullwo mullwo.) rD,rA,rB
Multiply High Word mulhw (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an addi instruction

with the immediate operand negated. Simplified mnemonics are provided that include this negation. The subf
instructions subtract the second operand (rA) from the third operand (rB). Simplified mnemonics are provided
in which the third operand is subtracted from the second operand. See Appendix F, “Simplified Mnemonics,”
in the PowerPC Microprocessor Family: The Programming Environments manual for examples.
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The UISA states that an implementation that executes instructions that set the overflow enable bit (OE) or the
carry bit (CA) may either execute these instructions slowly or prevent execution of the subsequent instruction
until the operation completes. Section 6 Instruction Timing on page 211 describes how the 750CL handles
CR dependencies. The summary overflow bit (SO) and overflow bit (OV) in the integer exception register are
set to reflect an overflow condition of a 32-bit result. This can happen only when OE = 1.

Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register rA with either the
zero-extended value of the UIMM operand, the sign-extended value of the SIMM operand, or the contents of
register rB. The comparison is signed for the empi and ecmp instructions, and unsigned for the empli and
cmpl instructions.

Table 2-27 summarizes the integer compare instructions.

Table 2-27. Integer Compare Instructions

Name Mnemonic Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CR0. Otherwise the target
CR field must be specified in crfD, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix F, “Simplified
Mnemonics,” in the PowerPC Microprocessor Family: The Programming Environments manual.

Integer Logical Instructions

The logical instructions shown in Table 2-28 perform bit-parallel operations on the specified operands.
Logical instructions with the CR updating enabled (uses dot suffix) and instructions andi. and andis. set CR
field CRO to characterize the result of the logical operation. Logical instructions do not affect XER[SO],
XER[OV], or XER[CA].

See Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor Family: The Programming Envi-
ronments manual for simplified mnemonic examples for integer logical operations.
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Table 2-28. Integer Logical Instructions
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Name Mnemonic Syntax Implementation Notes

AND Immediate andi. rA,rS,UIMM | —

AND Immediate Shifted andis. rA,rS,UIMM | —
The PowerPC Architecture defines ori r0,r0,0 as the preferred

OR Immediate ori rA,rS,UIMM  form for the no-op instruction. The dispatcher discards this
instruction (except for pending trace or breakpoint exceptions).

OR Immediate Shifted oris rA,rS,UIMM | —

XOR Immediate Xori rA,rS,UIMM | —

XOR Immediate Shifted xoris rA,rS,UIMM | —

AND and (and.) rA,rS,rB —

OR or (or.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

Equivalent eqv (eqv.) rA,rS,rB —

AND with Complement andc (andc.) rA,rS,rB —

OR with Complement orc (orc.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rA,rS —

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS —

Integer Rotate Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned to
a GPR. See Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor Family: The Programming
Environments manual for a complete list of simplified mnemonics that allows simpler coding of often-used
functions such as clearing the leftmost or rightmost bits of a register, left justifying or right justifying an arbi-
trary field, and simple rotates and shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either inserted into the
target register under control of a mask (if a mask bit is 1 the associated bit of the rotated data is placed into
the target register, and if the mask bit is 0 the associated bit in the target register is unchanged), or ANDed
with a mask before being placed into the target register.

The integer rotate instructions are summarized in Table 2-29.

Table 2-29. Integer Rotate Instructions

Name Mnemonic Syntax
rA,rS,SH,MB,ME

rA,rS,rB,MB,ME

Rotate Left Word Immediate then AND with Mask riwinm (rlwinm.)

Rotate Left Word then AND with Mask rlwnm (rlwnm.)

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME
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Integer Shift Instructions

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift operations
are obtained by specifying masks and shift values for certain rotate instructions. Simplified mnemonics
(shown in Appendix F, “Simplified Mnemonics,” in the PowerPC Microprocessor Family: The Programming
Environments manual) are provided to make coding of such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision Shifts” in the
PowerPC Microprocessor Family: The Programming Environments manual. The integer shift instructions are
summarized in Table 2-30.

Table 2-30. Integer Shift Instructions

Name Mnemonic Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Word srw  (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:
¢ Floating-point arithmetic instructions
¢ Floating-point multiply-add instructions
¢ Floating-point rounding and conversion instructions
¢ Floating-point compare instructions
* Floating-point status and control register instructions

* Floating-point move instructions
See Section 2.3.4.3 on page 98 for information about floating-point loads and stores.

The PowerPC Architecture supports a floating-point system as defined in the IEEE 754 standard, but requires
software support to conform with that standard. All floating-point operations conform to the IEEE 754 stan-
dard, except if software sets the non-IEEE mode FPSCRINI].

Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-31.

Table 2-31. Floating-Point Arithmetic Instructions (Page 1 of 2)

Name Mnemonic Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Note:

1. The fres, frsqrte and fsel instructions are optional in the PowerPC Architecture.
2. These instructions belong to the 750CL graphics extensions, and are legal only when HID2[PSE] = 1.
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Table 2-31. Floating-Point Arithmetic Instructions (Page 2 of 2)

Name
Floating Subtract Single
Floating Multiply (Double-Precision)
Floating Multiply Single
Floating Divide (Double-Precision)
Floating Divide Single
Floating Reciprocal Estimate Single 1
Floating Reciprocal Square Root Estimate 1
Floating Select '
Paired Single Add 2
Paired Single Subtract 2
Paired Single Multiply 2
Paired Single Divide 2
Paired Single Reciprocal Estimate 2
Paired Single Reciprocal Square Root Estimate 2
Paired Single Select 2
Paired Single Multiply Scalar High 2
Paired Single Multiply Scalar Low 2
Paired Single Vector Sum High 2
Paired Single Vector Sum Low 2

Note:

Mnemonic
fsubs (fsubs.)
fmul (fmul.)
fmuls (fmuls.)
fdiv (fdiv.)
fdivs (fdivs.)
fres (fres.)
frsqrte (frsqrte.)
fsel (fsel.)
ps_add (ps_add.)
ps_sub (ps_sub.)
ps_mul (ps_mul.)
ps_div (ps_div.)
ps_res (ps_res.)
ps_rsqrte (ps_rsqrte.)
ps_sel (ps_sel.)
ps_muls0 (ps_mulsO0.)
ps_muls1 (ps_muls1.)
ps_sum0 (ps_sumO.)

ps_sumi (ps_sumi.)

1. The fres, frsqrte and fsel instructions are optional in the PowerPC Architecture.

2. These instructions belong to the 750CL graphics extensions, and are legal only when HID2[PSE] = 1.
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Syntax
frD,frA,frB
frD,frA,frC
frD,frA,frC
frD,frA,frB
frD,frA,frB
frD,frB
frD,frB
frD.frA.frC frB
frD,frA,frB
frD,frA,frB
frD,frA,frC
frD,frA,frB
frD,frB
frD,frB
frD,frA frC.frB
frD,frA,frC
frD,frA,frC
frD,frA frC.frB
frD,frA frC.frB

The estimate instructions (fres, frsqrte, ps_res, ps_rsqrte) do not generate an intermediate result. The final
result produced by these instructions is independent of the FPSCR[RN] field, and corresponds to the 'round

to zero' rounding mode

Double-precision arithmetic instructions, except those involving multiplication (fmul, fmadd, fmsub, fnmadd,
fnmsub) execute with the same latency as their single-precision equivalents. For additional details on

floating-point performance, refer to Section 6 Instruction Timing on page 211.
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Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The
floating-point multiply-add instructions are summarized in Table 2-32.

Table 2-32. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax

Floating Multiply-Add (Double-Precision)

Floating Multiply-Add Single

Floating Multiply-Subtract (Double-Precision)
Floating Multiply-Subtract Single

Floating Negative Multiply-Add (Double-Precision)
Floating Negative Multiply-Add Single

Floating Negative Multiply-Subtract (Double-Precision)
Floating Negative Multiply-Subtract Single

Paired Single Multiply-Add !

Paired Single Multiply-Subtract !

Paired Single Negative Multiply-Add 1

Paired Single Negative Multiply-Subtract !

Paired Single Multiply-Add Scalar High '

Paired Single Multiply-Add Scalar Low '

Note:

fmadd (fmadd.)

fmadds (fmadds.)

fmsub (fmsub.)

fmsubs (fmsubs.)
fnmadd (fnmadd.)
fnmadds (fnmadds.)
fnmsub (fnmsub.)
fnmsubs (fnmsubs.)
ps_madd (ps_madd.)
ps_msub (ps_msub.)
ps_nmadd (ps_nmadd.)
ps_nmsub (ps_nmsub.)
ps_madds0 (ps_madds0.)
ps_madds1 (ps_madds1.)

1. These instructions are 750CL-specific, and are legal only when HID2[PSE] = 1.

frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB
frD,frA,frC,frB

Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision number
to a 32-bit single-precision floating-point number. The floating-point convert instructions convert a 64-bit
double-precision floating-point number to a 32-bit signed integer number.

Examples of uses of these instructions to perform various conversions can be found in Appendix D, “Floating-
Point Models,” in the PowerPC Microprocessor Family: The Programming Environments manual.

Table 2-33. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fetiw  (fctiw.) frD,frB

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers. The comparison
ignores the sign of zero (that is +0 = —0).

The floating-point compare instructions are summarized in Table 2-34.
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Table 2-34. Floating-Point Compare Instructions

Name Mnemonic Syntax
Floating Compare Unordered fempu crfD,frA,frB
Floating Compare Ordered fcmpo crfD,frA,frB
Paired Single Compare Unordered High ps_cmpu0 crfD,frA,frB
Paired Single Compare Unordered Low 1 ps_cmpufl crfD,frA,frB
Paired Single Compare Ordered High ps_cmpo0 crfD,frA,frB
Paired Single Compare Ordered Low ' ps_cmpofl crfD,frA,frB

Note:
1. These instructions are 750CL-specific, and are legal only when HID2[PSE] = 1.

The PowerPC Architecture allows an fempu or fempo instruction with the Rc bit set to produce a boundedly-
undefined result, which may include an illegal instruction program exception. In the 750CL, crfD should be
treated as undefined

Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point instructions executed by a
given processor. Executing an FPSCR instruction ensures that all floating-point instructions previously initi-
ated by the given processor appear to have completed before the FPSCR instruction is initiated and that no
subsequent floating-point instructions appear to be initiated by the given processor until the FPSCR instruc-
tion has completed.

The FPSCR instructions are summarized in Table 2-35.

Table 2-35. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crfD,crfS
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD
Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Implementation Note—The PowerPC Architecture states that in some implementations, the Move to
FPSCR Fields (mtfsf) instruction may perform more slowly when only some of the fields are updated as
opposed to all of the fields. In the 750CL, there is no degradation of performance.

Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point move instructions do
not modify the FPSCR. The CR update option in these instructions controls the placing of result status into
CR1.

Table 2-36 summarizes the floating-point move instructions.
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Table 2-36. Floating-Point Move Instructions

Name
Floating Move Register
Floating Negate
Floating Absolute Value
Floating Negative Absolute Value
Paired Single Move Register 1
Paired Single Negate
Paired Single Absolute Value '
Paired Single Negative Absolute Value 1
Paired Single Merge High '
Paired Single Merge Direct 1
Paired Single Merge Swapped '
Paired Single Merge Low '
Note:

Mnemonic

fmr (fmr.)
fneg (fneg.)
fabs (fabs.)
fnabs (fnabs.)
ps_mr (ps_mr.)
ps_neg (ps_neg.)
ps_abs (ps_abs.)
ps_nabs (ps_nabs.)
ps_merge00 (
ps_merge01 (ps_mergeO1.
ps_mergel10 (ps_mergel0.

(

ps_mergel11 (ps_mergeli.

ps_merge00.)

frD,frB
frD,frB
frD,frB
frD,frB
frD,frB
frD,frB
frD,frB
frD,frB
frD,frA,frB
frD,frA,frB
frD,frA,frB
frD,frA,frB

1. These instructions belong to the 750CL graphics extensions, and are legal only when HID2[PSE] = 1.

2.3.4.3 Load and Store Instructions

Preliminary

Syntax

Load and store instructions are issued and translated in program order; however, the accesses can occur out
of order. Synchronizing instructions are provided to enforce strict ordering. This section describes the load
and store instructions, which consist of the following:

* Integer load instructions

* Integer store instructions

* Integer load and store with byte-reverse instructions

* Integer load and store multiple instructions

* Floating-point load instructions, including quantized loads

¢ Floating-point store instructions, including quantized stores

e Memory synchronization instructions

Implementation Notes—The following describes how the 750CL handles misalignment:

The 750CL provides hardware support for misaligned memory accesses. It performs those accesses within a
single cycle if the operand lies within a double-word boundary. Misaligned memory accesses that cross a

double-word boundary degrade performance.

For string operations, the hardware makes no attempt to combine register values to reduce the number of
discrete accesses. Combining stores enhances performance if store gathering is enabled and the accesses
meet the criteria described in Section 6.4.7 Integer Store Gathering. Note that the PowerPC Architecture
requires load/store multiple instruction accesses to be aligned. At a minimum, additional cache access cycles

are required.
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Although many unaligned memory accesses are supported in hardware, the frequent use of them is discour-
aged since they can compromise the overall performance of the processor.

Accesses that cross a translation boundary may be restarted. That is, a misaligned access that crosses a
page boundary is completely restarted if the second portion of the access causes a page fault. This may
cause the first access to be repeated.

On some processors, such as the 603, a TLB reload would cause an instruction restart. On the 750CL, TLB
reloads are done transparently and only a page fault causes a restart.
Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction cache, software must
ensure that memory updates are visible to the instruction fetching mechanism. This can be achieved by the
following instruction sequence:

dchst I update memory

sync I wait for update

icbi ! remove (invalidate) copy in instruction cache
isync I remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since instruction fetching
bypasses the data cache, changes to items in the data cache may not be reflected in memory until the fetch
operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified secondary
caches, and designers should carefully follow the guidelines for maintaining cache coherency that are
provided in the VEA, and discussed in Chapter 5, “Cache Model and Memory Coherency” in the PowerPC
Microprocessor Family: The Programming Environments manual. Because the 750CL does not broadcast the
M bit for instruction fetches, external caches are subject to coherency paradoxes.

Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with immediate index
mode, register indirect with index mode, or register indirect mode. See Section 2.3.2.3 Effective Address
Calculation for information about calculating effective addresses. Note that in some implementations, opera-
tions that are not naturally aligned may suffer performance degradation. Refer to Section 4.5.6 Alignment
Exception (0x00600) for additional information about load and store address alignment exceptions.

Integer Load Instructions

For integer load instructions, the byte, half word, or word addressed by the EA (effective address) is loaded
into rD. Many integer load instructions have an update form, in which rA is updated with the generated effec-
tive address. For these forms, if rA =0 and rA =rD (otherwise invalid), the EA is placed into rA and the
memory element (byte, half word, or word) addressed by the EA is loaded into rD. Note that the PowerPC
Architecture defines load with update instructions with operand rA =0 or rA =D as invalid forms.

Table 2-37 on page 100 summarizes the integer load instructions.

02_750CL.fm.1.0 Programming Model
August 8, 2007 Page 99 of 619



User’'s Manual

IBM 750CL RISC Microprocessor

Table 2-37. Integer Load Instructions

Name Mnemonic Syntax
Load Byte and Zero bz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero lhz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux rD,rA,rB
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed lhax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

Preliminary

Implementation Notes—The following notes describe the 750CL implementation of integer load instructions:

Programming Model
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The PowerPC Architecture cautions programmers that some implementations of the architecture may
execute the load half algebraic (lha, lhax) instructions with greater latency than other types of load
instructions. This is not the case for the 750CL; these instructions operate with the same latency as other
load instructions.

The PowerPC Architecture cautions programmers that some implementations of the architecture may run
the load/store byte-reverse (lhbrx, Ibrx, sthbrx, stwbrx) instructions with greater latency than other
types of load/store instructions. This is not the case for the 750CL. These instructions operate with the
same latency as the other load/store instructions.

The PowerPC Architecture describes some preferred instruction forms for load and store multiple instruc-
tions and integer move assist instructions that may perform better than other forms in some implementa-
tions. None of these preferred forms affect instruction performance on the 750CL.

The PowerPC Architecture defines the Iwarx and stwex. as a way to update memory atomically. In the
750CL, reservations are made on behalf of aligned 32-byte sections of the memory address space. Exe-
cuting lwarx and stwex. to a page marked write-through does not cause a DSI exception if the W bit is
set, but as with other memory accesses, DSI exceptions can result for other reasons such as protection
violations or page faults.

In general, because stwcex. always causes an external bus transaction it has slightly worse performance
characteristics than normal store operations.
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Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, half word or word in memory
addressed by the EA (effective address). Many store instructions have an update form, in which rA is updated
with the EA. For these forms, the following rules apply:

e If rA # 0, the effective address is placed into rA.

e If rS =rA, the contents of register rS are copied to the target memory element, then the generated EA is
placed into rA (rS).

The PowerPC Architecture defines store with update instructions with rA = 0 as an invalid form. In addition, it
defines integer store instructions with the CR update option enabled (Rc field, bit 31, in the instruction
encoding = 1) to be an invalid form.

Table 2-38 summarizes the integer store instructions.

Table 2-38. Integer Store Instructions

Name Mnemonic Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB

Integer Store Gathering

The 750CL performs store gathering for write-through accesses to nonguarded space or to cache-inhibited
stores to nonguarded space if the stores are 4 bytes and they are word-aligned. These stores are combined
in the load/store unit (LSU) to form a doubleword and are sent out on the 60x bus as a single-beat operation.
However, stores can be gathered only if the successive stores that meet the criteria are queued and pending.
Store gathering takes place regardless of the address order of the stores. The store gathering feature is
enabled by setting HIDO[SGE]. Store gathering is done for both big- and little-endian modes.
Store gathering is not done for the following:

* Cacheable stores

» Stores to guarded cache-inhibited or write-through space

* Byte-reverse store

¢ stwcex. and ecowx accesses
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¢ Floating-point stores

» Store operations attempted during a hardware table search

If store gathering is enabled and the stores do not fall under the above categories, an eieio or sync instruc-
tion must be used to prevent two stores from being gathered.

Note that the write gather pipe facility provides a separate mechanism for gathering operands before transfer-
ring them to memory. See Section 9 L2 Cache, Locked D-Cache, DMA, and Write Gather Pipe on page 315
for a description of this facility.

Integer Load and Store with Byte-Reverse Instructions

Table 2-39 describes integer load and store with byte-reverse instructions. When used in a PowerPC system
operating with the default big-endian byte order, these instructions have the effect of loading and storing data
in little-endian order. Likewise, when used in a PowerPC system operating with little-endian byte order, these
instructions have the effect of loading and storing data in big-endian order. For more information about big-
endian and little-endian byte ordering, see “Byte Ordering” in Chapter 3, “Operand Conventions” in the
PowerPC Microprocessor Family: The Programming Environments manual.

Table 2-39. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax
Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB
Load Word Byte-Reverse Indexed Iwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs. The load multiple
and store multiple instructions may have operands that require memory accesses crossing a 4-KB page
boundary. As a result, these instructions may be interrupted by a DSI exception associated with the address
translation of the second page.

Implementation Notes—The following describes the 750CL implementation of the load/store multiple
instruction:

* For load/store string operations, the hardware does not combine register values to reduce the number of
discrete accesses. However, if store gathering is enabled and the accesses fall under the criteria for store
gathering the stores may be combined to enhance performance. At a minimum, additional cache access
cycles are required.

* The 750CL supports misaligned, single-register load and store accesses in little-endian mode without
causing an alignment exception. However, execution of misaligned load/store multiple/string operations
causes an alignment exception.

The PowerPC Architecture defines the load multiple word (Imw) instruction with rA in the range of registers to
be loaded as an invalid form.
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Table 2-40. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word stmw rS,d(rA)

Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to registers or from regis-
ters to memory without concern for alignment. These instructions can be used for a short move between arbi-
trary memory locations or to initiate a long move between misaligned memory fields. However, in some
implementations, these instructions are likely to have greater latency and take longer to execute, perhaps
much longer, than a sequence of individual load or store instructions that produce the same results.

Table 2-39 summarizes the integer load and store string instructions. In other PowerPC implementations
operating with little-endian byte order, execution of a load or string instruction invokes the alignment error
handler; see “Byte Ordering” in the PowerPC Microprocessor Family: The Programming Environments
manual for more information.

Table 2-41. Integer Load and Store String Instructions

Name Mnemonic Syntax
Load String Word Immediate Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6 Alignment Exception (0x00600), a misaligned string operation suffers a perfor-
mance penalty compared to an aligned operation of the same type.

A non—word-aligned string operation that crosses a 4-KB boundary, or a word-aligned string operation that
crosses a 256-MB boundary always causes an alignment exception. A non—word-aligned string operation
that crosses a double-word boundary is also slower than a word-aligned string operation.

Implementation Note—The following describes the 750CL implementation of load/store string instructions:

* For load/store string operations, the hardware does not combine register values to reduce the number of
discrete accesses. However, if store gathering is enabled and the accesses fall under the criteria for store
gathering the stores may be combined to enhance performance. At a minimum, additional cache access
cycles are required.

* The 750CL supports misaligned, single-register load and store accesses in little-endian mode without
causing an alignment exception. However, execution of misaligned load/store multiple/string operations
cause an alignment exception.
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Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register indirect with imme-
diate index addressing mode and register indirect with index addressing mode. Floating-point loads and
stores are not supported for direct-store accesses. The use of floating-point loads and stores for direct-store
access results in an alignment exception.

Implementation Notes—The 750CL treats exceptions as follows:

e The FPU can be run in two different modes—ignore exceptions mode (MSR[FEOQ] = MSR[FE1] = 0) and
precise mode (any other settings for MSR[FEOQ,FE1]). For the 750CL, ignore exceptions mode allows
floating-point instructions to complete earlier and thus may provide better performance than precise
mode.

* The floating-point load and store indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, stfsux, stfdx,
stfdux) are invalid when the Rc bit is one. In the 750CL, executing one of these invalid instruction forms
causes CRO to be set to an undefined value.

Floating-Point Load Instructions

There are three forms of the floating-point load instruction: single-precision, double-precision and paired-
single (quantized) operand formats. The behavior of double-precision floating-point load instructions, and the
behavior of single-precision floating-point load instructions when HID2[PSE] = 0 are described here. Paired
single floating-point load instructions are illegal when HID2[PSE] = 0. The behavior of single-precision
floating-point load instructions and paired-single (quantized) load instructions when HID2[PSE] = 1 are
described in Paired-Single Load and Store Instructions on page 106.

Single-precision floating-point load instructions convert single-precision data to double-precision format
before loading an operand into an FPR.

The PowerPC Architecture defines a load with update instruction with rA = 0 as an invalid form.
Figure 2-42 summarizes the single and double-precision floating-point load instructions.

Table 2-42. Floating-Point Load Instructions

Name Mnemonic Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB
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Floating-Point Store Instructions

This section describes floating-point store instructions. There are four basic forms of the store instruction—
single-precision, double-precision, paired-single (quantized) and integer. The integer form is supported by the
optional stfiwx instruction. The behavior of double-precision floating-point store instructions, and the
behavior of single-precision floating-point store instructions when HID2[PSE] = 0 are described here. Paired
single floating-point store instructions are illegal when HID2[PSE] = 0. The behavior of single-precision
floating-point store instructions and paired-single (quantized) store instructions when HID2[PSE] =1 is
described in Section on page 106. Single-precision floating-point store instructions convert double-precision
data to single-precision format before storing the operands.

Table 2-43 summarizes the single- and double-precision floating-point store and stfiwx instructions.

Some floating-point store instructions require conversions in the LSU.
Table 2-43. Floating-Point Store Instructions

Name Mnemonic Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,rB
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,rB
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,rB
Store Floating-Point as Integer Word Indexed stfiwx frS,rB

Note:
1. The stfiwx instruction is optional to the PowerPC Architecture.

Table 2-44 shows conversions the LSU makes when executing a Store Floating-Point Single instruction
(when HID2[PSE] = 0).

Table 2-44. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero, infinity, QNaN Store
Single SNaN Store

If (exp < 896)

Double Normalized then Denormalize and Store

else
Store
Double Denormalized Store zero
Double Zero, infinity, QNaN Store
Double SNaN Store
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Note: The FPRs are not initialized by HRESET, and they must be initialized with some valid value after POR
HRESET and before being stored.

Table 2-45 shows the conversions made when performing a Store Floating-Point Double instruction. Most
entries in the table indicate that the floating-point value is simply stored. Only in a few cases are any other
actions taken.

Table 2-45. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero, infinity, QNaN Store
Double SNaN Store

Architecturally, all single- and double-precision floating-point numbers are represented in double-precision
format within the 750CL. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux) instruction
requires conversion from double- to single-precision format. If the exponent is not greater than 896, this
conversion requires denormalization. The 750CL supports this denormalization by shifting the mantissa 1 bit
at a time. Anywhere from 1 to 23 clock cycles are required to complete the denormalization, depending upon
the value to be stored.

Because of how floating-point numbers are implemented in the 750CL, there is also a case when execution of
a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can require internal shifting of the
mantissa. This case occurs when the operand of a store floating-point double instruction is a denormalized
single-precision value. The value could be the result of a load floating-point single instruction, a single-preci-
sion arithmetic instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These cycles are incurred
during the store.

Paired-Single Load and Store Instructions

In addition to the floating-point load and store instructions defined in the PowerPC Architecture, the 750CL
includes eight additional load and store instructions that can implicitly convert their operands between single-
precision floating-point and lower precision, quantized data types. For load instructions, this conversion is an
inverse quantization, or dequantization, operation that converts signed or unsigned, 8- or 16-bit integers to
32-bit single-precision floating-point operands. This conversion takes place in the load/store unit as the data
is being transfered to a floating-point register (FPR). For store instructions, the conversion is a quantization
operation that converts single-precision floating-point numbers to operands having one of the quantized data
types. This conversion takes place in the load/store unit as the data is transfered out of an FPR.

The load and store instructions for which data quantization applies are for ‘paired-single’ operands, and so
are valid only when HID2[PSE] = 1. These new load and store instructions cause an illegal instruction excep-
tion if execution is attempted when HID2[PSE] = 0. The quantization/dequantization hardware in the
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load/store unit assumes big-endian ordering of the data in memory. Use of these instructions in little-endian
mode (MSR[LE] = 1) gives undefined results. Whenever a pair of operands are converted, they are both
converted in the same manner.

When operating in paired-single mode (HID2[PSE] = 1), the behavior of single-precision floating-point load
and store instructions is different from that described in the previous two sections. In this mode, a single-
precision floating-point load instruction loads one single-precision operand into both the high and low order
words of the operand pair in an FPR. A single-precision floating-point store instruction stores only the high
order word of the operand pair in an FPR.

Table 2-46 summarizes the paired-single load and store instructions.
Table 2-46. Paired-Single Load and Store Instructions

Name Mnemonic Syntax
Paired Single Quantized Load Indexed 1 psq_Ix frD,rA,rB,W,qrl
Paired Single Quantized Load with Update Indexed 1 psq_lux frD,rA,rB,W,qrl
Paired Single Quantized Store Indexed ' psq_stx frS,rA,rB,W,qgrl
Paired Single Quantized Store with Update Indexed psq_stux frS,rA,rB,W,qrl

Note:

1. These instructions belong to the 750CL graphics extensions, and are legal only when HID2[PSE] = 1.

The paired-single load (psq_Ix, psq_lux) and the paired-single store (psq_stx, psq_stux) instructions use a
variation of the X-form instruction format. Instead of having a 10-bit secondary opcode field, 6 bits are used
for the secondary opcode, and the remaining 4 bits are used for the W field and the | field.

See Section 12 PowerPC Instruction Set for the 750CL on page 347 for more information on the instruction
format.

The dequantization algorithm used to convert each integer of a pair to a single-precision floating-point
operand is as follows:
1. Read integer operand from L1 cache
Convert data to sign and magnitude according to type specified in the selected GQR
Convert magnitude to normalized mantissa and exponent
Subtract scaling factor specified in the selected GQR from the exponent
Load the converted value into the target FPR

o > 0D

For an integer value, I, in memory, the floating-point value F, loaded into the target FPR, is F =1 x 25, where
S is the twos compliment value in the LD_SCALE field of the selected GQR. Table 2-47 shows how an
integer value of 1 is converted to a single-precision floating-point value for various scaling factors.

Table 2-47. Conversion of Integer Value 1 to Single-Precision Floating Point (Page 1 of 2)

GQRx[LD_SCALE] Scaling Factor (S) Floating-point Value
100000 -32 4.29 E+9
100001 -31 2.15 E+9
111110 2 4.00 E+0
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Table 2-47. Conversion of Integer Value 1 to Single-Precision Floating Point (Page 2 of 2)

GQRX[LD_SCALE] Scaling Factor (S) Floating-point Value
111111 -1 2.00 E+0
000000 0 1.00 E+0
000001 1 5.00 E-1
000010 2 2.50 E-1
011110 30 9.31 E-10
011111 31 4.66 E-10

For a single-precision floating-point operand (type = 0), the value from the L1 cache is passed directly to the
register without any conversion. This includes the case where the operand is a denorm.

The quantization algorithm used to convert each single-precision floating-point operand of a pair to an integer
is as follows:

Move the single-precision floating-point operand from the FPR to the completion store queue.

Add the scaling factor specified in the selected GQR to the exponent

Shift mantissa and increment/decrement exponent until exponent is zero

Convert sign and magnitude to 2s complement representation, and

Round toward zero to get the type specified in the selected GQR

I O

Adjust the resulting value on overflow

7. Store the converted value in the L1 cache.

The adjusted result value for overflow of unsigned integers is zero for negative values, 255 and 65535 for
positive values, for 8- and 16-bit types, respectively. The adjusted result value for overflow of signed integers
is -128 and -32768 for negative values, 127 and 32767 for positive values, for 8- and 16-bit types, respec-
tively. The converted value produced when the input operand is +Inf or a NaN with a ‘0’ in the high order bit is
the same as the adjusted result value for overflow of positive values for the target data type. The converted
value produced when the input operand is -Inf or a NaN with a ‘1’ in the high order bit is the same as the
adjusted result value for overflow of negative values.

For a single-precision floating-point value, F, in an FPR, the integer value |, stored to memory,
is | = ROUND(F X 28), where S is the twos compliment value in the ST_SCALE field of the selected GQR,
and ROUND applies the rounding and clamping appropriate to the particular target integer format.

Table 2-48 shows how a floating-point value of 1.00 E+2 is converted to an integer value for various scaling
factors.

Table 2-48. Conversion of Floating-point Value 1.00 E+2 to Integer (Page 1 of 2)

GQRx[LD_SCALE] Scaling Factor (S) u8 Value ulé s8 s16
100000 -32 0 0 0 0
100001 -31 0 0 0 0
111110 -2 25 25 25 25
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Table 2-48. Conversion of Floating-point Value 1.00 E+2 to Integer (Page 2 of 2)

GQRX[LD_SCALE] Scaling Factor (S) u8 Value ul6 s8 s16
111111 -1 50 50 50 50
000000 0 100 100 100 100
000001 1 200 200 127 200
000010 2 255 400 127 400
011110 30 255 65535 127 32767
011111 31 255 65525 127 32767

For a single-precision floating-point operand (type = 0), the value from the FPR is passed directly to the L1
cache without any conversion, except when this operand is a denorm. In the case of a denorm, the value 0.0
is stored in the L1 cache.

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the value of bits in the CR.
When the processor encounters one of these instructions, it scans the execution pipelines to determine
whether an instruction in progress may affect the particular CR bit. If no interlock is found, the branch can be
resolved immediately by checking the bit in the CR and taking the action defined for the branch instruction.

Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses are always
assumed to be word aligned; the PowerPC processors ignore the two low-order bits of the generated branch
target address.
Branch instructions compute the EA of the next instruction address using the following addressing modes:

¢ Branch relative

* Branch conditional to relative address

* Branch to absolute address

* Branch conditional to absolute address

¢ Branch conditional to link register

¢ Branch conditional to count register
Note that in the 750CL, all branch instructions (b, ba, bl, bla, be, bea, bcl, bela, belr, belrl, beetr, becetrl)
and condition register logical instructions (crand, cror, crxor, crnand, crnor, crandc, creqv, crorc, and
mcrf) are executed by the BPU. Some of these instructions can redirect instruction execution conditionally
based on the value of bits in the CR. Whenever the CR bits resolve, the branch direction is either marked as
correct or mispredicted. Correcting a mispredicted branch requires that the 750CL flush speculatively

executed instructions and restore the machine state to immediately after the branch. This correction can be
done immediately upon resolution of the condition registers bits.
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Branch Instructions

Table 2-49 lists the branch instructions provided by the PowerPC processors. To simplify assembly language
programming, a set of simplified mnemonics and symbols is provided for the most frequently used forms of
branch conditional, compare, trap, rotate and shift, and certain other instructions.

See Appendix F, “Simplified Mnemonics” in the PowerPC Microprocessor Family: The Programming Environ-
ments manual for a list of simplified mnemonic examples.

Table 2-49. Branch Instructions

Name Mnemonic Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bc (bca bcl bcla) BO,Bl,target_addr
Branch Conditional to Link Register belr (bclrl) BO,BI
Branch Conditional to Count Register beetr (bectrl) BO,BI

Condition Register Logical Instructions

Condition register logical instructions and the Move Condition Register Field (mcrf) instruction are also
defined as flow control instructions.

Table 2-50 shows these instructions.

Table 2-50. Condition Register Logical Instructions

Name Mnemonic Syntax

Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA, crbB
Condition Register AND with Complement crandc crbD,crbA, crbB
Condition Register OR with Complement crorc crbD,crbA, crbB
Move Condition Register Field mcerf crfD,crfS

Note: If the LR update option is enabled for any of these instructions, the PowerPC Architecture defines
these forms of the instructions as invalid.

Trap Instructions

The trap instructions shown in Table 2-51 are provided to test for a specified set of conditions. If any of the
conditions tested by a trap instruction are met, the system trap type program exception is taken. For more
information, see Section 4.5.7 Program Exception (0x00700). If the tested conditions are not met, instruction
execution continues normally.
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Table 2-51. Trap Instructions

Name Mnemonic Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics” in the PowerPC Microprocessor Family: The Programming Environ-
ments manual for a complete set of simplified mnemonics.
2.3.4.5 System Linkage Instruction—UISA

The System Call (sc) instruction permits a program to call on the system to perform a service; see Table 2-52.
See also Section 2.3.6.1 on page 121 for additional information.

Table 2-52. System Linkage Instruction—UISA

Name Mnemonic Syntax

System Call sc —

Executing this instruction causes the system call exception handler to be evoked. For more information, see
Section 4.5.10 System Call Exception (0x00C00).

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register (CR), machine state
register (MSR), and special-purpose registers (SPRs).

See Section 2.3.5.1 Processor Control Instructions—VEA for the mftb instruction and Section 2.3.6.2
Processor Control Instructions—OEA for information about the instructions used for reading from and writing
to the MSR and SPRs.

Move to/from Condition Register Instructions

Table 2-53 summarizes the instructions for reading from or writing to the condition register.

Table 2-53. Move to/from Condition Register Instructions

Name Mnemonic Syntax
Move to Condition Register Fields mtcrf Crammers
Move to Condition Register from XER matrix crfD
Move from Condition Register mfcr rD

Implementation Note—The PowerPC Architecture indicates that in some implementations the Move to
Condition Register Fields (mtcrf) instruction may perform more slowly when only a portion of the fields are
updated as opposed to all of the fields. The condition register access latency for the 750CL is the same in
both cases.
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Move to/from Special-Purpose Register Instructions (UISA)
Table 2-54 lists the mtspr and mfspr instructions.
Table 2-54. Move to/from Special-Purpose Register Instructions (UISA)
Name Mnemonic Syntax
Move to Special-Purpose Register mtspr Spars
Move from Special-Purpose Register mfspr rD,SPR
Table 2-55 lists the SPR numbers for both user and supervisor-level accesses.
Table 2-55. PowerPC Encodings (Page 1 of 3)
SPR'
Register Name Access mfspr/mtspr
Decimal spr[5—9] spr[0—4]
CTR 9 00000 01001 User (UISA) Both
DABR 1013 11111 10101 Supervisor (OEA) Both
DAR 19 00000 10011 Supervisor (OEA) Both
DBATOL 537 10000 11001 Supervisor (OEA) Both
DBATOU 536 10000 11000 Supervisor (OEA) Both
DBAT1L 539 10000 11011 Supervisor (OEA) Both
DBAT1U 538 10000 11010 Supervisor (OEA) Both
DBAT2L 541 10000 11101 Supervisor (OEA) Both
DBAT2U 540 10000 11100 Supervisor (OEA) Both
DBAT3L 543 10000 11111 Supervisor (OEA) Both
DBAT3U 542 10000 11110 Supervisor (OEA) Both
DBAT4L 569 10001 11001 Supervisor (OEA) Both
DBAT4U 568 10001 11000 Supervisor (OEA) Both
DBAT5L 571 10001 11011 Supervisor (OEA) Both
DBAT5U 570 10001 11010 Supervisor (OEA) Both
DBAT6L 573 10001 11101 Supervisor (OEA) Both
DBAT6U 572 10001 11100 Supervisor (OEA) Both
DBAT7L 575 10001 11111 Supervisor (OEA) Both
DBAT7U 574 10001 11110 Supervisor (OEA) Both
DEC 22 00000 10110 Supervisor (OEA) Both
DSISR 18 00000 10010 Supervisor (OEA) Both
Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and mfspr
instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the instruction.
The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five bits appearing in bits

16—20 of the instruction and the low-order five bits in bits 11-15.

. The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode

and the TBR numbers here. The TB registers can be read in user mode using either the mftb or mfspr instruction and specifying

TBR 268 for TBL and SPR 269 for TBU.
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Table 2-55. PowerPC Encodings (Page 2 of 3)

1

Register Name SPR Access mfspr/mtspr
Decimal spr[5-9] spr[0—4]

EAR 282 01000 11010 Supervisor (OEA) Both
IBATOL 529 10000 10001 Supervisor (OEA) Both
IBATOU 528 10000 10000 Supervisor (OEA) Both
IBAT1L 531 10000 10011 Supervisor (OEA) Both
IBAT1U 530 10000 10010 Supervisor (OEA) Both
IBAT2L 533 10000 10101 Supervisor (OEA) Both
IBAT2U 532 10000 10100 Supervisor (OEA) Both
IBAT3L 535 10000 10111 Supervisor (OEA) Both
IBAT3U 534 10000 10110 Supervisor (OEA) Both
IBAT4L 561 10001 10001 Supervisor (OEA) Both
IBAT4U 560 10001 10000 Supervisor (OEA) Both
IBAT5L 563 10001 10011 Supervisor (OEA) Both
IBAT5U 562 10001 10010 Supervisor (OEA) Both
IBAT6L 565 10001 10101 Supervisor (OEA) Both
IBAT6U 564 10001 10100 Supervisor (OEA) Both
IBAT7L 567 10001 10111 Supervisor (OEA) Both
IBAT7U 566 10001 10110 Supervisor (OEA) Both
LR 8 00000 01000 User (UISA) Both
PVR 287 01000 11111 Supervisor (OEA) mfspr
SDR1 25 00000 11001 Supervisor (OEA) Both
SPRGO 272 01000 10000 Supervisor (OEA) Both
SPRG1 273 01000 10001 Supervisor (OEA) Both
SPRG2 274 01000 10010 Supervisor (OEA) Both
SPRG3 275 01000 10011 Supervisor (OEA) Both
SRRO 26 00000 11010 Supervisor (OEA) Both
SRR1 27 00000 11011 Supervisor (OEA) Both

268 01000 01100 User (VEA) mfspr
TBL '

284 01000 11100 Supervisor (OEA) mtspr
Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and mfspr
instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the instruction.
The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five bits appearing in bits
16—-20 of the instruction and the low-order five bits in bits 11-15.

2. The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode
and the TBR numbers here. The TB registers can be read in user mode using either the mftb or mfspr instruction and specifying
TBR 268 for TBL and SPR 269 for TBU.
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Table 2-55. PowerPC Encodings (Page 3 of 3)

SPR'
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0—4]
269 01000 01101 User (VEA) mfspr
TBU 2
285 01000 11101 Supervisor (OEA) mtspr
XER 1 00000 00001 User (UISA) Both
Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding. For mtspr and mfspr
instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary number in the instruction.
The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five bits appearing in bits
16—-20 of the instruction and the low-order five bits in bits 11-15.

2. The TB registers are referred to as TBRs rather than SPRs and can be written to using the mtspr instruction in supervisor mode
and the TBR numbers here. The TB registers can be read in user mode using either the mftb or mfspr instruction and specifying
TBR 268 for TBL and SPR 269 for TBU.

Encodings for the 750CL-specific SPRs are listed in Table 2-56.

Table 2-56. SPR Encodings for 750CL-Defined Registers (Page 1 of 2)

1

Register Name SPR Access mfspr/mtspr
Decimal spr[5-9] spr[0—4]
DABR 1013 11111 10101 User Both
DMAL 2 923 11100 11011 Supervisor Both
DMAU 2 922 11100 11010 Supervisor Both
GQRO 2 912 11100 10000 Supervisor Both
GQR12 913 11100 10001 Supervisor Both
GQR22 914 11100 10010 Supervisor Both
GQR3 2 915 11100 10011 Supervisor Both
GQR4 2 916 11100 10100 Supervisor Both
GQR5 2 917 11100 10101 Supervisor Both
GQR6 2 918 11100 10110 Supervisor Both
GQR7 2 919 11100 10111 Supervisor Both
HIDO 1008 11111 10000 Supervisor Both
HID1 1009 11111 10001 Supervisor Both
HID2 2 920 11100 11000 Supervisor Both
HID4 1011 11111 10011 Supervisor Both
IABR 1010 11111 10010 Supervisor Both
ICTC 1019 11111 11011 Supervisor Both
L2CR 1017 11111 11001 Supervisor Both

Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding.
For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary num-
ber in the instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits
appearing in bits 16—20 of the instruction and the low-order 5 bits in bits 11-15.

2. This register is part of the 750CL graphics extensions.
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Table 2-56. SPR Encodings for 750CL-Defined Registers (Page 2 of 2)

1

Register Name SPR Access mfspr/mtspr
Decimal spr[5-9] spr[0—4]
MMCRO 952 11101 11000 Supervisor Both
MMCR1 956 11101 11100 Supervisor Both
PMCA1 953 11101 11001 Supervisor Both
PMC2 954 11101 11010 Supervisor Both
PMC3 957 11101 11101 Supervisor Both
PMC4 958 11101 11110 Supervisor Both
SIA 955 11101 11011 Supervisor Both
TDCL 1012 11111 10100 Supervisor mfspr
TDCH 1018 11111 11010 Supervisor mfspr
THRM!1 1020 11111 11100 Supervisor Both
THRM2 1021 11111 11101 Supervisor Both
THRM3 1022 11111 11110 Supervisor Both
UMMCRO 936 11101 01000 User mfspr
UMMCR1 940 11101 01100 User mfspr
UPMCH1 937 11101 01001 User mfspr
UPMC2 938 11101 01010 User mfspr
UPMC3 941 11101 01101 User mfspr
UPMC4 942 11101 01110 User mfspr
USIA 939 11101 01011 User mfspr
WPAR 2 921 11100 11001 Supervisor Both

Note:

1. The order of the two 5-bit halves of the SPR number is reversed compared with actual instruction coding.
For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as a 10-bit binary num-
ber in the instruction. The number coded is split into two 5-bit halves that are reversed in the instruction, with the high-order 5 bits
appearing in bits 16—20 of the instruction and the low-order 5 bits in bits 11-15.

2. This register is part of the 750CL graphics extensions.

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory access mechanisms. See Section 3 750CL Instruction and Data Cache Operation on page 125 for
additional information about these instructions and about related aspects of memory synchronization. See
Table 2-57 for a summary.
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Table 2-57. Memory Synchronization Instructions—UISA

Name Mnemonic Syntax Implementation Notes
Load Word and Programmers can use lwarx with stwex. to emulate common semaphore operations such as
Reserve lwarx rD,rA,rB |test and set, compare and swap, exchange memory, and fetch and add. Both instructions
Indexed must use the same EA. Reservation granularity is implementation-dependent. The 750CL

makes reservations on behalf of aligned 32-byte sections of the memory address space. If
the W bit is set, executing Iwarx and stwex. to a page marked write-through does not cause
a DSI exception, but DSI exceptions can result for other reasons. If the location is not word-

Store Word aligned, an alignment exception occurs.
Conditional stwex. rS,rA,rB | The stwex. instruction is the only load/store instruction with a valid form if Rc is set. If Rc is
Indexed zero, executing stwex. sets CRO to an undefined value. In general, stwex. always causes a

transaction on the external bus and thus operates with slightly worse performance character-
istics than normal store operations.

Because it delays subsequent instructions until all previous instructions complete to where
they cannot cause an exception, sync is a barrier against store gathering when

HID2[LCE] = 0 and HID2[WPE] = 0. See Section 9 L2 Cache, Locked D-Cache, DMA, and
Write Gather Pipe on page 315 for a description of the modified sync behavior when
HID2[LCE] = 1 or HID2[WPE] = 1. Additionally, all load/store cache/bus activities initiated by
prior instructions are completed. Touch load operations (dcbt, dcbtst) must complete
address translation, but need not complete on the bus. If HIDO[ABE] = 1, sync completes
after a successful broadcast.

The latency of sync depends on the processor state when it is dispatched and on various
system-level situations. Therefore, frequent use of sync may degrade performance.

Synchronize sync —

System designs with an L2 cache should take special care to recognize the hardware signaling caused by a
SYNC bus operation and perform the appropriate actions to guarantee that memory references that may be
queued internally to the L2 cache have been performed globally.

See Section 2.3.5.2 Memory Synchronization Instructions—VEA for details about additional memory
synchronization (eieio and isync) instructions.

In the PowerPC Architecture, the Rc bit must be zero for most load and store instructions. If Rc is set, the
instruction form is invalid for sync and Iwarx instructions. If the 750CL encounters one of these invalid
instruction forms, it sets CRO to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the memory model that can
be assumed by software processes, and includes descriptions of the cache model, cache control instructions,
address aliasing, and other related issues. Implementations that conform to the VEA also adhere to the UISA,
but may not necessarily adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA defines the mftb
instruction (user-level instruction) for reading the contents of the time base register; see Section 3 750CL
Instruction and Data Cache Operation on page 125 for more information.

Table 2-58 shows the mftb instruction.
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Table 2-58. Move from Time Base Instruction

Name Mnemonic Syntax

Move from Time Base mftb rD, TBR

Simplified mnemonics are provided for the mftb instruction so it can be coded with the TBR name as part of
the mnemonic rather than requiring it to be coded as an operand. See Appendix F, “Simplified Mnemonics” in
the PowerPC Microprocessor Family: The Programming Environments manual for simplified mnemonic
examples and for simplified mnemonics for Move from Time Base (mftb) and Move from Time Base Upper
(mftbu), which are variants of the mftb instruction rather than of mfspr. The mftb instruction serves as both
a basic and simplified mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic
form, and an mftb mnemonic with one operand as the simplified form. Note that the 750CL ignores the
extended opcode differences between mftb and mfspr by ignoring bit 25 and treating both instructions iden-
tically.

Implementation Notes—The following information is useful with respect to using the time base implementa-
tion in the 750CL.:

e The 750CL allows user-mode read access to the time base counter through the use of the Move from
Time Base (mftb) and the Move from Time Base Upper (mftbu) instructions. As a 32-bit PowerPC imple-
mentation, the 750CL can access TBU and TBL only separately, whereas 64-bit implementations can
access the entire TB register at once.

* The time base counter is clocked at a frequency that is one-fourth that of the bus clock.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory access mechanisms. See Section 3., “750CL Instruction and Data Cache Operation" on Page -125
for more information about these instructions and about related aspects of memory synchronization.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce In-Order Execution of I/O
(eieio) and Instruction Synchronize (isync) instructions. The number of cycles required to complete an eieio
instruction depends on system parameters and on the processor's state when the instruction is issued. As a
result, frequent use of this instruction may degrade performance slightly.

Table 2-59 on page 118 describes the memory synchronization instructions defined by the VEA.
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Table 2-59. Memory Synchronization Instructions—VEA

Name Mnemonic | Syntax Implementation Notes

— The eieio instruction is dispatched to the LSU and executes after all previous cache-
inhibited or write-through accesses are performed; all subsequent instructions that gener-
ate such accesses execute after eieio. If HIDO[ABE] = 1 an EIEIO operation is broadcast
on the external bus to enforce ordering in the external memory system. The eieio opera-
tion bypasses the L2 cache and is forwarded to the bus unit. If HIDO[ABE] = 0, the opera-
tion is not broadcast.

eieio Because the 750CL does not reorder noncacheable accesses, eieio is not needed to
force ordering. However, if store gathering is enabled and an eieio is detected in a store
queue, stores are not gathered. If HIDO[ABE] = 1, broadcasting eieio prevents external
devices, such as a bus bridge chip, from gathering stores. The behavior of eieio is modi-
fied when either HID2[LCE] = 1 or HID2[WPE] = 1. See Section 9 L2 Cache, Locked D-
Cache, DMA, and Write Gather Pipe on page 315 for a description of this modified behav-
ior.

Enforce In-Order
Execution of 1/0

— The isync instruction is refetch serializing; that is, it causes the 750CL to purge its
instruction queue and wait for all prior instructions to complete before refetching the next
instruction, which is not executed until all previous instructions complete to the point
where they cannot cause an exception. The isync instruction does not wait for all pending
stores in the store queue to complete. Any instruction after an isync sees all effects of
prior instructions.

Instruction Syn-

) isync
chronize Y

2.3.5.3 Memory Control Instructions—VEA

Memory control instructions can be classified as follows:
¢ Cache management instructions (user-level and supervisor-level)
¢ Segment register manipulation instructions (OEA)

¢ Translation lookaside buffer management instructions (OEA)

This section describes the user-level cache management instructions defined by the VEA. See
Section 2.3.6.3 on page 122 for information about supervisor-level cache, segment register manipulation,
and translation lookaside buffer management instructions.

User-Level Cache Instructions—VEA

The instructions summarized in this section help user-level programs manage on-chip caches if they are
implemented. See Section 3 750CL Instruction and Data Cache Operation on page 125 for more information
about cache topics. The following sections describe how these operations are treated with respect to the
750CL’s cache.

As with other memory-related instructions, the effects of cache management instructions on memory are
weakly-ordered. If the programmer must ensure that cache or other instructions have been performed with
respect to all other processors and system mechanisms, a sync instruction must be placed after those
instructions.

Note that the 750CL interprets cache control instructions (icbi, dcbi, dcbf, dcbz, and debst) as if they
pertain only to the local L1 and L2 cache. A dcbz (with M set) is always broadcast on the 60x bus. The dcbi,
dcbf, and dcbst operations are broadcast if HIDO[ABE] is set.
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The the 750CL never broadcasts an icbi. Of the broadcast cache operations, the 750CL snoops only dcbz,
regardless of the HIDO[ABE] setting. Any bus activity caused by other cache instructions results directly from
performing the operation on the 750CL cache. All cache control instructions to T = 1 space are no-ops. For
information on how cache control instructions affect the L2, see Section 9 L2 Cache, Locked D-Cache, DMA,
and Write Gather Pipe on page 315.

Table 2-60 summarizes the cache instructions defined by the VEA. Note that these instructions are acces-
sible to user-level programs.

Table 2-60. User-Level Cache Instructions (Page 1 of 2)

Name Mnemonic Syntax Implementation Notes

The VEA defines this instruction to allow for potential system performance enhancements
through the use of software-initiated prefetch hints. Implementations are not required to
take any action based on execution of this instruction, but they may prefetch the cache
block corresponding to the EA into their cache. When dcbt executes, the 750CL checks
for protection violations (as for a load instruction). This instruction is treated as a no-op for
the following cases:

* A valid translation is not found either in BAT or TLB

* The access causes a protection violation.

dcbt rA,rB * The page is mapped cache-inhibited, G = 1 (guarded), or T = 1.

* The cache is locked or disabled

e HIDO[NOOPTI] =1
Otherwise, if no data is in the cache location, the 750CL requests a cache line fill (with
intent to modify). Data brought into the cache is validated as if it were a load instruction.
The memory reference of a dcbt sets the reference bit. The behavior of debt is modified
when either HID2[LCE] = 1 or HID2[WPE] = 1. See Section 9 L2 Cache, Locked D-
Cache, DMA, and Write Gather Pipe on page 315 for a description of this modified behav-
ior.

Data Cache Block
Touch

Data Cache Block

Touch for Store | dcbtst rA,rB This instruction behaves like dcbt.

The EA is computed, translated, and checked for protection violations. For cache hits,
four beats of zeros are written to the cache block and the tag is marked M. For cache
misses with the replacement block marked E, the zero line fill is performed and the cache
block is marked M. However, if the replacement block is marked M, the contents are writ-
ten back to memory first. The instruction executes regardless of whether the cache is
locked,; if the cache is disabled, an alignment exception occurs. If M =1 (coherency
enforced), the address is broadcast to the bus before the zero line fill.

Data Cache Block The exception priorities (from highest to lowest) are as follows:
dcbz rA,rB
Set to Zero 1 Cache disabled—Alignment exception
2 Page marked write-through or cache Inhibited—Alignment exception
3 BAT protection violation—DSI exception
4 TLB protection violation—DSI exception

dcbz is the only cache instruction that broadcasts even if HIDO[ABE] = 0. The behavior of
dcbz is modified when either HID2[LCE] = 1 or HID2[WPE] = 1. See Section 9 for a
description of this modified behavior.

Data Cache Block debz | rArB This instruction is illegal when HID2[LCE] = 0. See Section 9for a description of this
Set to Zero Locked - ’ instruction when HID2[LCE] = 1.
Note:

1. A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve performance, HIDO[NOOPTI]
may be set, which causes dcbt and dcbtst to be no-oped at the cache. They do not cause bus activity and cause only a 1-clock
execution latency. The default state of this bit is zero which enables the use of these instructions.
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Table 2-60. User-Level Cache Instructions (Page 2 of 2)

Name Mnemonic Syntax
Data Cache Block debst rArB
Store
Data Cache Block
Flush dcbf rA,rB
Instruction Cache ichi rArB

Block Invalidate

Note:

Implementation Notes

The EA is computed, translated, and checked for protection violations.
* For cache hits with the tag marked E, no further action is taken.

* For cache hits with the tag marked M, the cache block is written back to memory and
marked E.

A dcbst is not broadcast unless HIDO[ABE] = 1 regardless of WIMG settings. The instruc-
tion acts like a load with respect to address translation and memory protection. It exe-
cutes regardless of whether the cache is disabled or locked.

The exception priorities (from highest to lowest) for dcbst are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception

The behavior of dcbst is modified when either HID2[LCE] = 1 or HID2[WPE] = 1. See
Chapter 9. for a description of this modified behavior.

The EA is computed, translated, and checked for protection violations.

* For cache hits with the tag marked M, the cache block is written back to memory and
the cache entry is invalidated.

* For cache hits with the tag marked E, the entry is invalidated.
* For cache misses, no further action is taken.
A dcbf is not broadcast unless HIDO[ABE] = 1 regardless of WIMG settings. The instruc-

tion acts like a load with respect to address translation and memory protection. It exe-
cutes regardless of whether the cache is disabled or locked.

The exception priorities (from highest to lowest) for debf are as follows:
1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception

The behavior of debf is modified when either HID2[LCE] = 1 or HID2[WPE] = 1. See
Chapter 9. for a description of this modified behavior.

This instruction performs a virtual lookup into the instruction cache (index only). The
address is not translated, so it cannot cause an exception. All ways of a selected set are
invalidated regardless of whether the cache is disabled or locked. The 750CL never
broadcasts icbi onto the 60x bus.

1. A program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve performance, HIDO[NOOPTI]
may be set, which causes dcbt and dcbtst to be no-oped at the cache. They do not cause bus activity and cause only a 1-clock
execution latency. The default state of this bit is zero which enables the use of these instructions.

2.3.5.4 Optional External Control Instructions

The PowerPC Architecture defines an optional external control feature that, if implemented, is supported by
the two external control instructions, eciwx and ecowx. These instructions allow a user-level program to
communicate with a special-purpose device. These instructions are provided and are summarized in

Table 2-61.

Table 2-61. External Control Instructions

Name Mnemonic Syntax
External Control .
In Word Indexed | €¢WX rD,rArB
External Control
Out Word ecowx rS,rA,rB
Indexed

Programming Model
Page 120 of 619

Implementation Notes

A transfer size of 4 bytes is implied; the TBST and TSIZ[0-2] signals are redefined to
specify the Resource ID (RID), copied from bits EAR[28-31]. For these operations, TBST
carries the EAR[28] data. Misaligned operands for these instructions cause an alignment
exception. Addressing a location where SR[T] = 1 causes a DSI exception. If MSR[DR] = 0
a programming error occurs and the physical address on the bus is undefined.

Note: These instructions are optional to the PowerPC Architecture.
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The eciwx/ecowx instructions let a system designer map special devices in an alternative way. The MMU
translation of the EA is not used to select the special device, as it is used in most instructions such as loads
and stores. Rather, it is used as an address operand that is passed to the device over the address bus. Four
other signals (the burst and size signals on the 60x bus) are used to select the device; these four signals
output the 4-bit resource ID (RID) field located in the EAR. The eciwx instruction also loads a word from the
data bus that is output by the special device. For more information about the relationship between these
instructions and the system interface, refer to Section 7 Signal Descriptions on page 247.

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the memory management
model, supervisor-level registers, and the exception model. Implementations that conform to the OEA also
adhere to the UISA and the VEA. This section describes the instructions provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-62). The user-level sc instruction lets a
user program call on the system to perform a service and causes the processor to take a system call excep-
tion. The supervisor-level Hi instruction is used for returning from an exception handler.

Table 2-62. System Linkage Instructions—OEA

Name Mnemonic | Syntax Implementation Notes
System Call sc — The sc instruction is context-synchronizing.
— The rfi instruction is context-synchronizing. For the 750CL, this means the rfi instruction

rfi works its way to the final stage of the execution pipeline, updates architected registers,
and redirects the instruction flow.

Return from
Interrupt
2.3.6.2 Processor Control Instructions—OEA

This section describes the processor control instructions used to access the MSR and the SPRs. Table 2-63
lists instructions for accessing the MSR.

Table 2-63. Move to/from Machine State Register Instructions

Name Mnemonic Syntax
Move to Machine State Register mtmsr rS
Move from Machine State Register mfmsr rD

The OEA defines encodings of mtspr and mfspr to provide access to supervisor-level registers. The instruc-
tions are listed in Table 2-64.

Table 2-64. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPR,rS
Move from Special-Purpose Register mfspr rD,SPR
02_750CL.fm.1.0 Programming Model
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Encodings for the architecture-defined SPRs are listed in Figure 2-56 on page 114. Encodings for 750CL-
specific, supervisor-level SPRs are listed in Figure 2-57 on page 116. Simplified mnemonics are provided for
mtspr and mfspr in Appendix F, “Simplified Mnemonics” in the PowerPC Microprocessor Family: The
Programming Environments manual.

For a discussion of context synchronization requirements when altering certain SPRs, refer to Appendix E,
“Synchronization Programming Examples” in the PowerPC Microprocessor Family: The Programming Envi-
ronments manual.

2.3.6.3 Memory Control Instructions—OEA

Memory control instructions include the following:
¢ Cache management instructions (supervisor-level and user-level)
¢ Segment register manipulation instructions

» Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. Section 2.3.5.3 on page 118 describes
user-level memory control instructions.

Supervisor-Level Cache Management Instruction—(OEA)

Table 2-65 lists the only supervisor-level cache management instruction.

Table 2-65. Supervisor-Level Cache Management Instruction

Name Mnemonic Syntax Implementation Notes

The EA is computed, translated, and checked for protection violations. For cache hits,
the cache block is marked | regardless of whether it was marked E or M. A dcbi is not
broadcast unless HIDO[ABE] = 1, regardless of WIMG settings. The instruction acts like a
store with respect to address translation and memory protection. It executes regardless
of whether the cache is disabled or locked.

Data Cache Block

: dcbi rA,rB The exception priorities (from highest to lowest) for dcbi are as follows:
Invalidate 1 BAT protection violation—DSI exception
2 TLB protection violation—DSI exception

The behavior of dcbi is modified when either HID2[LCE] = 1 or HID2[WPE] = 1. See
Section 9 L2 Cache, Locked D-Cache, DMA, and Write Gather Pipe on page 315 for a
description of this modified behavior.

See Section User-Level Cache Instructions—VEA for cache instructions that provide user-level programs the
ability to manage the on-chip caches. If the effective address references a direct-store segment, the instruc-
tion is treated as a no-op.

Segment Register Manipulation Instructions (OEA)

The instructions listed in Table 2-66 provide access to the segment registers for 32-bit implementations.
These instructions operate completely independently of the MSR[IR] and MSR[DR] bit settings. Refer to
“Synchronization Requirements for Special Registers and for Lookaside Buffers” in Chapter 2, “PowerPC
Register Set” of the PowerPC Microprocessor Family: The Programming Environments manual for serializa-
tion requirements and other recommended precautions to observe when manipulating the segment registers.
Be sure to execute an isync after execution of an mtsr instruction.
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Table 2-66. Segment Register Manipulation Instructions

Name Mnemonic Syntax Implementation Notes
ll\qllov_e to Segment mtsr SR,rS Execute isync after mtsr.
egister
Move to Segment . .
Register Indirect mtsrin rS,rB Execute isync after mtsr.
Move from Seg- mfsr 'D.SR The shadow SRs in the instruction MMU can be read by setting HIDO[RISEG] before

ment Register executing mfsr.

Move from Seg-
ment Register mfsrin rD,rB —
Indirect

Translation Lookaside Buffer Management Instructions—(OEA)

The address translation mechanism is defined in terms of the segment descriptors and page table entries
(PTEs) PowerPC processors use to locate the logical-to-physical address mapping for a particular access.
These segment descriptors and PTEs reside in segment registers and page tables in memory, respectively.

See Section 7 Signal Descriptions on page 247 for more information about TLB operations.

Table 2-67 summarizes the operation of the TLB instructions in the 750CL.

Table 2-67. Translation Lookaside Buffer Management Instruction

Name Mnemonic Syntax Implementation Notes

Invalidates both ways in both instruction and data TLB entries at the index provided by
EA[14—19]. It executes regardless of the MSR[DR] and MSR][IR] settings.To invalidate all
entries in both TLBs, the programmer should issue 64 tlbie instructions that each suc-
cessively increment this field.

TLB Invalidate

Entry tibie rB

On the 750CL, the only function tlbsync serves is to wait for the TLBISYNC signal to go

TLB Synchronize |tlbsync — inactive.

Implementation Note—The tlbia instruction is optional for an implementation if its effects can be achieved
through some other mechanism. Therefore, it is not implemented on the 750CL. As described above, tibie
can be used to invalidate a particular index of the TLB based on EA[14—19]—a sequence of 64 tlbie instruc-
tions followed by a tibsync instruction invalidates all the TLB structures (for EA[14-19]=0, 1, 2,..., 63).
Attempting to execute tlbia causes an illegal instruction program exception.

The presence and exact semantics of the TLB management instructions are implementation-dependent. To
minimize compatibility problems, system software should incorporate uses of these instructions into subrou-
tines.

2.3.7 Recommended Simplified Mhemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some frequently used
operations (such as no-op, load immediate, load address, move register, and complement register).
Programs written to be portable across the various assemblers for the PowerPC Architecture should not
assume the existence of mnemonics not described in this document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics” in the PowerPC Micro-
processor Family: The Programming Environments manual.
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3. 750CL Instruction and Data Cache Operation

The 750CL microprocessor contains separate 32-KB, eight-way set associative instruction and data caches
to allow the execution units and registers rapid access to instructions and data. This chapter describes the
organization of the on-chip instruction and data caches, the MEI cache coherency protocol, cache control
instructions, various cache operations, and the interaction between the caches, the load/store unit (LSU), the
instruction unit, and the bus interface unit (BIU).

At power-on, the 750CL sets HID2[LCE] = 0 and the corresponding L1 data cache’s operation is described in
this chapter. When a mtspr instruction sets HID2[LCE] = 1, the L1 data cache is partitioned as a 16-KB
normal cache and a 16-KB locked cache. The operation of the L1 data cache in this configuration is described
in Section 9 L2 Cache, Locked D-Cache, DMA, and Write Gather Pipe on page 315 of this manual. Also, in
the 750CL, locked cache and bus snoop are incompatible. HID2[LCE] shall be kept at 0 for systems which
generate snoop transactions.

Note that in this chapter, the term ‘multiprocessor’ is used in the context of maintaining cache coherency.
These multiprocessor devices could be actual processors or other devices that can access system memory,
maintain their own caches, and function as bus masters requiring cache coherency. If the L2 cache is
enabled, read Section 9 L2 Cache, Locked D-Cache, DMA, and Write Gather Pipe on page 315 before
reading this chapter.
The 750CL L1 cache implementation has the following characteristics:

* There are two separate 32-KB instruction and data caches (Harvard architecture).

¢ Both instruction and data caches are eight-way set associative.

* The caches implement a pseudo least-recently-used (PLRU) replacement algorithm within each set.

e The cache directories are physically addressed. The physical (real) address tag is stored in the cache
directory.

¢ Both the instruction and data caches have 32-byte cache blocks. A cache block is the block of memory
that a coherency state describes, also referred to as a cache line.

* Two coherency state bits for each data cache block allow encoding for three states:
— Modified (M)
— Exclusive (E)
— Invalid (1)
* A single coherency state bit for each instruction cache block allows encoding for two possible states:
— Invalid (INV)
— Valid (VAL)
e Each cache can be invalidated or locked by setting the appropriate bits in the hardware implementation-
dependent register 0 (HIDO), a special-purpose register (SPR) specific to the 750CL.

The 750CL supports a fully-coherent 4-GB physical memory address space. Bus snooping is used to drive
the MEI three-state cache coherency protocol that ensures the coherency of global memory with respect to
the processor’s data cache. The MEI protocol is described in Section 3.3.2 MEI Protocol on page 130.
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On a cache miss, the 750CL’s cache blocks are filled in four beats of 64 bits each. The burst fill is performed
as a critical-double-word-first operation; the critical doubleword is simultaneously written to the cache and
forwarded to the requesting unit, thus minimizing stalls due to cache fill latency. The data cache line is first
loaded into a 32-byte reload buffer and when it is full, it is written into the data cache in one cycle. This mini-
mizes the contention between load-store unit and the line reload function. See Figure 9-1 on page 316.

The instruction and data caches are integrated into the 750CL as shown in Figure 3-1.

Figure 3-1. Cache Integration

Load/Store Unit
Instruction Unit (LSU)
A A
Instructions (0-127) EA (20-26) Data (0-63)
Y Y /
Cache Tags Cache Tags
I-Cache D-Cache
32-KB y PAQ-19) :} 32-KB
8-Way Set Associative 8-Way Set Associative
-< Cache Logic Cache Logic
Y A A A
Instructions (0-63) PA (0-31) Data (0-63)
,,,,,,,,,,,,,, Yy Y
MMU/L2/60x BIU

EA: Effective Address
PA: Physical Address

Both caches are tightly coupled into the 750CL’s bus interface unit to allow efficient access to the system
memory controller and other bus masters. The bus interface unit receives requests for bus operations from
the instruction and data caches, and executes the operations per the 60x bus protocol. The BIU provides
address queues, prioritizing logic, and bus control logic. The BIU captures snoop addresses for data cache,
address queue, and memory reservation (lwarx and stwex. instruction) operations. In the 750CL a L1 cache
miss first accesses the L2 cache to find the desired cache block before accessing the BIU.

The data cache provides buffers for load and store bus operations. All the data for the corresponding address
queues (load and store data queues) is located in the data cache. The data queues are considered temporary
storage for the cache and not part of the BIU. The data cache also provides storage for the cache tags
required for memory coherency and performs the cache block replacement PLRU function. The data cache is
supported by two cache block reload/write-back buffers. This allows a cache block to be loaded or unloaded
from the cache in a single cycle. See Figure 9-1 on page 316.

The data cache supplies data to the GPRs and FPRs by means of the load/store unit. The 750CL’s LSU is
directly coupled to the data cache to allow efficient movement of data to and from the general-purpose and
floating-point registers. The load/store unit provides all logic required to calculate effective addresses,
handles data alignment to and from the data cache, and provides sequencing for load and store string and
multiple operations. Write operations to the data cache can be performed on a byte, half-word, word, or
double-word basis.
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The instruction cache provides a 128-bit interface to the instruction unit, so four instructions can be made
available to the instruction unit in a single clock cycle. The instruction unit accesses the instruction cache
frequently in order to sustain the high throughput provided by the six-entry instruction queue.

3.1 Data Cache Organization

The data cache is organized as 128 sets of eight ways as shown in Figure 3-2 on page 128. Each way
consists of 32 bytes, two state bits, and an address tag. Note that in the PowerPC Architecture, the term
‘cache block,” or simply ‘block,” when used in the context of cache implementations, refers to the unit of
memory at which coherency is maintained. For the 750CL, this is the eight-word (32 byte) cache line. This
value may be different for other PowerPC implementations.

Each cache block contains eight contiguous words from memory that are loaded from an eight-word
boundary (that is, bits A[27—31] of the logical (effective) addresses are zero); as a result, cache blocks are
aligned with page boundaries. Note that address bits A[20—26] provide the index to select a cache set. Bits
A[27-31] select a byte within a block. The two state bits implement a three-state MEI (modified/exclu-
sive/invalid) protocol, a coherent subset of the standard four-state MESI (modified/exclusive/shared/invalid)
protocol. The MEI protocol is described in Section 3.3.2 MEI Protocol. The tags consist of bits PA[0-19].
Address translation occurs in parallel with set selection (from A[20-26]), and the higher-order address bits
(the tag bits in the cache) are physical.

The 750CL’s on-chip data cache tags are single-ported, and load or store operations must be arbitrated with
snoop accesses to the data cache tags. Load or store operations can be performed to the cache on the clock
cycle immediately following a snoop access if the snoop misses; snoop hits may block the data cache for two
or more cycles, depending on whether a copy-back to main memory is required.
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Figure 3-2. Data Cache Organization
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3.2 Instruction Cache Organization

The instruction cache also consists of 128 sets of eight ways, as shown in Figure 3-3 Instruction Cache Orga-
nization. Each way consists of 32 bytes, a single state bit, and an address tag. As with the data cache, each
instruction cache block contains eight contiguous words from memory that are loaded from an eight-word
boundary (that is, bits A[27-31] of the logical (effective) addresses are zero); as a result, cache blocks are
aligned with page boundaries. Also, address bits A[20—26] provide the index to select a set, and bits A[27-29]
select a word within a block.

The tags consist of bits PA[0—19]. Address translation occurs in parallel with set selection (from A[20-26]),
and the higher order address bits (the tag bits in the cache) are physical.

The instruction cache differs from the data cache in that it does not implement MEI cache coherency protocol,
and a single state bit is implemented that indicates only whether a cache block is valid or invalid. The instruc-
tion cache is not snooped, so if a processor modifies a memory location that may be contained in the instruc-
tion cache, software must ensure that such memory updates are visible to the instruction fetching
mechanism. This can be achieved with the following instruction sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache
isync # remove copy in own instruction buffer
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These operations are necessary because the processor does not maintain instruction memory coherent with
data memory. Software is responsible for enforcing coherency of instruction caches and data memory.

Since instruction fetching may bypass the data cache, changes made to items in the data cache may not be
reflected in memory until after the instruction fetch completes.

Figure 3-3. Instruction Cache Organization
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3.3 Memory and Cache Coherency

The primary objective of a coherent memory system is to provide the same image of memory to all devices
using the system. Coherency allows synchronization and cooperative use of shared resources. Otherwise,
multiple copies of a memory location, some containing stale values, could exist in a system resulting in errors
when the stale values are used. Each potential bus master must follow rules for managing the state of its
cache. This section describes the coherency mechanisms of the PowerPC Architecture and the three-state
cache coherency protocol of the 750CL’s data cache.

Note that unless specifically noted, the discussion of coherency in this section applies to the 750CL’s data
cache only. The instruction cache is not snooped. Instruction cache coherency must be maintained by soft-
ware. However, the 750CL does support a fast instruction cache invalidate capability as described in
Section 3.4.1.4 Instruction Cache Flash Invalidation.

3.3.1 Memory/Cache Access Attributes (WIMG Bits)

Some memory characteristics can be set on either a block or page basis by using the WIMG bits in the BAT
registers or page table entry (PTE), respectively. The WIMG attributes control the following functionality:
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¢ Write-through (W bit)

¢ Caching-inhibited (I bit)

* Memory coherency (M bit)
* Guarded memory (G bit)

These bits allow both uniprocessor and multiprocessor system designs to exploit numerous system-level
performance optimizations.

The WIMG attributes are programmed by the operating system for each page and block. The W and |
attributes control how the processor performing an access uses its own cache. The M attribute ensures that
coherency is maintained for all copies of the addressed memory location. The G attribute prevents out-of-
order loading and prefetching from the addressed memory location.

The WIMG attributes occupy four bits in the BAT registers for block address translation and in the PTEs for
page address translation. The WIMG bits are programmed as follows:

* The operating system uses the mtspr instruction to program the WIMG bits in the BAT registers for block
address translation. The IBAT register pairs do not have a G bit and all accesses that use the IBAT regis-
ter pairs are considered not guarded.

e The operating system writes the WIMG bits for each page into the PTEs in system memory as it sets up
the page tables.

When an access requires coherency, the processor performing the access must inform the coherency mech-
anisms throughout the system that the access requires memory coherency. The M attribute determines the
kind of access performed on the bus (global or local).

Software must exercise care with respect to the use of these bits if coherent memory support is desired.
Careless specification of these bits may create situations that present coherency paradoxes to the processor.
In particular, this can happen when the state of these bits is changed without appropriate precautions (such
as flushing the pages that correspond to the changed bits from the caches of all processors in the system) or
when the address translations of aliased real addresses specify different values for any of the WIMG bits.
These coherency paradoxes can occur within a single processor or across several processors. It is important
to note that in the presence of a paradox, the operating system software is responsible for correctness.

For real addressing mode (that is, for accesses performed with address translation disabled for instruction
access—MSRJIR] = ‘0’ or for data access—MSR[DR] = ‘0’), the WIMG bits are automatically generated as
b‘0011’ for data accesses and as WIMG = b‘0001’ for instruction fetches. Instruction accesses are not
memory coherent in real mode, so WIMG = b‘0001’).

3.3.2 MEI Protocol

The 750CL data cache coherency protocol is a coherent subset of the standard MESI four-state cache
protocol that omits the shared state. The 750CL’s data cache characterizes each 32-byte block it contains as
being in one of three MEI states. Addresses presented to the cache are indexed into the cache directory with
bits A[20—26], and the upper-order 20 bits from the physical address translation (PA[0—19]) are compared
against the indexed cache directory tags. If neither of the indexed tags matches, the result is a cache miss. If
a tag matches, a cache hit occurred and the directory indicates the state of the cache block through two state
bits kept with the tag. The three possible states for a cache block in the cache are the modified state (M), the
exclusive state (E), and the invalid state (l). The three MEI states are defined in Table 3-1.
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Table 3-1. ME| State Definitions

MEI State Definition

The addressed cache block is present in the cache, and is modified with respect to system memory—that is, the
Modified (M) modified data in the cache block has not been written back to memory. The cache block may be present in 750CL’s
L2 cache, but it is not present in any other coherent cache.

The addressed cache block is present in the cache, and this cache has exclusive ownership of the addressed
Exclusive (E) block. The addressed block may be present in 750CL’s L2 cache, but it is not present in any other processor’s
cache. The data in this cache block is consistent with system memory.

Invalid (1) This state indicates that the address block does not contain valid data or that the addressed cache block is not res-
ident in the cache.

The 750CL provides dedicated hardware to provide memory coherency by snooping bus transactions. Figure
3-4 ME| Cache Coherency Protocol—State Diagram (WIM = 001) shows the MEI cache coherency protocol,
as enforced by 750CL. The information in this figure assumes that the WIM bits for the page or block are set
to 001; that is, write-back, caching-not-inhibited, and memory coherency enforced.

Since data cannot be shared, the 750CL signals all cache block fills as if they were write misses (read-with-
intent-to-modify), which flushes the corresponding copies of the data in all caches external to 750CL prior to
the cache-block-fill operation. Following the cache block load, 750CL is the exclusive owner of the data and
may write to it without a bus broadcast transaction.

To maintain the three-state coherency, all global reads observed on the bus by 750CL are snooped as if they
were writes, causing 750CL to flush the cache block (write the cache block back to memory and invalidate the
cache block if it is modified, or simply invalidate the cache block if it is unmodified). The exception to this rule
occurs when a snooped transaction is a caching-inhibited read (either burst or single-beat, where TT[0—4] =
X1010; see Table 7-1 Transfer Type Encodings for PowerPC 750CL Bus Master for clarification), in which
case 750CL does not invalidate the snooped cache block. If the cache block is modified, the block is written
back to memory, and the cache block is marked exclusive. If the cache block is marked exclusive, no bus
action is taken, and the cache block remains in the exclusive state.

This treatment of caching-inhibited reads decreases the possibility of data thrashing by allowing noncaching
devices to read data without invalidating the entry from the 750CL’s data cache.
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Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001)
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Section 3.2 Instruction Cache Organization provides a detailed list of MEI transitions for various operations
and WIM bit settings.

3.3.2.1 MEI Hardware Considerations

While 750CL provides the hardware required to monitor bus traffic for coherency, the 750CL’s data cache
tags are single-ported, and a simultaneous load/store and snoop access represents a resource conflict. In
general, the snoop access has highest priority and is given first access to the tags. The load or store access
then occurs on the clock following the snoop. The snoop is not given priority into the tags when the snoop
coincides with a tag write (for example, validation after a cache block load). In these situations, the snoop is
retried and must rearbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if the cache is busy
with a burst read or write when the snoop operation takes place.

Note that it is possible for a snoop to hit a modified cache block that is already in the process of being written
to the copy-back buffer for replacement purposes. If this happens, the 750CL retries the snoop, and raises
the priority of the castout operation to allow it to go to the bus before the cache block fill.

03_750CL.fm.1.0
Page 132 of 619 August 8, 2007



User's Manual

Preliminary IBM 750CL RISC Microprocessor

Another consideration is page table aliasing. If a store hits to a modified cache block but the page table entry
is marked write-through (WIMG = 1xxx), then the page has probably been aliased through another page table
entry which is marked write-back (WIMG = 0xxx). If this occurs, the 750CL ignores the modified bit in the
cache tag. The cache block is updated during the write-through operation and the block remains in the modi-
fied state.

The global (GBL) signal, asserted as part of the address attribute field during a bus transaction, enables the
snooping hardware of the 750CL. Address bus masters assert GBL to indicate that the current transaction is
a global access (that is, an access to memory shared by more than one device). If GBL is not asserted for the
transaction, that transaction is not snooped by the 750CL. Note that the GBL signal is not asserted for instruc-
tion fetches, and that GBL is asserted for all data read or write operations when using real addressing mode
(that is, address translation is disabled).

Normally, GBL reflects the M-bit value specified for the memory reference in the corresponding translation
descriptors. Care should be taken to minimize the number of pages marked as global, because the retry
protocol enforces coherency and can use considerable bus bandwidth if much data is shared. Therefore,
available bus bandwidth decreases as more memory is marked as global.

The 750CL snoops a transaction if the transfer start (TS) and GBL signals are asserted together in the same
bus clock (this is a qualified snooping condition). No snoop update to the 750CL cache occurs if the snooped
transaction is not marked global. Also, because cache block castouts and snoop pushes do not require
snooping, the GBL signal is not asserted for these operations.

When the 750CL detects a qualified snoop condition, the address associated with the TS signal is compared
with the cache tags. Snooping finishes if no hit is detected. If, however, the address hits in the cache, the
750CL reacts according to the MEI protocol shown in Figure 3-4 MEI Cache Coherency Protocol—State
Diagram (WIM = 001).

3.3.3 Coherency Precautions in Single Processor Systems

The following coherency paradoxes can be encountered within a single-processor system:

¢ Load or store to a caching-inhibited page (WIMG = x1xx) and a cache hit occurs.
The 750CL ignores any hits to a cache block in a memory space marked caching-inhibited (WIMG =
x1xx). The access is performed on the external bus as if there were no hit. The data in the cache is not
pushed, and the cache block is not invalidated.

e Store to a page marked write-through (WIMG = 1xxx) and a cache hit occurs to a modified cache block.
The 750CL ignores the modified bit in the cache tag. The cache block is updated during the write-through
operation but the block remains in the modified state (M).

Note that when WIM bits are changed in the page tables or BAT registers, it is critical that the cache contents
reflect the new WIM bit settings. For example, if a block or page that had allowed caching becomes caching-
inhibited, software should ensure that the appropriate cache blocks are flushed to memory and invalidated.

3.3.4 Coherency Precautions in Multiprocessor Systems

The MEI coherency protocol used by the 750CL does not include the Shared state of the MESI protocol. Thus
the 750CL’s three-state coherency protocol permits no data sharing between the 750CL and other caches. All
burst reads initiated by the 750CL are performed as read with intent to modify. Burst snoops are interpreted
as read with intent to modify or read with no intent to cache. This effectively places all caches in the system
into a three-state coherency scheme with respect to cache blocks that are marked Valid in the 750CL cache.
Four-state caches may share data amongst themselves but not with the 750CL.
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In addition, the 750CL does not broadcast any notification that it is changing the state of a cache block from
Exclusive to Modified, so other processors in the system are not able to snoop this state change and respond
accordingly. Therefore, memory coherency may be compromised in a MultiProcessor (MP) system when
instructions and data share the same page if address translation is enabled, or same cache line (32 bytes) if
address translagtion is disabled (real mode). This can occur because instructions default to nonglobal and
require no snooping. In this way, it is possible for the L2 caches to have duplicate entries, with both entries
marked as Exclusive. There is a coherency problem if one of the processors chooses to Modify that entry in
the L2. Any data access to modify that entry in the L2 is not be seen by the other processor.

Data accesses are always global in real mode, or reflect the WIMG M-bit when translating. What is unique
with the 750 family processors is that instruction accesses default to nonglobal and only reflect the WIMG M-
bit if the HIDO[ifem] bit is enabled.

Table 3-2 shows the state of the GBL# pin for instruction accesses.

Table 3-2. GBL# Pin for Instruction Accesses

Addressing Mode IFEM GBL#
Realmode 0 Nonglobal
Realmode 1 Nonglobal
Addr Xlate 0 Nonglobal
Addr Xlate 1 Reflects M bit of WIMG: M = 0, nonglobal; M =1, global

MP systems must be aware that instruction accesses to memory by default are transparent by other proces-
sors. Hardware memory coherency only occur when instruction address translation is enabled, the WIMG M-
bit is b'1", and HIDO[ifem] is b'1".

3.3.5 750CL-Initiated Load/Store Operations

Load and store operations are assumed to be weakly ordered on the 750CL. The load/store unit (LSU) can
perform load operations that occur later in the program ahead of store operations, even when the data cache
is disabled (see 3.3.5.2). However, strongly ordered load and store operations can be enforced through the
setting of the | bit (of the page WIMG bits) when address translation is enabled. Note that when address
translation is disabled (real addressing mode), the default WIMG bits cause the | bit to be cleared (accesses
are assumed to be cacheable), and thus the accesses are weakly ordered. See Section 5.2 Real Addressing
Mode for a description of the WIMG bits when address translation is disabled.

The 750CL does not provide support for direct-store segments. Operations attempting to access a direct-
store segment will invoke a DSI exception. For additional information about DSI exceptions, see Section 4.5.3
DSI Exception (0x00300).

3.3.5.1 Performed Loads and Stores

The PowerPC Architecture defines a performed load operation as one that has the addressed memory loca-
tion bound to the target register of the load instruction. The architecture defines a performed store operation
as one where the stored value is the value that any other processor will receive when executing a load oper-
ation (that is of course, until it is changed again). With respect to the 750CL, caching-allowed (WIMG = x0xx)
loads and caching-allowed, write-back (WIMG = 00xx) stores are performed when they have arbitrated to
address the cache block. Note that in the event of a cache miss, these storage operations may place a
memory request into the processor's memory queue, but such operations are considered an extension to the
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state of the cache with respect to snooping bus operations. Caching-inhibited (WIMG = x1xx) loads, caching-
inhibited (WIMG = x1xx) stores, and write-through (WIMG = 1xxx) stores are performed when they have been
successfully presented to the external 60x bus.

3.3.5.2 Sequential Consistency of Memory Accesses

The PowerPC Architecture requires that all memory operations executed by a single processor be sequen-
tially consistent with respect to that processor. This means that all memory accesses appear to be executed
in program order with respect to exceptions and data dependencies.

The 750CL achieves sequential consistency by operating a single pipeline to the cache/MMU. All memory
accesses are presented to the MMU in exact program order and therefore exceptions are determined in
order. Loads are allowed to bypass stores once exception checking has been performed for the store, but
data dependency checking is handled in the load/store unit so that a load will not bypass a store with an
address match. Note that although memory accesses that miss in the cache are forwarded to the memory
queue for future arbitration for the external bus, all potential synchronous exceptions have been resolved
before the cache. In addition, although subsequent memory accesses can address the cache, full coherency
checking between the cache and the memory queue is provided to avoid dependency conflicts.

3.3.5.3 Atomic Memory References

The PowerPC Architecture defines the Load Word and Reserve Indexed (lwarx) and the Store Word Condi-
tional Indexed (stwex.) instructions to provide an atomic update function for a single, aligned word of
memory. These instructions can be used to develop a rich set of multiprocessor synchronization primitives.

Note: Atomic memory references constructed using lwarx/stwex. instructions depend on the presence of a
coherent memory system for correct operation. These instructions should not be expected to provide atomic
access to noncoherent memory. For detailed information on these instructions, see Section 2 Programming
Model on page 53 and Section 12 PowerPC Instruction Set for the 750CL on page 347 in this book.

The Iwarx instruction performs a load word from memory operation and creates a reservation for the 32-byte
section of memory that contains the accessed word. The reservation granularity is 32 bytes. The lwarx
instruction makes a nonspecific reservation with respect to the executing processor and a specific reservation
with respect to other masters. This means that any subsequent stwex. executed by the same processor,
regardless of address, will cancel the reservation. Also, any bus write or invalidate operation from another
processor to an address that matches the reservation address will cancel the reservation.

The stwex. instruction does not check the reservation for a matching address. The stwex. instruction is only
required to determine whether a reservation exists. The stwex. instruction performs a store word operation
only if the reservation exists. If the reservation has been cancelled for any reason, then the stwex. instruction
fails and clears the CRO[EQ] bit in the condition register. The architectural intent is to follow the Iwarx/stwex.
instruction pair with a conditional branch which checks to see whether the stwex. instruction failed.

If the page table entry is marked caching-allowed (WIMG = x0xx), and an lwarx access misses in the cache,
then the 750CL performs a cache block fill. If the page is marked caching-inhibited (WIMG = x1xx) or the
cache is locked, and the access misses, then the lwarx instruction appears on the bus as a single-beat load.
All bus operations that are a direct result of either an lwarx instruction or an stwex. instruction are placed on
the bus with a special encoding. Note that this does not force all lwarx instructions to generate bus transac-
tions, but rather provides a means for identifying when an lwarx instruction does generate a bus transaction.
If an implementation requires that all lwarx instructions generate bus transactions, then the associated pages
should be marked as caching-inhibited.
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The 750CL’s data cache treats all stwex. operations as write-through independent of the WIMG settings.
However, if the stwex. operation hits in the 750CL’s L2 cache, then the operation completes with the reserva-
tion intact in the L2 cache. See Section 9 L2 Cache, Locked D-Cache, DMA, and Write Gather Pipe on

page 315 for more information. Otherwise, the stwex. operation continues to the bus interface unit for
completion. When the write-through operation completes successfully, either in the L2 cache or on the 60x
bus, then the data cache entry is updated (assuming it hits), and CRO[EQ] is modified to reflect the success of
the operation. If the reservation is not intact, the stwex. completes in the bus interface unit without performing
a bus transaction, and without modifying either of the caches.

3.4 Cache Control

The 750CL’s L1 caches are controlled by programming specific bits in the HIDO special-purpose register and
by issuing dedicated cache control instructions. Section 3.4.1 describes the HIDO cache control bits, and
Section 3.4.2 Cache Control Instructions describes the cache control instructions.

3.4.1 Cache Control Parameters in HIDO

The HIDO special-purpose register contains several bits that invalidate, disable, and lock the instruction and
data caches. The following sections describe these facilities.

3.4.1.1 Data Cache Flash Invalidation

The data cache is automatically invalidated when the 750CL is powered up and during a hard reset.
However, a soft reset does not automatically invalidate the data cache. Software must use the HIDO data
cache flash invalidate bit (HIDO[DCFI)) if data cache invalidation is desired after a soft reset. Once
HIDO[DCFI] is set through an mtspr operation, the 750CL automatically clears this bit in the next clock cycle
(provided that the data cache is enabled in the HIDO register).

Note that some PowerPC microprocessors accomplish data cache flash invalidation by setting and clearing
HIDO[DCFI] with two consecutive mtspr instructions (that is, the bit is not automatically cleared by the micro-
processor). Software that has this sequence of operations does not need to be changed to run on the 750CL.

3.4.1.2 Data Cache Enabling/Disabling

The data cache may be enabled or disabled by using the data cache enable bit, HIDO[DCE]. HIDO[DCE] is
cleared on power-up, disabling the data cache.

When the data cache is in the disabled state (HIDO[DCE] = 0), the cache tag state bits are ignored, and all
accesses are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the CI (cache
inhibit) signal always reflects the state of the caching-inhibited memory/cache access attribute (the I bit) inde-
pendent of the state of HIDO[DCE]. Also note that disabling the data cache does not affect the translation
logic; translation for data accesses is controlled by MSR[DR].

The setting of the DCE bit must be preceded by a sync instruction to prevent the cache from being enabled
or disabled in the middle of a data access. In addition, the cache must be globally flushed before it is disabled
to prevent coherency problems when it is reenabled.

Snooping is not performed when the data cache is disabled.
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The dcbz instruction will cause an alignment exception when the data cache is disabled. The touch load
(debt and dcbtst) instructions are no-ops when the data cache is disabled. Other cache operations (caused
by the dcbf, dcbst, and dcbi instructions) are not affected by disabling the cache. This can potentially cause
coherency errors. For example, a debf instruction that hits a modified cache block in the disabled cache will
cause a copyback to memory of potentially stale data.

3.4.1.3 Data Cache Locking

The contents of the data cache can be locked by setting the data cache lock bit, HIDO[DLOCK]. A data
access that hits in a locked data cache is serviced by the cache. However, all accesses that miss in the
locked cache are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the ClI signal
always reflects the state of the caching-inhibited memory/cache access attribute (the | bit) independent of the
state of HIDO[DLOCK].

The 750CL treats snoop hits to a locked data cache the same as snoop hits to an unlocked data cache.
However, any cache block invalidated by a snoop hit remains invalid until the cache is unlocked.

The setting of the DLOCK bit must be preceded by a sync instruction to prevent the data cache from being
locked during a data access.

3.4.1.4 Instruction Cache Flash Invalidation

The instruction cache is automatically invalidated when the 750CL is powered up and during a hard reset.
However, a soft reset does not automatically invalidate the instruction cache. Software must use the HIDO
instruction cache flash invalidate bit (HIDO[ICFI]) if instruction cache invalidation is desired after a soft reset.
Once HIDO[ICFI] is set through an mtspr operation, the 750CL automatically clears this bit in the next clock
cycle (provided that the instruction cache is enabled in the HIDO register).

Note: Some PowerPC microprocessors accomplish instruction cache flash invalidation by setting and clear-
ing HIDO[ICFI] with two consecutive mtspr instructions (that is, the bit is not automatically cleared by the
microprocessor). Software that has this sequence of operations does not need to be changed to run on the
750CL.

3.4.1.5 Instruction Cache Enabling/Disabling

The instruction cache may be enabled or disabled through the use of the instruction cache enable bit,
HIDO[ICE]. HIDO[ICE] is cleared on power-up, disabling the instruction cache.

When the instruction cache is in the disabled state (HID[ICE] = 0), the cache tag state bits are ignored, and all
instruction fetches are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the CI
signal always reflects the state of the caching-inhibited memory/cache access attribute (the | bit) independent
of the state of HIDO[ICE]. Also note that disabling the instruction cache does not affect the translation logic;
translation for instruction accesses is controlled by MSR[IR].

The setting of the ICE bit must be preceded by an isync instruction to prevent the cache from being enabled
or disabled in the middle of an instruction fetch. In addition, it is a good programming practice to flash invali-
date the instruction cache before it is enabled or reenabled. The icbi instruction is not affected by disabling
the instruction cache.
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3.4.1.6 Instruction Cache Locking

The contents of the instruction cache can be locked by setting the instruction cache lock bit, HIDO[ILOCK]. An
instruction fetch that hits in a locked instruction cache is serviced by the cache. However, all accesses that
miss in the locked cache are propagated to the L2 cache or 60x bus as single-beat transactions. Note that the
Cl signal always reflects the state of the caching-inhibited memory/cache access attribute (the | bit) indepen-
dent of the state of HIDO[ILOCK].

The setting of the ILOCK bit must be preceded by an isync instruction to prevent the instruction cache from
being locked during an instruction fetch.

3.4.2 Cache Control Instructions

The PowerPC Architecture defines instructions for controlling both the instruction and data caches (when
they exist). The cache control instructions, decbt, debtst, debz, debst, debf, debi, and icbi, are intended for
the management of the local L1 and L2 caches. The 750CL interprets the cache control instructions as if they
pertain only to its own L1 or L2 caches. These instructions are not intended for managing other caches in the
system (except to the extent necessary to maintain coherency).

The 750CL does not snoop cache control instruction broadcasts, except for dcbz when M = 1. The dcbz
instruction is the only cache control instruction that causes a broadcast on the 60x bus (when M = 1) to main-
tain coherency. All other data cache control instructions (dcbi, debf, dcbst and debz) are not broadcast,
unless broadcast is enabled through the HIDO[ABE] configuration bit. Note that dcbi, dcbf, dcbst and dcbz
do broadcast to the 750CL’s L2 cache, regardless of HIDO[ABE]. The icbi instruction is never broadcast.

The 750CL implements a new instruction, debz_l, to allocate lines in the locked cache when HID2[LCE] = 1.
See Section 9 L2 Cache, Locked D-Cache, DMA, and Write Gather Pipe on page 315 for detail.

3.4.2.1 Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbist)

The Data Cache Block Touch (debt) and Data Cache Block Touch for Store (debtst) instructions provide
potential system performance improvement through the use of software-initiated prefetch hints. The 750CL
treats these instructions identically (that is, a debtst instruction behaves exactly the same as a debt instruc-
tion on the 750CL). Note that PowerPC implementations are not required to take any action based on the
execution of these instructions, but they may choose to prefetch the cache block corresponding to the effec-
tive address into their cache.

The 750CL loads the data into the cache when the address hits in the TLB or the BAT, is permitted load
access from the addressed page, is not directed to a direct-store segment, and is directed at a cacheable
page. Otherwise, the 750CL treats these instructions as no-ops. The data brought into the cache as a result
of this instruction is validated in the same manner that a load instruction would be (that is, it is marked as
exclusive). The memory reference of a debt (or debtst) instruction causes the reference bit to be set. Note
also that the successful execution of the debt (or debtst) instruction affects the state of the TLB and cache
LRU bits as defined by the PLRU algorithm.

3.4.2.2 Data Cache Block Zero (dcbz)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC Architecture. The decbz instruction is treated as a store to the addressed byte with respect to
address translation and protection.
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If the block containing the byte addressed by the EA is in the data cache, all bytes are cleared, and the tag is
marked as modified (M). If the block containing the byte addressed by the EA is not in the data cache and the
corresponding page is caching-allowed, the block is established in the data cache without fetching the block
from main memory, and all bytes of the block are cleared, and the tag is marked as modified (M).

If the contents of the cache block are from a page marked memory coherence required (M = 1), an address-
only bus transaction is run prior to clearing the cache block. The decbz instruction is the only cache control
instruction that causes a broadcast on the 60x bus (when M = 1) to maintain coherency. The other cache
control instructions are not broadcast unless broadcasting is specifically enabled through the HIDO[ABE]
configuration bit. The dcbz instruction executes regardless of whether the cache is locked, but if the cache is
disabled, an alignment exception is generated. If the page containing the byte addressed by the EA is
caching-inhibited or write-through, then the system alignment exception handler is invoked. BAT and TLB
protection violations generate DSI exceptions.

Note: If the target address of a debz instruction hits in the L1 cache, the 750CL requires four internal clock
cycles to rewrite the cache block to zeros. On the first clock, the block is remarked as valid-unmodified, and
on the last clock the block is marked as valid-modified. If a snoop request to that address is received during
the middle two clocks of the debz operation, the 750CL does not properly react to the snoop operation or
generate an address retry (by an ARTRY assertion) to the other master. The other bus master continues
reading the data from system memory, and both the 750CL and the other bus master end up with different
copies of the data. In addition, if the other bus master has a cache, the cache block is marked valid in both
caches, which is not allowed in the 750CL’s three-state cache environment.

For this reason, avoid using dcbz for data that is shared in real time and that is not protected during writing
through higher-level software synchronization protocols (such as semaphores). Use of dcbz must be avoided
for managing semaphores themselves. An alternative solution could be to prevent debz from hitting in the L1
cache by performing a debf to that address beforehand.

3.4.2.3 Data Cache Block Store (dcbst)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC Architecture. This instruction is treated as a load with respect to address translation and memory
protection.

If the address hits in the cache and the cache block is in the exclusive (E) state, no action is taken. If the
address hits in the cache and the cache block is in the modified (M) state, the modified block is written back to
memory and the cache block is placed in the exclusive (E) state.

The execution of a debst instruction does not broadcast on the 60x bus unless broadcast is enabled through
the HIDO[ABE] bit. The function of this instruction is independent of the WIMG bit settings of the block
containing the effective address. The dcbst instruction executes regardless of whether the cache is disabled
or locked; however, a BAT or TLB protection violation generates a DSI exception.

3.4.2.4 Data Cache Block Flush (dcbf)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC Architecture. This instruction is treated as a load with respect to address translation and memory
protection.
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If the address hits in the cache, and the block is in the modified (M) state, the modified block is written back to
memory and the cache block is placed in the invalid (l) state. If the address hits in the cache, and the cache
block is in the exclusive (E) state, the cache block is placed in the invalid (1) state. If the address misses in the
cache, no action is taken.

The execution of debf does not broadcast on the 60x bus unless broadcast is enabled through the
HIDO[ABE] bit. The function of this instruction is independent of the WIMG bit settings of the block containing
the effective address. The dcbf instruction executes regardless of whether the cache is disabled or locked;
however, a BAT or TLB protection violation generates a DSI exception.

3.4.2.5 Data Cache Block Invalidate (dcbi)

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC Architecture. This instruction is treated as a store with respect to address translation and memory
protection.

If the address hits in the cache, the cache block is placed in the invalid (l) state, regardless of whether the
data is modified. Because this instruction may effectively destroy modified data, it is privileged (that is, debi is
available to programs at the supervisor privilege level, MSR[PR] = 0). The execution of debi does not broad-
cast on the 60x bus unless broadcast is enabled through the HIDO[ABE] bit. The function of this instruction is
independent of the WIMG bit settings of the block containing the effective address. The dcbi instruction
executes regardless of whether the cache is disabled or locked; however, a BAT or TLB protection violation
generates a DSI exception.

3.4.2.6 Instruction Cache Block Invalidate (icbi)

For the icbi instruction, the effective address is not computed or translated, so it cannot generate a protection
violation or exception. This instruction performs a virtual lookup into the instruction cache (index only). All
ways of the selected instruction cache set are invalidated.

The icbi instruction is not broadcast on the 60x bus. The icbi instruction invalidates the cache blocks inde-
pendent of whether the cache is disabled or locked.

3.5 Cache Operations

This section describes the 750CL cache operations.

3.5.1 Cache Block Replacement/Castout Operations

Both the instruction and data cache use a pseudo least-recently-used (PLRU) replacement algorithm when a
new block needs to be placed in the cache. When the data to be replaced is in the modified (M) state, that
data is written into a castout buffer while the missed data is being accessed on the bus. When the load
completes, the 750CL then pushes the replaced cache block from the castout buffer to the L2 cache (if L2 is
enabled) or to main memory (if L2 is disabled).

The replacement logic first checks to see if there are any invalid blocks in the set and chooses the lowest-
order, invalid block (L[0-7]) as the replacement target. If all eight blocks in the set are valid, the PLRU algo-
rithm is used to determine which block should be replaced. The PLRU algorithm is shown in Figure 3-5 PLRU
Replacement Algorithm.
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Each cache is organized as eight blocks per set by 128 sets. There is a valid bit for each block in the cache,
L[0-7]. When all eight blocks in the set are valid, the PLRU algorithm is used to select the replacement target.
There are seven PLRU bits, B[0—6] for each set in the cache. For every hit in the cache, the PLRU bits are
updated using the rules specified in Table 3-3 PLRU Bit Update Rules.
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Figure 3-5. PLRU Replacement Algorithm
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Table 3-3. PLRU Bit Update Rules

If the Current Then the PLRU bits are Changed to:"

Access is To: BO B1 B2 B3 B4 B5 B6
Lo 1 1 X 1 X X X
L1 1 1 X 0 X X X
L2 1 0 X X 1 X X
L3 1 0 X X 0 X X
L4 0 X 1 X X 1 X
L5 0 X 1 X X 0 X
L6 0 X 0 X X X 1
L7 0 X 0 X X X 0
Note:

1. x =Does not change

If all eight blocks are valid, then a block is selected for replacement according to the PLRU bit encodings
shown in Table 3-4.

Table 3-4. PLRU Replacement Block Selection

Then the Block
Selected for
Replacement

Is:

If the PLRU Bits Are:

0 0 0 Lo
B3
0 0 1 L1
B1
0 1 0 L2
B4
0 1 1 L3
BO
1 0 0 L4
B5
1 0 1 L5
B2
1 1 0 L6
B6
1 1 1 L7

During power-up or hard reset, all the valid bits of the blocks are cleared and the PLRU bits cleared to point to
block LO of each set. Note that this is also the state of the data or instruction cache after setting their respec-
tive flash invalidate bit (HIDO[DCFI] or HIDO[ICFI]).

3.5.2 Cache Flush Operations

Any modified entries in the data cache can be copied back to memory (flushed) by using the debf instruction
or by executing a series of 12 uniquely addressed load or dcbz instructions to each of the 128 sets. The
address space should not be shared with any other process to prevent snoop hit invalidations during the
flushing routine. Exceptions should be disabled during this time so that the PLRU algorithm does not get
disturbed.
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The data cache flush assist bit, HIDO[DCFA], simplifies the software flushing process. When set, HIDO[DCFA]
forces the PLRU replacement algorithm to ignore the invalid entries and follow the replacement sequence
defined by the PLRU bits. This reduces the series of uniquely addressed load or debz instructions to eight per
set. HIDO[DCFA] should be set just prior to the beginning of the cache flush routine and cleared after the
series of instructions is complete.

The instruction cache can be invalidated by executing a series of icbi instructions or by setting HIDO[ICFI].
The data cache can be invalidated by executing a series of dcbi instructions or by setting HIDO[DCFI].

3.5.3 Data Cache-Block-Fill Operations

The 750CL’s data cache blocks are filled in four beats of 64 bits each, with the critical doubleword loaded
first. The data cache is not blocked to internal accesses while the load (caused by a cache miss) completes.
This functionality is sometimes referred to as ‘hits under misses,” because the cache can service a hit while a
cache miss fill is waiting to complete. The critical-double-word read from memory is simultaneously written to
the data cache and forwarded to the requesting unit, thus minimizing stalls due to cache fill latency.

A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs in the cache. The
cache block that corresponds to the missed address is updated by a burst transfer of the data from the L2 or
system memory. Note that if a read miss occurs in a system with multiple bus masters, and the data is modi-
fied in another cache, the modified data is first written to external memory before the cache fill occurs.

3.5.4 Instruction Cache-Block-Fill Operations

The 750CL’s instruction cache blocks are loaded in four beats of 64 bits each, with the critical doubleword
loaded first. The instruction cache is not blocked to internal accesses while the fetch (caused by a cache
miss) completes. On a cache miss, the critical and following doublewords read from memory are simulta-
neously written to the instruction cache and forwarded to the instruction queue, thus minimizing stalls due to
cache fill latency. There is no snooping of the instruction cache.

3.5.5 Data Cache-Block-Push Operation

When a cache block in the 750CL is snooped and hit by another bus master and the data is modified, the
cache block must be written to memory and made available to the snooping device. The cache block that is
hit is said to be pushed out onto the 60x bus. The 750CL supports two kinds of push operations—normal
push operations and enveloped high-priority push operations, which are described in Section 3.5.5.1 Envel-
oped High-Priority Cache-Block-Push Operation.

3.5.5.1 Enveloped High-Priority Cache-Block-Push Operation

In cases where the 750CL has completed the address tenure of a read operation, and then detects a snoop
hit to a modified cache block by another bus master, the 750CL provides a high-priority push operation. If the
address snooped is the same as the address of the data to be returned by the read operation, ARTRY is
asserted one or more times until the data tenure of the read operation is completed. The cache-block-push
transaction can be enveloped within the address and data tenures of a read operation. This feature prevents
deadlocks in system organizations that support multiple memory-mapped buses.

More specifically, the 750CL internally detects the scenario where a load request is outstanding and the
processor has pipelined a write operation on top of the load. Normally, when the data bus is granted to the
750CL, the resulting data bus tenure is used for the load operation. The enveloped high-priority cache block
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push feature defines a bus signal, data bus write only (DBWO), which when asserted with a qualified data bus
grant indicates that the resulting data tenure should be used for the store operation instead. This signal is
described in Section 8.12 Using Data-Bus Write-Only. Note that the enveloped copy-back operation is an
internally pipelined bus operation.

3.6 L1 Caches and 60x Bus Transactions

The 750CL transfers data to and from the cache in single-beat transactions of two words, or in four-beat
transactions of eight words which fill a cache block. Single-beat bus transactions can transfer from one to 8
bytes to or from the 750CL, and can be misaligned. Single-beat transactions can be caused by cache write-
through accesses, caching-inhibited accesses (WIMG = x1xx), accesses when the cache is disabled
(HIDO[DCE] bit is cleared), or accesses when the cache is locked (HIDO[DLOCK] bit is cleared).

Burst transactions on the 750CL always transfer eight words of data at a time, and are aligned to a double-
word boundary. The 750CL transfer burst (TBST) output signal indicates to the system whether the current
transaction is a single-beat transaction or four-beat burst transfer. Burst transactions have an assumed
address order. For cacheable read operations, instruction fetches, or cacheable, non-write-through write
operations that miss the cache, the 750CL presents the double-word-aligned address associated with the
load/store instruction or instruction fetch that initiated the transaction.

As shown in Figure 3-6, the first quadword contains the address of the load/store or instruction fetch that
missed the cache. This minimizes latency by allowing the critical code or data to be forwarded to the
processor before the rest of the block is filled. For all other burst operations, however, the entire block is
transferred in order (oct-word-aligned). Critical-double-word-first fetching on a cache miss applies to both the
data and instruction cache.

Figure 3-6. 750CL Cache Addresses

750CL Cache Address

Bits (27... 28)
00 01 10 11
A B C D

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and the four data
beats are ordered in the following manner:

Beat
1 2 3

A B C D

If the address requested is in double-word C, the address placed on the bus is that of double-word C, and the four
data beats are ordered in the following manner:

Beat
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3.6.1 Read Operations and the MEI Protocol

The MEI coherency protocol affects how the 750CL data cache performs read operations on the 60x bus. All
reads (except for caching-inhibited reads) are encoded on the bus as read-with-intent-to-modify (RWITM) to
force flushing of the addressed cache block from other caches in the system.

The MEI coherency protocol also affects how the 750CL snoops read operations on the 60x bus. All reads
shooped from the 60x bus (except for caching-inhibited reads) are interpreted as RWITM to cause flushing
from the 750CL’s cache. Single-beat reads (TBST negated) are interpreted by the 750CL as caching inhib-
ited.

These actions for read operations allow the 750CL to operate successfully (coherently) on the bus with other
bus masters that implement either the three-state MEI or a four-state MESI cache coherency protocol.

3.6.2 Bus Operations Caused by Cache Control Instructions

The cache control, TLB management, and synchronization instructions supported by the 750CL may affect or
be affected by the operation of the 60x bus. The operation of the instructions may also indirectly cause bus
transactions to be performed, or their completion may be linked to the bus.

The dcbz instruction is the only cache control instruction that causes an address-only broadcast on the 60x
bus. All other data cache control instructions (dcbi, dcbf, decbst, and dcbz) are not broadcast unless specifi-
cally enabled through the HIDO[ABE] configuration bit. Note that debi, debf, debst, and debz do broadcast to
the 750CL’s L2 cache, regardless of HIDO[ABE]. HIDO[ABE] also controls the broadcast of the sync and
eieio instructions.

The icbi instruction is never broadcast. No broadcasts by other masters are snooped by the 750CL (except
for debz kill block transactions). The debz_I instruction is never broadcast. For detailed information on the
cache control instructions, see Section 2 Programming Model on page 53 and Section 12 PowerPC Instruc-
tion Set for the 750CL on page 347 in this book.

Table 3-5 provides an overview of the bus operations initiated by cache control instructions. Note that the
information in this table assumes that the WIM bits are set to 001; that is, the cache is operating in write-back
mode, caching is permitted and coherency is enforced.

Table 3-5. Bus Operations Caused by Cache Control Instructions (WIM = 001) (Sheet 1 of 2)

Current Cache

Instruction State Next Cache State Bus Operation Comment

sync . i

sync Don'’t care No change (if enabled in \é\llg;sbfgg r:;mi?;y queues to com
HIDO[ABE])

tibie — — None —

Waits for the negation of the TLB-

tibsync - - None SYNC input signal to complete
eieio

eieio Don't care No change (if enabled in Address-only bus operation
HIDO[ABE])

icbi Don'’t care None —
Kill block

dcbi Don'’t care (if enabled in Address-only bus operation
HIDO[ABE])
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Table 3-5. Bus Operations Caused by Cache Control Instructions (WIM = 001) (Sheet 2 of 2)

Current Cache

Instruction State Next Cache State Bus Operation Comment

Flush block

dcbf I, E (if enabled in Address-only bus operation
HIDO[ABE])

dcbf M Write with Kkill Block is pushed
Clean block

dcbst I, E No change (if enabled in Address-only bus operation
HIDO[ABE])

dcbst M E Write with kill Block is pushed

dcbz | M Write with kill —

dcbz E, M M Kill block Writes over modified data

dcbz_| M, E, | M None —

dcbt | E Read-with-intent-to- Fetched cache block is stored in
modify the cache

dcbt E, M No change None —
Read-with-intent-to- Fetched cache block is stored in

debtst ! E modify the cache

dcbtst E,M No change None —

For additional details about the specific bus operations performed by the 750CL, see Section 8 Bus Interface
Operation on page 273 in this manual.

3.6.3 Snooping

The 750CL maintains data cache coherency in hardware by coordinating activity between the data cache, the
bus interface logic, the L2 cache, and the memory system. The 750CL has a copy-back cache which relies on
bus snooping to maintain cache coherency with other caches in the system. For the 750CL, the coherency
size of the bus is the size of a cache block, 32 bytes. This means that any bus transactions that cross an
aligned 32-byte boundary must present a new address onto the bus at that boundary for proper snoop opera-
tion by the 750CL, or they must operate noncoherently with respect to the 750CL.

As bus operations are performed on the bus by other bus masters, the 750CL’s bus snooping logic monitors
the addresses and transfer attributes that are referenced. The 750CL snoops the bus transactions during the
cycle that TS is asserted for any of the following qualified snoop conditions:

* The global signal (GBL) is asserted indicating that coherency enforcement is required.

¢ Areservation is currently active in the 750CL as the result of an lwarx instruction, and the transfer type
attributes (TT[0-4]) indicate a write or kill operation. These transactions are snooped regardless of
whether GBL is asserted to support reservations in the MEI cache protocol.

Every assertion of TS detected by the 750CL (whether snooped or not) must be followed by an accompa-
nying assertion of AACK.

The locked cache and bus snoop are incompatible. HID2[LCE] shall be kept at ‘0’ for systems which generate
shoop transactions
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Once a qualified snoop condition is detected on the bus, the snooped address associated with TS is
compared against the data cache tags, memory queues, and/or other storage elements as appropriate. The
L1 data cache tags and L2 cache tags are snooped for standard data cache coherency support. No snooping
is done in the instruction cache for coherency.

The memory queues are snooped for pipeline collisions and memory coherency collisions. A pipeline collision
is detected when another bus master addresses any portion of a line that this 750CL’s data cache is currently
in the process of loading (L1 loading from L2, or L1/L2 loading from memory). A memory coherency collision
occurs when another bus master addresses any portion of a line that the 750CL has currently queued to write
to memory from the data cache (castout or copy-back), but has not yet been granted bus access to perform.

If a snooped transaction results in a cache hit or pipeline collision or memory queue collision, the 750CL
asserts ARTRY on the 60x bus. The current bus master, detecting the assertion of the ARTRY signal, should
abort the transaction and retry it at a later time, so that the 750CL can first perform a write operation back to
memory from its cache or memory queues. The 750CL may also retry a bus transaction if it is unable to
snoop the transaction on that cycle due to internal resource conflicts. Additional snoop action may be
forwarded to the cache as a result of a snoop hit in some cases (a cache push of modified data, or a cache
block invalidation). There is no immediate way for another CPU bus agent to determine the cause of the
750CL ARTRY.

Implementation Note: Snooping of the memory queues for pipeline collisions, as described above, is
performed for burst read operations in progress only. In this case, the read address has completed on the
bus, however, the data tenure may be either in-progress or not yet started by the processor. During this time
the 750CL will retry any other global access to that line by another bus master until all data has been received
in it's L1 cache. Pipeline collisions, however, do not apply for burst write operations in progress. If the 750CL
has completed an address tenure for a burst write, and is currently waiting for a data bus grant or is currently
transferring data to memory, it will not generate an address retry to another bus master that addresses the
line. It is the responsibility of the memory system to handle this collision (usually by keeping the data transac-
tions to memory in order). Note also that all burst writes by the 750CL are performed as nonglobal, and hence
do not normally enable snooping, even for address collision purposes. (Snooping may still occur for reserva-
tion cancelling purposes.)

3.6.4 Snoop Response to 60x Bus Transactions

There are several bus transaction types defined for the 60x bus. The transactions in Table 3-6 correspond to
the transfer type signals TT[0—4], which are described in Section 7.2.4.1 Transfer Type (TT[0-4]).

The 750CL never retries a transaction in which GBL is not asserted, even if the tags are busy or there is a tag
hit. Reservations are snooped regardless of the state of GBL.

Table 3-6. Response to Snooped Bus Transactions (Sheet 1 of 3)

Snooped Transaction TT[0-4] 750CL Response
Clean block 00000 No action is taken.
Flush block 00100 No action is taken.
SYNC 01000 No action is taken.
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Table 3-6. Response to Snooped Bus Transactions (Sheet 2 of 3)

Snooped Transaction TT[0-4] 750CL Response

The kill block operation is an address-only bus transaction initiated when a dcbz or
dcbi instruction is executed

¢ If the addressed cache block is in the exclusive (E) state, the cache block is
placed in the invalid (1) state.

Kill block 01100 ¢ If the addressed cache block is in the modified (M) state, 750CL asserts
ARTRY and initiates a push of the modified block out of the cache and the
cache block is placed in the invalid (1) state.

* If the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.

EIEIO 10000 No action is taken.
External control word write 10100 No action is taken.
TLB invalidate 11000 No action is taken.
External control word read 11100 No action is taken.
lwarx reservation set 00001 No action is taken.
Reserved 00101 —

TLBSYNC 01001 No action is taken.
ICBI 01101 No action is taken.
Reserved 1XX01 —

A write-with-flush operation is a single-beat or burst transaction initiated when a
caching-inhibited or write-through store instruction is executed.
* If the addressed cache block is in the exclusive (E) state, the cache block is
placed in the invalid (1) state.

Write-with-flush 00010 ¢ If the addressed cache block is in the modified (M) state, 750CL asserts
ARTRY and initiates a push of the modified block out of the cache and the
cache block is placed in the invalid (1) state.

* [f the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.

A write-with-kill operation is a burst transaction initiated due to a castout, caching-
allowed push, or snoop copy -back.

¢ If the address hits in the cache, the cache block is placed in the invalid (I)

Write-with-kill 00110 state (killing modified data that may have been in the block).
* [f the address misses in the cache, no action is taken.
Any reservation associated with the address is canceled.
A read operation is used by most single-beat and burst load transactions on the
bus.
For single-beat, caching-inhibited read transaction:
¢ If the addressed cache block is in the exclusive (E) state, the cache block
remains in the exclusive (E) state.
¢ If the addressed cache block is in the modified (M) state, 750CL asserts
ARTRY and initiates a push of the modified block out of the cache and the
cache block is placed in the exclusive (E) state.
Read 01010

¢ |f the address misses in the cache, no action is taken.
¢ For burst read transactions:

¢ If the addressed cache block is in the exclusive (E) state, the cache block is
placed in the invalid (1) state.

¢ If the addressed cache block is in the modified (M) state, 750CL asserts
ARTRY and initiates a push of the modified block out of the cache and the
cache block is placed in the invalid (1) state.

* If the address misses in the cache, no action is taken.
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Table 3-6. Response to Snooped Bus Transactions (Sheet 3 of 3)

Snooped Transaction TT[0-4] 750CL Response

A RWITM operation is issued to acquire exclusive use of a memory location for the
purpose of modifying it.
¢ If the addressed cache block is in the exclusive (E) state, the cache block is

Read-with-intent-to-modify 01110 placed in the invalid (1) state.

(RWITM) * |f the addressed cache block is in the modified (M) state, 750CL asserts
ARTRY and initiates a push of the modified block out of the cache and the
cache block is placed in the invalid (1) state.

* If the address misses in the cache, no action is taken.

Write-with-flush-atomic operations occur after the processor issues an stwcx.
instruction.
¢ If the addressed cache block is in the exclusive (E) state, the cache block is
placed in the invalid (1) state.

Write-with-flush-atomic 10010 * If the addressed cache block is in the modified (M) state, 750CL asserts
ARTRY and initiates a push of the modified block out of the cache and the
cache block is placed in the invalid (1) state.

* [f the address misses in the cache, no action is taken.
Any reservation is canceled, regardless of the address.

Reserved 10110 —

Read atomic operations appear on the bus in response to lwarx instructions and

Read-atomic 11010 generate the same snooping responses as read operations.

Read-with-intent-to-modify- The RWITM atomic operations appear on the bus in response to stwex. instruc-

atomic 11110 tions and generate the same snooping responses as RWITM operations.
Reserved 00011 —
Reserved 00111 —
A RWNITC operation is issued to acquire exclusive use of a memory location with
no intention of modifying the location.
* If the addressed cache block is in the exclusive (E) state, the cache block
Read-with-no-intent-to-cache 01011 remains in the exclusive (E) state.

(RWNITC) * If the addressed cache block is in the modified (M) state, 750CL asserts
ARTRY and initiates a push of the modified block out of the cache and the
cache block is placed in the exclusive (E) state.

¢ If the address misses in the cache, no action is taken.

Reserved 01111 —
Reserved 1XX11 —

3.6.5 Transfer Attributes

In addition to the address and transfer type signals, the 750CL supports the transfer attribute signals TBST,
TSIZ[0-2], WT, CI, and GBL. The TBST and TSIZ[0-2] signals indicate the data transfer size for the bus
transaction.

The WT signal reflects the write-through status (the complement of the W bit) for the transaction as deter-
mined by the MMU address translation during write operations. WT is asserted for burst writes due to dcbf
(flush) and dcbst (clean) instructions, and for snoop pushes; WT is negated for ecowx transactions. Since
the write-through status is not meaningful for reads, the 750CL uses the WT signal during read transactions
to indicate that the transaction is an instruction fetch (WT negated), or not an instruction fetch (WT asserted).

The Cl signal reflects the caching-inhibited/allowed status (the complement of the | bit) of the transaction as
determined by the MMU address translation even if the L1 caches are disabled or locked. Cl is always
asserted for eciwx/ecowx bus transactions independent of the address translation.
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The GBL signal reflects the memory coherency requirements (the complement of the M bit) of the transaction
as determined by the MMU address translation. Castout and snoop copy-back operations (TT[0—4] = 00110)
are generally marked as nonglobal (GBL negated) and are not snooped (except for reservation monitoring).
Other masters, however, may perform DMA write operations with this encoding but marked global (GBL
asserted) and thus must be snooped. Table 3-7 summarizes the address and transfer attribute information
presented on the bus by the 750CL for various master or snoop-related transactions.
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Table 3-7. Address/Transfer Attribute Summary

Bus Transaction
Instruction fetch operations:

Burst (caching-allowed)

Single-beat read (caching-inhibited or

cache disabled)

Data cache operations:

Cache block fill (due to load or store miss)

Castout
(normal replacement)

Push (cache block push due to
dcbf/dcbst)

Snoop copyback

Data cache bypass operations:

Single-beat read (caching-inhibited or

cache disabled)

Single-beat write (caching-inhibited, write-

through, or cache disabled)
Special instructions:

dcbz (addr-only)

dcbi (if HIDO[ABE] = 1, addr-only)
dcbf (if HIDO[ABE] = 1, addr-only)
dcbst (if HIDO[ABE] = 1, addr-only)
sync (if HIDO[ABE] = 1, addr-only)
eieio (if HIDO[ABE] = 1, addr-only)
stwex. (always single-beat write)
eciwx

eCcowX

Note:

A[0-31]

PA[0—28] || 0b000

PA[0-28] || 0b000

PA[0-28] || 0b000

CA[0-26] || 0b00000

PA[0—26] || 0b00000

CA[0-26] || 0b00000

PA[0-31]

PA[0-31]

PA[0—28] || 0b000
PA[0-26] || 0b00000
PA[0-26] || 0b00000
PA[0—26] || 0b00000
0x0000_0000
0x0000_0000
PA[0—29] || 0b0O
PA[0-29] || 0b00
PA[0-29] || 0b00

PA = Physical address, CA = Cache address.

W,I,M = WIM state from address translation; = = complement; 0*or 1* = WIM state implied by transaction type in table
For instruction fetches, reflection of the M bit must be enabled through HIDO[IFEM].
A = Atomic; high if lwarx, low otherwise

S = Transfer size

TT[0-4]

01110

01010

A1110

00110

00110

00110

A1010

00010

01100
01100
00100
00000
01000
10000
10010
11100
10100

TBST

O o o o o o

Special instructions listed may not generate bus transactions depending on cache state.

3.7 MEI State Transactions

TSIZ[0-2]

010

§SS

SSS

010
010
010
010
010
010
100

EAR[28-31]

EAR[28-31]

GBL

Preliminary
WT Cl
1 1*
1 =1
0 1*
1 1*
0 1*
0 1*
0 =
_|W =
0 1*
0 1*
0 1*
0 1*
0 0
0 0
W il
0 0
1 0

Table 3-8 shows MEI state transitions for various operations. Bus operations are described in Table 3-5.
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Next
Operation Cache Operation Bus sync| WIM Ca%ﬁgesqgte Cache Cache Actions Bus Operation
State
Load E;ziti;u(})of modified block (as |y iie _with-Kill
oa Read No x0x | Same
(T=0) Pass four-beat read to mem- |
ead
ory queue
Load
(T=0) Read No x0x E.M Same | Read data from cache —
_ Pass single-beat read to
Load (T=0) Read No x1x | Same memory queue Read
E
Load (T=0) Read No x1x | CRTRY read —
B M CRTRY read (push sector to T
Load (T=0) Read No x1x | write queue) Write-with-kill
Iwarx Read Acts like other reads but bus operation uses special encoding
Cast out of modified block (if Write-with-kill
Store ) necessary)
(T=0) Write No 00x | Same
gssﬁeRWITM to memory RWITM
(S_IEo:r%) Write No 00x E.M M Write data to cache —
Store stwex. . i - i . .
(T=0) Write No 10x | Same 2?5;:;%'362:& write to Write-with-flush
st ‘ Write data to cache —
ore stwcx.
Write No 10x E Same : .
(T=0) Pass single-beat write to Write-with-flush
memory queue
CRTRY write —
Store stwex. Write No 10x M Same
(T=0) Push block to write queue | Write-with-kill
Store (T =0) . . .
or stwex. Write No x1x | Same Pass single-beat write to Write-with-flush
(WIM = 10x) memory queue
Store (T=0)
or stwex. Write No x1x E | CRTRY write —
(WIM = 10x)
Store (T=0) CRTRY write —
or stwex. Write No x1x M |
(WIM = 10x) Push block to write queue Write-with-kill
stwex Conditional write If the reserved bit is set, this operation is like other writes except the bus operation uses a special
' encoding.
CRTRY dcbf —
ILE Same
dcbf Data Cﬁﬁgﬁ block No XXX Pass flush Flush
Same | State change only —

Note: Single-beat writes are not snooped in the write queue.
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Table 3-8. ME| State Transitions (Sheet 2 of 3)

Operation

dcbf

dcbst

dcbst

dcbz

dcbz

dcbz

dcbz

dcbt

dcbt

dcbt

dcbt

dcbt

Single-beat read

Four-beat read
(double-word-
aligned)

Four-beat write
(double-word-
aligned)

E—I

M—>

Cache Operation |Bus sync

Data cache block
flush

Data cache block
store

Data cache block
store

Data cache block
set to zero

Data cache block
set to zero

Data cache block
set to zero

Data cache block
set to zero

Data cache block
touch

Data cache block
touch

Data cache block
touch

Data cache block
touch

Data cache block
touch

Reload dump 1

Reload dump

Reload dump

Snoop
write or kill

Snoop
kill

No

No

No

No

No

Yes

No

No

No

No

No

No

No

No

No

No

No

WIM

XXX

XXX

XXX

x1x

10x

00x

00x

x1x

x1x

x1x

x0x

x0x

XXX

XXX

XXX

XXX

XXX

Current
Cache State

M

Same

E,M

E.M

Note: Single-beat writes are not snooped in the write queue.
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Next
Cache
State

Same

Same

Same

Same

Same

Same

Same

Cache Actions

Push block to write queue

CRTRY dcbst
Pass clean

No action

Push block to write queue

Alignment trap

Alignment trap

CRTRY dcbz

Cast out of modified block

Pass kill

Clear block

Clear block

Pass single-beat read to

memory queue

CRTRY read

CRTRY read

Push block to write queue

Cast out of modified block (as

required)

Pass four-beat read to mem-

ory queue
No action

Forward data_in

Write data_in to cache

Write data_in to cache

State change only (commit-

ted)

State change only (commit-

ted)

Preliminary

Bus Operation

Write-with-kill

Clean

Write-with-kill

Write-with-kill
Kill

Write-with-kill

Write-with-kill

Read
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Table 3-8. MEI State Transitions (Sheet 3 of 3)

Operation Cache Operation Bus sync| WIM Ca%ﬁg%q;te CS’\%EEG Cache Actions Bus Operation
e ilnuc;‘;p No | xxx M I Conditionally push Write-with-kil
sl i?::: No XXX M E  Conditionally push Write-with-kill

CRTRY TLBI —
tibie TLB invalidate No XXX X X Pass TLBI —
No action —
CRTRY sync —
sync Synchronization No XXX X X Pass sync —
No action —

Note: Single-beat writes are not snooped in the write queue.
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4. Exceptions

The OEA portion of the PowerPC Architecture™ defines the mechanism by which PowerPC® processors
implement exceptions (referred to as interrupts in the architecture specification). Exception conditions may be
defined at other levels of the architecture. For example, the UISA defines conditions that may cause floating-
point exceptions; the OEA defines the mechanism by which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of unusual
conditions arising in the execution of instructions and from external signals, bus errors, or various internal
conditions. When exceptions occur, information about the state of the processor is saved to certain registers
and the processor begins execution at an address (exception vector) predetermined for each exception.
Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more specific condition
may be determined by examining a register associated with the exception—for example, the DSISR and the
floating-point status and control register (FPSCR). The high order bits of the machine state register (MSR)

are also set for some exceptions. Also, software can explicitly enable or disable some exception conditions.

The PowerPC Architecture requires that exceptions be taken in program order; therefore, although a partic-
ular implementation may recognize exception conditions out of order, they are handled strictly in order with
respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that have not yet entered the execute
state, are required to complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled based on the priority of the exception.
Likewise, exceptions that are asynchronous and precise are recognized when they occur, but are not handled
until all instructions currently in the execute stage successfully complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored in the machine
status save/restore registers, SRR0 and SRR1, soon after the exception is taken to prevent this information
from being lost due to another exception being taken. Because exceptions can occur while an exception
handler routine is executing, multiple exceptions can become nested. It is up to the exception handler to save
the necessary state information if control is to return to the excepting program.

In many cases, after the exception handler returns, there is an attempt to execute the instruction that caused
the exception (e.g., page fault). Instruction execution continues until the next exception condition is encoun-
tered. Recognizing and handling exception conditions sequentially guarantees that the machine state is
recoverable and processing can resume without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing:

Recognition  Exception recognition occurs when the condition that can cause an exception is identified by
the processor.

Taken An exception is said to be taken when control of instruction execution is passed to the excep-
tion handler; that is, the context is saved and the instruction at the appropriate vector offset is
fetched and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate vector offset.
Exception handling is begun in supervisor mode (referred to as privileged state in the archi-
tecture specification).

Note: The PowerPC Architecture documentation refers to exceptions as interrupts. In this book, the term
‘interrupt’ is reserved to refer to asynchronous exceptions and sometimes to the event that causes the excep-
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tion. Also, the PowerPC Architecture uses the word ‘exception’ to refer to IEEE-defined floating-point excep-
tion conditions that may cause a program exception to be taken; see 4.5.7. The occurrence of these IEEE
exceptions may not cause an exception to be taken. IEEE-defined exceptions are referred to as IEEE float-
ing-point exceptions or floating-point exceptions.

4.1 PowerPC 750CL Microprocessor Exceptions

As specified by the PowerPC Architecture, exceptions can be either precise or imprecise and either synchro-
nous or asynchronous. Asynchronous exceptions are caused by events external to the processor’s execu-
tion; synchronous exceptions are caused by instructions.

The types of exceptions are shown in Table 4-1.

Note: All exceptions except for the system management interrupt and performance monitor exception are
defined, at least to some extent, by the PowerPC Architecture.

Table 4-1. PowerPC 750CL Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Types
Asynchronous, nonmaskable Imprecise Machine check, system reset
Asynchronous, maskable Precise External interr.upt, decrementer, performance. monitor interrupt, thermal
management interrupt, system management interrupt.
Synchronous Precise Instruction-caused exceptions

These classifications are discussed in greater detail in Section 4.2 Exception Recognition and Priorities.

For a better understanding of how 750CL implements precise exceptions, see Chapter 6, “Exceptions” of the
PowerPC Microprocessor Family: The Programming Environments manual. Exceptions implemented in
750CL, and conditions that cause them, are listed in Table 4-2.

Table 4-2. Exceptions and Conditions (Page 1 of 2)

Exception Type Vector Offset (Hex) Causing Conditions
Reserved 00000 —
System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Assertion of TEA during a data bus transaction, assertion of MCP, an address, data or L2
Machine check 00200 double bit error, DMA queue overflow, DMA look-up misses locked cache, or dcbz_|
cache hit. MSR[ME] must be set.

As specified in the PowerPC Architecture. For translation lookaside buffers (TLB) misses
DSI 00300 on load, store, or cache operations, a data-storage exception (DSI) exception occurs if a
page fault occurs.

1SI 00400 As defined by the PowerPC Architecture.
External interrupt 00500 MSRIEE] = 1 and INT is asserted

* A floating-point load/store, stmw, stwex., Imw, lwarx, eciwx, or ecowx instruction
operand is not word-aligned.

* A multiple/string load/store operation is attempted in little-endian mode

Alignment 00600 » An operand of a dcbz or debz_lI instruction is on a page that is write-through or
cache-inhibited for a virtual mode access.

* An attempt to execute a decbz or debz_I instruction occurs when the cache is dis-
abled.
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Table 4-2. Exceptions and Conditions (Page 2 of 2)

Exception Type

Program

Floating-point
unavailable

Decrementer

Reserved

System call

Trace

Reserved

Reserved

Performance monitor

Instruction address

breakpoint

System manage-

ment exception

Thermal-manage-

ment interrupt

Reserved

Vector Offset (Hex)

00700

00800

00900

00AO00-00BFF
00C00

00D00

00EOO0

00E10-00EFF
00F00

01300

01400

01700

All other.

Causing Conditions

As defined by the PowerPC Architecture
As defined by the PowerPC Architecture

As defined by the PowerPC Architecture, when the most significant bit of the decrement
(DEC) register changes from 0 to 1 and MSR[EE] = 1

Execution of the System Call (sc) instruction

MSRI[SE] = 1 or a branch instruction is completing and MSR[BE] = 1. 750CL differs from
the OEA by not taking this exception on an isync.

750CL does not generate an exception to this vector. Other PowerPC processors may use
this vector for floating-point assist exceptions.

The limit specified in PMCn is met and MMCRO[ENINT] = 1 (750CL-specific)

IABR[0—29] matches EA[0-29] of the next instruction to complete, IABR[TE] matches
MSRIIR], and IABR[BE] = 1 (750CL-specific)

A system management exception is enabled if MSR[EE] = 1, and is signaled to the 750CL
by the assertion of an input signal pin, the System Management Interrupt (SMI).

Thermal management is enabled, junction temperature exceeds the threshold specified in
THRM1 or THRM2, and MSRI[EE] = 1. Note that the Thermal Assist Unit is not supported
on the 750CL.

4.2 Exception Recognition and Priorities

Exceptions are roughly prioritized by exception class, as follows (Note that the thermal assist unit (TAU) and
thermal-management interrupt (TMI) are not supported on the 750CL):

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—system reset and
machine check exceptions (although the machine check exception condition can be disabled so the con-
dition causes the processor to go directly into the checkstop state). These exceptions cannot be delayed
and do not wait for completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are caused by instructions and
they are delayed until higher priority exceptions are taken. Note that 750CL does not implement an
exception of this type.

4. Maskable asynchronous exceptions (external, decrementer, system management, performance monitor,
and interrupt exceptions) are delayed if higher priority exceptions are taken.

The following list of exception categories describes how 750CL handles exceptions up to the point of
signaling the appropriate interrupt to occur. Note that a recoverable state is reached if the completed store
queue is empty (drained, not cancelled) and any instruction that is next in program order and has been
signaled to complete has completed. If MSR[RI] = 0, 750CL is in a nonrecoverable state. Also, instruction
completion is defined as updating all architectural registers associated with that instruction, and then
removing that instruction from the completion buffer.
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* Exceptions caused by asynchronous events (interrupts). These exceptions are further distinguished by
whether they are maskable and recoverable.

— Asynchronous, nonmaskable, nonrecoverable
System reset for assertion of HRESET—Has highest priority and is taken immediately regardless of
other pending exceptions or recoverability. (Includes power-on reset)

— Asynchronous, maskable, nonrecoverable
Machine check exception—Has priority over any other pending exception except system reset for
assertion of HRESET. Taken immediately regardless of recoverability.

— Asynchronous, nonmaskable, recoverable
System reset for SRESET—Has priority over any other pending exception except system reset for
HRESET (or power-on reset), or machine check. Taken immediately when a recoverable state is
reached.

— Asynchronous, maskable, recoverable
System management, performance monitor, thermal management, external, and decrementer inter-
rupts—Before handling this type of exception, the next instruction in program order must complete. If
that instruction causes another type of exception, that exception is taken and the asynchronous,
maskable recoverable exception remains pending, until the instruction completes. Further instruction
completion is halted. The asynchronous, maskable recoverable exception is taken when a recover-
able state is reached. Note that the thermal management exception is not supported on the 750CL.

¢ Instruction-related exceptions. These exceptions are further organized into the point in instruction pro-
cessing in which they generate an exception.

— Instruction fetch
ISI exceptions—Once this type of exception is detected, dispatching stops and the current instruction
stream is allowed to drain out of the machine. If completing any of the instructions in this stream
causes an exception, that exception is taken and the instruction fetch exception is discarded (but
may be encountered again when instruction processing resumes). Otherwise, once all pending
instructions have executed and a recoverable state is reached, the ISI exception is taken.

— Instruction dispatch/execution
Program, DSI, alignment, floating-point unavailable, system call, and instruction address break-
point—This type of exception is determined during dispatch or execution of an instruction. The
exception remains pending until all instructions before the exception-causing instruction in program
order complete. The exception is then taken without completing the exception-causing instruction. If
completing these previous instructions causes an exception, that exception takes priority over the
pending instruction dispatch/execution exception, which is then discarded (but may be encountered
again when instruction processing resumes).

— Post-instruction execution
Trace—Trace exceptions are generated following execution and completion of an instruction while
trace mode is enabled. If executing the instruction produces conditions for another type of exception,
that exception is taken and the post-instruction exception is forgotten for that instruction.

Note: These exception classifications correspond to how exceptions are prioritized, as described in
Table 4-3.
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Table 4-3. PowerPC 750CL Exception Priorities

Priority Exception Cause
Asynchronous Exceptions (Interrupts)
0 System reset Power on reset, assertion of HRESET (hard reset)

Any enabled machine check condition (L1 address or data parity error, L2 data double bit error,

1 Machine check assertion of TEA, MCP, and so forth)

2 System reset Assertion of SRESET (soft reset)

3 SMI System Management Interrupt

4 External interrupt Assertion of INT

5 Performance monitor Any programmer-specified performance monitor condition

6 Decrementer Decrementer passes through zero

7 T™I Thermal Management Interrupt (not supported in the 750CL)

Instruction Fetch Exceptions
0 ISI Any ISI exception condition
Instruction Dispatch/Execution Exceptions

Instruction address

0 breakpoint Any instruction address breakpoint exception condition

1 Program lsl)ccyrrencg of an illegal instruction, pr!vileged instructionl, or trap exception condition. Note that
oating-point enabled program exceptions have lower priority.

2 System call System Call (sc) instruction

3 Floating-point unavailable | Any floating-point unavailable exception condition

4 Program A floating-point enabled exception condition (lowest-priority program exception)

5 DS DSI exception due to eciwx, ecowx with EAR[E] = 0 (DSISR[11]). Lower priority DSI exception

conditions are shown below.

Any alignment exception condition, prioritized as follows:
1 Floating-point access not word-aligned
. 2 Imw, stmw, Iwarx, stwex. not word-aligned
6 Alignment i )
3 eciwx or ecowx not word-aligned
4 Multiple or string access with MSR[LE] set
5

dcbz or decbz_I to write-through or cache-inhibited page or cache is disabled

7 DSI BAT page protection violation

8 DSl Any access except cache operations to a segment where SR[T] = 1 (DSISR[5]) or an access
crosses from a T = 0 segment to one where T = 1 (DSISR][5])

9 DSI TLB page protection violation

10 DSI DABR address match

Post-Instruction Execution Exceptions
11 Trace MSRI[SE] = 1 (or MSR[BE] = 1 for branches)
Note: Even though DSISR (5) and DSISR (11) are set by different priority exceptions, both bits can be set at the same time.
System reset and machine check exceptions may occur at any time and are not delayed even if an exception

is being handled. As a result, state information for an interrupted exception may be lost; therefore, these
exceptions are typically nonrecoverable. An exception may not be taken immediately when it is recognized.
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4.3 Exception Processing

When an exception is taken, the processor uses SRR0 and SRR1 to save the contents of the MSR for the
current context and to identify where instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in SRRO determines where instruction processing should
resume when the exception handler returns control to the interrupted process. Depending on the exception,
this may be the address in SRRO or at the next address in the program flow. All instructions in the program
flow preceding this one will have completed execution and no subsequent instruction will have begun execu-
tion. This may be the address of the instruction that caused the exception or the next one (as in the case of a
system call, trace, or trap exception). The SRRO register is shown in Figure 4-1.

Figure 4-1. Machine Status Save/Restore Register 0 (SRR0)

SRRO (Holds EA for Instruction in Interrupted Program Flow)

SRR1 is used to save machine status (selected MSR bits and possibly other status bits as well) on excep-
tions and to restore those values when an rfi instruction is executed. SRR1 is shown in Figure 4-2.

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1)

Exception-Specific Information and MSR Bit Values

For most exceptions, bits 2—-4 and 10—12 of SRR1 are loaded with exception-specific information and
MSR[5-9, 16—31] are placed into the corresponding bit positions of SRR1.

750CL’s MSR is shown in Figure 4-3.

Figure 4-3. Machine State Register (MSR)

|:| Reserved

0 0 0O0OOO O OO O O O O0O|POWO |ILE EE|PRFP|ME|FEQ SE[BEFE1 0 | IP|IR |DR| 0 |PM|RI |LE

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The MSR bits are defined in Table 4-4.
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Table 4-4. MSR Bit Settings (Page 1 of 2)

Bits Name Description
0 — | Reserved. Full function.’
1-4 — Reserved. Partial function.
5-9 — | Reserved. Full function.’
10-12 — | Reserved. Partial function.’

Power management enable
0 Power management disabled (normal operation mode).
13 POW |1 Power management enabled (reduced power mode).

Power management functions are implementation-dependent.
See Section 10 Power and Thermal Management on page 329

14 — Reserved. Implementation-specific

Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select the endian mode

15 ILE for the context established by the exception.

External interrupt enable
16 EE 0 The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

Privilege level
17 PR 0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores, and
18 FP moves.

1 The processor can execute floating-point instructions and can take floating-point enabled program excep-

tions.

Machine check enable

19 ME |0 Machine check exceptions are disabled. If one occurs system enters checkstop.
1 Machine check exceptions are enabled.
20 FEO | IEEE floating-point exception mode O (see Table 4-5).
Single-step trace enable
21 SE 0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of every instruction
except rfi, isync, and sc. Successful execution means that the instruction caused no other exception.
Branch trace enable
22 BE 0 The processor executes branch instructions normally.
1 The processor generates a branch type trace exception when a branch instruction executes successfully.
23 FE1 | IEEE floating-point exception mode 1 (see Table 4-5).
24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.
Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended with Fs or 0s. In
5 P the following description, nnnnn is the offset of the exception.
5 0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address OxFFFn_nnnn.
Note:

1. Full function reserved bits are saved in SRR1 when an exception occurs; partial function reserved bits are not saved.
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Table 4-4. MSR Bit Settings (Page 2 of 2)

Bits Name Description

Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Section 5 Memory Management on page 181.

26 IR

Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Section 5 Memory Management on page 181.

27 DR

28 — | Reserved. Full function’

Performance monitor marked mode
0 Process is not a marked process.
29 PM |1 Process is a marked process.

750CL-specific; defined as reserved by the PowerPC Architecture. For more information about the performance
monitor, see Section 4.5.13 Performance Monitor Interrupt (0xO0F00).

Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable.
30 RI 1 Exception is recoverable.

The Rl bit indicates whether from the perspective of the processor, it is safe to continue (that is, processor state
data such as that saved to SRRO is valid), but it does not guarantee that the interrupted process is recoverable.
Exception handlers must look at SRR1[RI] for determination.

Little-endian mode enable
31 LE 0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Note:
1. Full function reserved bits are saved in SRR1 when an exception occurs; partial function reserved bits are not saved.

The IEEE floating-point exception mode bits (FEO and FE1) together define whether floating-point exceptions
are handled precisely, imprecisely, or whether they are taken at all. As shown in Table 4-5, if either FEO or
FE1 are set, 750CL treats exceptions as precise. MSR bits are guaranteed to be written to SRR1 when the
first instruction of the exception handler is encountered. For further details, see Chapter 6, “Exceptions” of the
PowerPC Microprocessor Family: The Programming Environments manual.

Table 4-5. IEEE Floating-Point Exception Mode Bits

FEO FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Imprecise nonrecoverable. For this setting, 750CL operates in floating-point precise mode.
1 0 Imprecise recoverable. For this setting, 750CL operates in floating-point precise mode.
1 1 Floating-point precise mode

4.3.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined whether the
exception is enabled for that condition.

* |EEE floating-point enabled exceptions (a type of program exception) are ignored when both MSR[FEQ]
and MSR[FE1] are cleared. If either bit is set, all IEEE enabled floating-point exceptions are taken and
cause a program exception.
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¢ Asynchronous, maskable exceptions (such as the external and decrementer interrupts) are enabled by
setting MSR[EE]. When MSR[EE] = 0, recognition of these exception conditions is delayed. MSR[EE] is
cleared automatically when an exception is taken to delay recognition of conditions causing those excep-
tions.

¢ A machine check exception can occur only if the machine check enable bit, MSR[ME], is set. If MSR[ME]
is cleared, the processor goes directly into checkstop state when a machine check exception condition
occurs. Individual machine check exceptions can be enabled and disabled through bits in the HIDO regis-
ter, which is described in Table 4-10.

¢ System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-caused exceptions
occurring earlier in the instruction stream have been handled, and by confirming that the exception is enabled
for the exception condition), the processor does the following:

1. SRRO is loaded with an instruction address that depends on the type of exception. Normally, this is the
instruction that would have been completed next had the exception not been taken. See the individual
exception description for details about how this register is used for specific exceptions.

2. SRR1[1-4, 10-15] are loaded with information specific to the exception type.

3. SRR1[5-9, 16-31] are loaded with a copy of the corresponding MSR bits. Depending on the implementa-
tion, reserved bits may not be copied.

4. The MSR is set as described in Table 4-4. The new values take effect as the first instruction of the excep-
tion-handler routine is fetched.

Note: MSRJ[IR] and MSR[DR] are cleared for all exception types; therefore, address translation is dis-
abled for both instruction fetches and data accesses beginning with the first instruction of the exception-
handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location specific to the exception
type. The location is determined by adding the exception's vector (see Table 4-2) to the base address
determined by MSRIIP]. If IP is cleared, exceptions are vectored to the physical address 0x000n_nnnn. If
IP is set, exceptions are vectored to the physical address OxFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the checkstop state is entered
(the machine stops executing instructions).

4.3.3 Setting MSR[RI]

The RI bit in the MSR was designed to indicate to the exception handler whether the exception is recover-
able. When an exception occurs the Rl bit is copied from the MSR to SRR1 and cleared in the MSR. All inter-
rupts are disabled except machine check. If a machine check exception occurs while MSR[RI] is clear, a 0
value is found in SRR1[RI] to indicate that the machine state is definitely not recoverable. When this bitis a 1,
the exception is recoverable as far as the current state of the machine and all programs are concerned
including non critical machine checks. An operating system may handle MSR[RI] as follows:

¢ In all exceptions—If SRR1[RI] is cleared, the machine state is not recoverable. If it is set, the exception is
recoverable with respect to the processor and all programs.

* Use the SPRGO0-SPRGBS registers to aid in saving the machine state. The following procedure is sug-
gested:
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— Point SPRGO to a stack-saved area in memory
— Save three general purpose registers (GPRs) in SPRG1-SPRGS3.

— Move SPRGO into one of the GPRs that was saved. This GPR now points to the save area in mem-
ory.

— Move the GPRs, SRRO0, SRR1, SPRG1-3 and other registers to be used by the exception routine into
the stack-saved area.

— Update SPGRO to point to a new save area.

— Set MSRJ[RI] to indicate that machine state has been saved. Also set MSR[EE] if you want to reen-
able external interrupts.

* When exception processing is complete, clear MSR[RI]. Adjust SPRGO to point to the stack saved area,
restore the GPR’s, SRR0O and SRR1 and any other register that you may have saved, execute rfi. This
returns the processor to the interrupted program.

4.3.4 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by allowing previously-issued
instructions to complete before returning to the interrupted process. In general, execution of the rfi instruction
ensures the following:

¢ All previous instructions have completed to a point where they can no longer cause an exception. If a pre-
vious instruction causes a direct-store interface error exception, the results must be determined before
this instruction is executed.

* Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

* The rfi instruction copies SRR1 bits back into the MSR.
* Instructions fetched after this instruction execute in the context established by this instruction.

* Program execution resumes at the instruction indicated by SRRO

For a complete description of context synchronization, refer to Chapter 6, “Exceptions” of the PowerPC
Microprocessor Family: The Programming Environments manual.

4.3.5 Exception Latencies

Latencies for taking various exceptions are variable based on the state of the machine when conditions to
produce an exception occur. The shortest latency possible is one cycle. In this case, an exception is signaled
in the cycle following the appearance of the conditions that generated that exception. In most cases, a hard
reset or machine check has a single-cycle latency to exception. The only situation that can prevent this is
when a speculative instruction is the next to complete. This case, which produces an extra 2-cycle minimum,
3-cycle maximum delay, only occurs if the branch guess that forced this instruction to be speculative was
resolved to be incorrect.

Another latency variable is introduced for a soft reset exception—recoverability. The time to reach a recover-
able state can depend on the time needed to complete or to cause an exception to an instruction at the point
of completion, the time needed to drain the completed store queue, or the time waiting for a correct empty
state so that a valid exception prefix (IP) can be saved. For other externally-generated exceptions, a further
delay might be incurred waiting for another exception, generated while reaching a recoverable state, to be
serviced.
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Further delays are possible for other types of exceptions depending on the number and type of instructions
that must be completed before that exception can be serviced. See Section 4.3.6 Summary of Front-End
Exception Handling to determine possible maximum latencies for different exceptions.

4.3.6 Summary of Front-End Exception Handling

Table 4-6 describes how the 970 handles exceptions up to the point of signaling the appropriate exception to
occur. Note that a recoverable state is reached in the 970 if the completed store queue is empty (drained, not
canceled), and the instruction that is next in the program order has been signaled to complete and has
completed. If MSR[RI] = 0, the 970 is in a nonrecoverable state by default. Also, completion of an instruction
is defined as performing all architectural register writes associated with that instruction, and then removing
that instruction from the completion buffer queue.

Table 4-6. Front-End Exception Handling Summary

Exception Type Specific Exception Description

Has highest priority and is taken immediately regardless of
System Reset for HRESET other pending exceptions or recoverability. A non speculative
address is guaranteed.

Asynchronous Nonmaskable
Nonrecoverable

Takes priority over any other pending exception except system
Asynchronous Maskable Machine Check reset for HRESET or power-on reset (POR). Taken immedi-
Nonrecoverable ately, regardless of recoverability. A non speculative address is
guaranteed.

Takes priority over any other pending exception except system
System Reset for SRESET reset for HRESET or POR or machine check. Taken immedi-
ately when a recoverable state is reached.

Asynchronous Nonmaskable
Recoverable

Before handling this type of exception, the next instruction in
program order must complete or cause an exception. If this
action causes another type of exception, that exception is
Asynchronous Maskable SMI. El. DEC taken and the asynchronous maskable recoverable (AMR)
Recoverable T exception remains pending. Once an instruction is able to com-
plete without causing an exception, while the AMR exception is
enabled, further instruction completion is halted. The AMR
exception is then taken once a recoverable state is reached.

Once this type of exception is detected, dispatch is halted and
the current instruction stream is allowed to drain out of the
machine. If completing any of the instructions in this stream

Instruction Fetch 1SI causes an exception, that exception is taken and the instruc-
tion fetch exception is forgotten. Otherwise, once the machine
is empty and a recoverable state is reached, the instruction
fetch exception is taken.

This type of exception is determined at dispatch or execution of
an instruction. The exception remains pending until all instruc-
tions in program order before the exception-causing instruction
Program, DSI, Alignment, FPA, |are completed. The exception is then taken without completing
SC, IABR, DABR the exception-causing instruction. If any other exception condi-
tion is created in completing these previous instructions in the
machine, that exception takes priority over the pending Instruc-
tion Dispatch/Execution exception, which is then forgotten.

Instruction Dispatch/Execution

This type of exception is generated following execution and
completion of an instruction while a trace mode is enabled. If

Post Instruction Execution Trace executing the instruction produces conditions for another type
of exception, that exception is taken and the Post Instruction
Execution exception is forgotten for that instruction.
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4.4 Process Switching

The following instructions are useful for restoring proper context during process switching:

Preliminary

¢ The sync instruction orders the effects of instruction execution. All instructions previously initiated appear
to have completed before the sync instruction completes, and no subsequent instructions appear to be
initiated until the sync instruction completes. For an example showing use of sync, see Chapter 2, “Pow-
erPC Register Set” of the PowerPC Microprocessor Family: The Programming Environments manual.

¢ The isync instruction waits for all previous instructions to complete and then discards any fetched instruc-
tions, causing subsequent instructions to be fetched (or refetched) from memory and to execute in the

context (privilege, translation, and protection) established by the previous instructions.

* The stwex. instruction clears any outstanding reservations, ensuring that an lwarx instruction in an old
process is not paired with an stwex. instruction in a new one.

The operating system should set MSR[RI] as described in Section 4.3.3 Setting MSR[RI].

4.5 Exception Definitions

Table 4-7 shows all the types of exceptions that can occur with 750CL and MSR settings when the processor
goes into supervisor mode due to an exception. Depending on the exception, certain of these bits are stored

in SRR1 when an exception is taken.

Table 4-7. MSR Setting Due to Exception

Exception Type

System reset
Machine check

DSI

ISI

External interrupt
Alignment

Program
Floating-point unavailable
Decrementer interrupt
System call

Trace exception
System management
Performance monitor

Note:
1. 0 Bitis cleared.

ILEBIt is copied from the MSR[ILE].

— Bit is not altered

Reserved bits are read as if written as 0.
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The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the bit is cleared,
exceptions are vectored to the physical address 0x000n_nnnn (where nnnnn is the vector offset); if IP is set,
exceptions are vectored to physical address OxFFFn_nnnn. Table 4-2 Exceptions and Conditions shows the
exception vector offset of the first instruction of the exception handler routine for each exception type.

4.5.1 System Reset Exception (0x00100)

The 750CL implements the system reset exception as defined in the PowerPC Architecture (OEA). The
system reset exception is a nonmaskable, asynchronous exception signaled to the processor through the
assertion of system-defined signals. In 750CL, the exception is signaled by the assertion of either the soft
reset (SRESET) or hard reset (HRESET) inputs, described more fully in Section 7 Signal Descriptions on
page 247.

The 750CL implements HIDO[NHR], which helps software distinguish a hard reset from a soft reset. Because
this bit is cleared by a hard reset, but not by a soft reset, software can set this bit after a hard reset and tell
whether a subsequent reset is a hard or soft reset by examining whether this bit is still set.

The first bus operation following the negation of HRESET or the assertion of SRESET is a single-beat instruc-
tion fetch (caching is inhibited) to x00100.

Table 4-8 lists register settings when a system reset exception is taken.

Table 4-8. System Reset Exception—Register Settings

Register Setting Description

Set to the effective address of the instruction that the processor would have attempted to execute next if no exception

SRRO o
conditions were present.

0 Loaded with equivalent MSR bits
1-4 Cleared
5-9 Loaded with equivalent MSR bits
SRR1 10-15 Cleared
16-31 Loaded with equivalent MSR bits
Note: If the processor state is corrupted to the extent that execution cannot resume reliably, MSR[RI] (SRR1[30]) is

cleared.
POW 0 FP 0 BE 0 DR 0
LE  — ME = — FE1 0 PM 0
MSR EE 0 FEO 0 P _ RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

4.5.1.1 Hard Reset

A hard reset is initiated by asserting HRESET. Hard reset is used primarily for POR (in which case, TRST
must also be asserted), but it can also be used to restart a running processor. The HRESET signal must be
asserted during power up and must remain asserted for a period that allows the phase-locked loop (PLL) to
achieve lock and the internal logic to be reset. This period is specified in the PowerPC 750CL Datasheet.
750CL tristates all I/O drivers within five clocks of HRESET assertion.

750CL’s internal state after the hard reset interval is defined in Table 4-9. If HRESET is asserted during
normal operation, all operations cease, and the machine state is lost (see Section 7.2.10.1 on page 266 for
more information on a hard reset).
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The hard reset exception is a nonrecoverable, nonmaskable asynchronous exception. When HRESET is
asserted or at POR, the 750CL immediately branches to OxFFF0_0100 without attempting to reach a recover-
able state. A hard reset has the highest priority of any exception. It is always nonrecoverable. Table 4-9
shows the state of the machine just before it fetches the first instruction of the system reset handler after a
hard reset.

In Table 4-9, the term “Unknown” means that the content may have been disordered: these facilities must be
properly initialized before use. The floating point registers (FPRs), BATs, and TLBs may have been disor-
dered. To initialize the BATS, first set them all to zero, then to the correct values before any address transla-
tion occurs. FPR registers also should be initialized before processing continues.

Table 4-9. Settings Caused by Hard Reset

Register Setting Register Setting
BATs Unknown LR 00000000
ggggﬁélcache, and sgfz:’(;cﬁalz—rg-changed from MMCRn 00000000
CR All 0s MSR 00000040 (only IP set)
CTR 00000000 PMCn 00000000
DABR iﬁzzz'g Lsnsf:xfd' PVR See the PowerPC 750CL Datasheet
DAR 00000000 Reservation Address | Unknown (reservation flag-cleared)
DEC FFFFFFFF SDR1 00000000
DMAL 00000000 SPRGs 00000000
DMAU 00000000 SRRO 00000000
DSISR 00000000 SRR1 00000040
FPRs Unknown SRs Unknown
FPSCR 00000000 loaghe, and Boache  are Set 10 , and caches are diabled.
GPRs Unknown TBL 00000000
GQRn 00000000 TBU 00000000
HIDO 00000000 THRMn 00000000
HID1 00000000 TLBs Unknown
HID2 00000000 UMMCRn 00000000
HID4 80000000 UPMCn 00000000
IABR 00000000(Breakpoint disabled) USIA 00000000
ICTC 00000000 WPAR 00000000
L2CR 00000000 XER 00000000

The following is also true after a hard reset operation:
¢ External checkstops are enabled.

* The on-chip test interface has given control of the 1/Os to the rest of the chip for functional use.
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¢ Since the reset exception has data and instruction translation disabled (MSR[DR] and MSR][IR] both
cleared), the chip operates in direct address translation mode (referred to as the real addressing mode in
the architecture specification).

 Time from HRESET deassertion until 750CL asserts the first TS (bus parked on 750CL) or BG is 8 to 12
bus clocks (SYSCLK).

4.5.1.2 Soft Reset While HRESET is Not Active

If SRESET is asserted while HRESET is not active, the processor is first put in a recoverable state. To do
this, 750CL allows any instruction at the point of completion to either complete or take an exception, blocks
completion of any following instructions, and allows the completion queue to drain. The state before the
exception occurred is then saved as specified in the PowerPC Architecture and instruction fetching begins at
the system reset interrupt vector offset, 0x00100. The vector address on a soft reset depends on the setting
of MSR[IP] (either 0x0000_0100 or OxFFF0_0100). Soft resets are third in priority, after hard reset and
machine check. This exception is recoverable provided attaining a recoverable state does not generate a
machine check.

While HRESET is not active, SRESET is an effectively edge-sensitive signal that can be asserted and deas-
serted asynchronously, provided the minimum pulse width specified in the hardware specifications is met.
Asserting SRESET causes 750CL to take a system reset exception. This exception modifies the MSR, SRRO,
and SRR1, as described in the PowerPC Microprocessor Family: The Programming Environments manual.
Unlike hard reset, soft reset does not directly affect the states of output signals. Attempts to use SRESET
while the JTAG logic is nonidle will cause unpredictable results.

4.5.1.3 Additional Uses of HRESET and SRESET

In revision dd1.3 of the 750CL, SRESET is used to reset the PLL. See the 750CL dd1.3 Datasheet for more
information. This function is handled by internal logic on dd2.0, and the SRESET PLL-related function is not
available.

4.5.2 Machine Check Exception (0x00200)

750CL implements the machine check exception as defined in the PowerPC Architecture (OEA). It condition-
ally initiates a machine check exception after an address or data parity error occurred on the bus or in either
the L1 or L2 cache, after receiving a qualified transfer error acknowledge (TEA) indication on 750CL bus,
after DMA look-up missed the locked cache, after a debz_I hit in the normal cache, or after the machine
check interrupt (MCP) signal had been asserted. As defined in the OEA, the exception is not taken if
MSR[ME] is cleared, in which case the processor enters checkstop state.

Certain machine check conditions can be enabled and disabled using HIDO bits, as described in Table 4-10
on page 172.
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Table 4-10. HIDO Machine Check Enable Bits

Bit Name Function

Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused by assertion
of MCP, similar to how MSR[EE] can mask external interrupts.

0 EMCP 0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1.
Disable 60x bus address and data parity generation.

1 DBP 0 Par!ty generat!on e.nabled.
1 Parity generation disabled.
60x bus parity signals are not pinned out on the 750CL; so, parity generation can be enabled or disabled.
Enable 60x bus address parity checking.
0 Prevents address parity checking.

2 EBA |1 Allows an address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.
EBA must remain set to 0.
Enable 60x bus data parity checking
0 Parity checking is disabled.

3 EBD |1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.
EBA must remain set to 0.
Not hard reset (software use only)

15 NHR |0 A hard reset occurred if software had previously set this bit

1 A hard reset has not occurred.

A TEA indication on the bus can result from any load or store operation initiated by the processor. In general,
TEA is expected to be used by a memory controller to indicate that a memory parity error or an uncorrectable
memory ECC error has occurred. Note that the resulting machine check exception is imprecise and unor-
dered with respect to the instruction that originated the bus operation.

If MSR[ME] and the appropriate HIDO bits are set, the exception is recognized and handled; otherwise, the
processor generates an internal checkstop condition. When the exception is recognized, all incomplete stores
are discarded. The bus protocol operates normally.

A machine check exception may result from referencing a nonexistent physical address, either directly (with
MSRI[DR] = 0) or through an invalid translation. If a debz instruction introduces a block into the cache associ-
ated with a nonexistent physical address, a machine check exception can be delayed until an attempt is
made to store that block to main memory. Not all PowerPC processors provide the same level of error
checking. Checkstop sources are implementation-dependent.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in the next section. If
MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 4.5.2.2 Checkstop State (MSR[ME] = 0).

4.5.2.1 Machine Check Exception Enabled (MSR[ME]= 1)

Machine check exceptions are enabled when MSR[ME] = 1. When a machine check exception is taken, regis-
ters are updated as shown in Table 4-11.
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Table 4-11. Machine Check Exception—Register Settings

Register Setting Description

On a best-effort basis 750CL can set this to an EA of some instruction that was executing or about to be executing when the

SRRO machine check condition occurred.
0-9 Cleared
10 Set when a DMA or locked cache error happens.
11 Set when an L2 data cache double bit error is detected, otherwise zero
SRR1 12 Set when MCP signal is asserted, otherwise zero
13 Set when TEA signal is asserted, otherwise zero
14 Set when a data bus parity error is detected, otherwise zero (Do not enable 60x bus parity checking.)
15 Set when an address bus parity error is detected, otherwise zero (Do not enable 60x bus parity checking.)
16-31 MSR[16-31]
POW 0 FP 0 BE 0 DR 0
ILE — ME 0 FE1 0 PM 0
MSR EE 0 FEO 0 P — RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

Note: To handle another machine check exception, the exception handler should set MSR[ME] as soon as it is practical after a
machine check exception is taken. Otherwise, subsequent machine check exceptions cause the processor to enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot resume in the
context that existed before the exception (see Section 4.3.3 Setting MSR[RI)). If the condition that caused the
machine check does not otherwise prevent continued execution, MSR[ME] is set to allow the processor to
continue execution at the machine check exception vector address and prevent the processor from entering
checkstop state if another machine check occurs. Typically, earlier processes cannot resume; however, oper-
ating systems can use the machine check exception handler to try to identify and log the cause of the
machine check condition.

When a machine check exception is taken, instruction fetching resumes at offset 0x00200 from the physical
base address indicated by MSRJIP].

4.5.2.2 Checkstop State (MSR[ME] = 0)

If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state. The 750CL processor
can also be forced into the checkstop state by the assertion of CKSTP_IN primary input signal.

When a processor is in checkstop state, instruction processing is suspended and generally cannot resume
without the processor being reset. The contents of all latches are frozen within two cycles upon entering
checkstop state.

4.5.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and an error condition related to a data
memory access occurs. The DSI exception is implemented as it is defined in the PowerPC Architecture
(OEA). In case of a TLB miss for a load, store, or cache operation, a DSI exception is taken if the resulting
hardware table search causes a page fault.

On 750CL, a DSI exception is taken when a load or store is attempted to a direct-store segment
(SR[T]=1). In 750CL, a floating-point load or store to a direct-store segment causes a DSI exception rather
than an alignment exception, as specified by the PowerPC Architecture.
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750CL also implements the data address breakpoint facility, which is defined as optional in the PowerPC
Architecture and is supported by the optional data address breakpoint register (DABR). Although the architec-
ture does not strictly prescribe how this facility must be implemented, 750CL follows the recommendations
provided by the architecture and described in the Section 2 Programming Model on page 53 and Chapter 6,
“Exceptions”in the PowerPC Microprocessor Family: The Programming Environments manual.

4.5.4 1SI Exception (0x00400)

An ISl exception occurs when no higher priority exception exists and an attempt to fetch the next instruction
fails. This exception is implemented as it is defined by the PowerPC Architecture (OEA), and is taken for the
following conditions:

* The effective address cannot be translated.

* The fetch access is to a no-execute segment (SR[N] = 1).
* The fetch access is to guarded storage and MSR[IR] = 1.
* The fetch access is to a segment for which SR[T] is set.

* The fetch access violates memory protection.

When an ISI exception is taken, instruction fetching resumes at offset 0x00400 from the physical base
address indicated by MSR][IP].

4.5.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt signal (INT). The
INT signal is expected to remain asserted until 750CL takes the external interrupt exception. If INT is negated
early, recognition of the interrupt request is not guaranteed. After 750CL begins execution of the external
interrupt handler, the system can safely negate the INT. When 750CL detects assertion of INT, it stops
dispatching and waits for all pending instructions to complete. This allows any instructions in progress that
need to take an exception to do so before the external interrupt is taken. After all instructions have vacated
the completion buffer, 750CL takes the external interrupt exception as defined in the PowerPC Architecture
(OEA).

An external interrupt may be delayed by other higher priority exceptions or if MSR[EE] is cleared when the
exception occurs. Register settings for this exception are described in Chapter 6, “Exceptions” in the
PowerPC Microprocessor Family: The Programming Environments manual.

When an external interrupt exception is taken, instruction fetching resumes at offset 0x00500 from the phys-
ical base address indicated by MSR][IP].

4.5.6 Alignment Exception (0x00600)

750CL implements the alignment exception as defined by the PowerPC Architecture (OEA). An alignment
exception is initiated when any of the following occurs:

* The operand of a floating-point load or store is not word-aligned.

* The operand of Imw, stmw, lwarx, or stwex. is not word-aligned.

* The operand of dcbz or debz_l is in a page which is write-through or cache-inhibited.
* An attempt is made to execute dcbz or decbz_| when the data cache is disabled.

* An eciwx or ecowx is not word-aligned.
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* A multiple or string access is attempted with MSR[LE] set.

Note: In 750CL, the paired-single quantization load or store generates an alignment exception if the operand
is not word-aligned when the corresponding GQRn[LD_TYPE] or GQRn[ST_TYPE] are type 0 and does not
generate an alignment exception when the corresponding GQRn[LD_TYPE] or GQRn[ST_TYPE] are 4, 5, 6
or 7. Also, a floating-point load or store to a direct-store segment causes a DSI exception rather than an align-
ment exception, as specified by the PowerPC Architecture. For more information, see Section 4.5.3 DSI
Exception (0x00300).

4.5.7 Program Exception (0x00700)

750CL implements the program exception as it is defined by the PowerPC Architecture (OEA). A program
exception occurs when no higher priority exception exists and one or more of the exception conditions
defined in the OEA occur.

750CL invokes the system illegal instruction program exception when it detects any instruction from the illegal
instruction class. 750CL fully decodes the special-purpose register (SPR) field of the instruction. If an unde-
fined SPR is specified, a program exception is taken.

The UISA defines mtspr and mfspr with the record bit (Rc) set as causing a program exception or giving a
boundedly-undefined result. In 750CL, the appropriate condition register (CR) should be treated as unde-
fined. Likewise, the PowerPC Architecture states that the Floating Compared Unordered (fempu) or Floating
Compared Ordered (fempo) instruction with the record bit set can either cause a program exception or
provide a boundedly-undefined result. In the 750CL, a BF field in an instruction encoding for these cases is
considered undefined.

The 750CL does not support either of the two floating-point imprecise modes supported by the PowerPC
Architecture. Unless exceptions are disabled (MSR[FEOQ] = MSR[FE1] = 0), all floating-point exceptions are
treated as precise.

When a program exception is taken, instruction fetching resumes at offset 0x00700 from the physical base
address indicated by MSR[IP]. Chapter 6, “Exceptions” in the PowerPC Microprocessor Family: The
Programming Environments manual describes register settings for this exception.

4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC Architecture. A floating-
point unavailable exception occurs when no higher priority exception exists, an attempt is made to execute a
floating-point instruction (including floating-point load, store, or move instructions), and the floating-point
available bit in the MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions” in the PowerPC Microprocessor Family: The Programming Environments manual.

When a floating-point unavailable exception is taken, instruction fetching resumes at offset 0x00800 from the
physical base address indicated by MSR][IP].
4.5.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in 750CL as it is defined by the PowerPC Architecture. The
decrementer exception occurs when no higher priority exception exists, a decrementer exception condition
occurs (for example, the decrementer register has completed decrementing), and MSR[EE] = 1. In 750CL,
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the decrementer register is decremented at one fourth the bus clock rate. Register settings for this exception
are described in Chapter 6, “Exceptions” in the PowerPC Microprocessor Family: The Programming Environ-
ments manual.

When a decrementer exception is taken, instruction fetching resumes at offset 0x00900 from the physical
base address indicated by MSR]IP].

4.5.10 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. In 750CL, the system call
exception is implemented as it is defined in the PowerPC Architecture. Register settings for this exception are
described in Chapter 6, “Exceptions” in the PowerPC Microprocessor Family: The Programming Environ-
ments manual.

When a system call exception is taken, instruction fetching resumes at offset 0x00C00 from the physical base
address indicated by MSR][IP].

4.5.11 Trace Exception (0x00D00)

The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently completing instruction is a
branch. Each instruction considered during trace mode completes before a trace exception is taken.

Implementation Note—750CL processor diverges from the PowerPC Architecture in that it does not take
trace exceptions on the isync instruction.

When a trace exception is taken, instruction fetching resumes as offset 0x00DO0O0 from the base address indi-
cated by MSRJIP].

4.5.12 Floating-Point Assist Exception (0x00E00)

The optional floating-point assist exception defined by the PowerPC Architecture is not implemented in
750CL.

4.5.13 Performance Monitor Interrupt (0x00F00)

750CL microprocessor provides a performance monitor facility to monitor and count predefined events such
as processor clocks, misses in either the instruction cache or the data cache, instructions dispatched to a
particular execution unit, mispredicted branches, and other occurrences. The count of such events can be
used to trigger the performance monitor exception. The performance monitor facility is not defined by the
PowerPC Architecture.

The performance monitor can be used for the following situations:

* To increase system performance with efficient software, especially in a multiprocessing system. Memory
hierarchy behavior must be monitored and studied to develop algorithms that schedule tasks (and per-
haps partition them) and that structure and distribute data optimally.

¢ To help system developers bring up and debug their systems.

The performance monitor uses the following SPRs:

¢ The performance monitor counter registers (PMC1-PMC4) are used to record the number of times a cer-
tain event has occurred. UPMC1-UPMC4 provide user-level read access to these registers.
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¢ The monitor mode control registers (MMCRO-MMCR1) are used to enable various performance monitor
interrupt functions. UMMCRO-UMMCRT1 provide user-level read access to these registers.

* The sampled instruction address register (SIA) contains the effective address of an instruction executing
at or around the time that the processor signals the performance monitor interrupt condition. The USIA
register provides user-level read access to the SIA.

Table 4-12 lists register settings when a performance monitor interrupt exception is taken.

Table 4-12. Performance Monitor Interrupt Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next if no exception
conditions were present.
0 Loaded with equivalent MSR bits
1-4 Cleared
SRR1 5-9 Loaded with equivalent MSR bits

10-15 Cleared
16-31 Loaded with equivalent MSR bits

POW 0 FP 0 BE © DR 0
L  — ME  — FE1 0 PM 0
MSR EE 0 FEO 0 P — RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

As with other PowerPC exceptions, the performance monitor interrupt follows the normal PowerPC exception
model with a defined exception vector offset (0xO0F00). The priority of the performance monitor interrupt lies
between the external interrupt and the decrementer interrupt (see Table 4-3). The contents of the SIA are
described in Section 2.1.2.4 Hardware Implementation-Dependent Register 2. The performance monitor is
described in Section 11 Performance Monitor on page 335.

4.5.14 Instruction Address Breakpoint Exception (0x01300)

An instruction address breakpoint interrupt occurs when the following conditions are met:

¢ The instruction breakpoint address IABR[0-29] matches EA[0-29] of the next instruction to complete in
program order. The instruction that triggers the instruction address breakpoint exception is not executed
before the exception handler is invoked.

¢ The translation enable bit (IABR[TE]) matches MSR[IR].

* The breakpoint enable bit (IABR[BE]) is set. The address match is also reported to the JTAG/COP block,
which may subsequently generate a soft or hard reset. The instruction tagged with the match does not
complete before the breakpoint exception is taken.

Table 4-13 lists register settings when an instruction address breakpoint exception is taken.
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Table 4-13. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next if no exception
conditions were present.
0 Loaded with equivalent MSR bits
1-4 Cleared
SRR1 5-9 Loaded with equivalent MSR bits

10-15 Cleared
16-31 Loaded with equivalent MSR bits

POW 0 FP 0 BE © DR 0
L  — ME  — FE1 0 PM 0
MSR EE 0 FEO 0 IP — RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

750CL requires that an mtspr to the IABR be followed by a context-synchronizing instruction. 750CL cannot
generate a breakpoint response for that context-synchronizing instruction if the breakpoint is enabled by the
mtspr(IABR) immediately preceding it. 750CL also cannot block a breakpoint response on the context-
synchronizing instruction if the breakpoint was disabled by the mtspr(lABR) instruction immediately
preceding it. The format of the IABR register is shown in Section 2.1.2.1 Instruction Address Breakpoint
Register (IABR).

When an instruction address breakpoint exception is taken, instruction fetching resumes as offset 0x01300
from the base address indicated by MSR][IP].

4.5.15 System Management Interrupt (0x01400)

The 750CL implements a system management interrupt exception, which is not defined by the PowerPC
Architecture. The system management exception is very similar to the external interrupt exception and is
particularly useful in implementing the nap mode. It has priority over an external interrupt (see Table 4-3 on
page 161), and it uses a different vector in the exception table (offset 0x01400).

Table 4-14 lists register settings when a system management interrupt exception is taken.

Table 4-14. System Management Interrupt Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next if no exception
conditions were present.

0 Loaded with equivalent MSR bits.
1:4 Cleared.

SRR1 5:9 Loaded with equivalent MSR bits.
10:15 Cleared.
16:31 Loaded with equivalent MSR bits.

POW 0 FP 0 BE 0 DR 0
L  — ME  — FE1 0 PM 0
MSR EE 0 FEO 0 P — RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE
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Like the external interrupt, a system management interrupt is signaled to the 750CL by the assertion of an
input signal. The system management interrupt signal (SMI) is expected to remain asserted until the interrupt
is taken. If SMI is negated early, recognition of the interrupt request is not guaranteed. After the 750CL begins
execution of the system management interrupt handler, the system can safely negate SMI. After the assertion
of SMI is detected, the 750CL stops dispatching instructions and waits for all pending instructions to
complete. This allows any instructions in progress that need to take an exception to do so before the system
management interrupt is taken.

When a system management interrupt exception is taken, instruction fetching resumes at offset 0x01400
from the base address indicated by MSR][IP].

4.5.16 Thermal-Management Interrupt Exception (0x01700)

Note: The TMI is not supported in the 750CL.

A thermal-management interrupt (TMI) is generated when the junction temperature crosses a threshold
programmed in either THRM1 or THRM2. The exception is enabled by the thermal-management interrupt
enable (TIE) bit of either THRM1 or THRM2, and can be masked by setting MSR[EE].

Table 4-15 lists register settings when a thermal-management interrupt exception is taken.

Table 4-15. Thermal-Management Interrupt Exception—Register Settings

Register Setting Description

Set to the effective address of the instruction that the processor would have attempted to execute next if no exception

SRRO conditions were present.
0 Loaded with equivalent MSR bits
1:4 Cleared

SRR1 5:9 Loaded with equivalent MSR bits
10:15 Cleared
16:31 Loaded with equivalent MSR bits

POW 0 FP 0 BE

0 DR 0

ILE  — ME  — FE1 0 PM 0

MSR EE 0 FEO O P — Rl 0
PR 0 SE 0 IR 0 LE Set to value of ILE

The thermal-management interrupt is similar to the system management and external interrupt. The 750CL
requires the next instruction in program order to complete or take an exception, blocks completion of any
following instructions, and allows the completed store queue to drain. Any exceptions encountered in this
process are taken first, and the thermal-management interrupt exception is delayed until a recoverable halt is
achieved, at which point the 750CL saves the machine state, as shown in Table 4-15. When a thermal-
management interrupt exception is taken, instruction fetching resumes at offset 0x01700 from the base
address indicated by MSR][IP].

Section 10 Power and Thermal Management on page 329 gives the details about thermal management.

4.5.17 Data Address Breakpoint Exception

The Data Address Breakpoint Register (DABR) is a Special Purpose Register that can cause a DSI. When
enabled, data addresses are compared with an effective address that is stored in the DABR (bits 0:28). The
granularity of these compares is a double-word. Bit 29 is the translation enable bit and is compared with the
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MSR[DR] bit. Bit 30 is a store enable. Bit 31 is a load enable. The DABR is enabled by setting either the data
store enable (DW) or data read enabled (DR) bit. The format of the DABR register is shown in
Section 4.5.17.1.

4.5.17.1 Data Address Breakpoint Register (DABR)
For a full description of this register, see the PowerPC Microprocessor Family: The Programming Environ-
ments manual.

D
DAB BT W DR

v vy

/0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28|29[30|31|

Bits Field Name Description
0:28 DAB Double-word address to be compared.

29 BT Translation enabled.

30 DW Data store enabled.

31 DR Data read enabled.

4.5.18 Soft Stops

Both trace and breakpoint exception conditions generate a soft stop instead of an exception if soft stop has
been enabled by the JTAG/COP logic. If trace and instruction breakpoint conditions occur simultaneously,
instruction breakpoint takes priority over trace in both the exception and soft stop enabled cases.

A soft stop can also be generated with a request from the common on-chip processor (COP). This request is
treated like an external exception, except that it is nonmaskable and generates a soft stop instead of an
exception.

If soft stop is enabled, only one soft stop is generated before completion of an instruction with an IABR match.
This holds true if a soft stop is generated before that instruction for any other reason, such as trace mode on
for the preceding instruction or a COP soft stop request.

4.5.19 Timer Facilities

At POR, the 970 initializes the Time Base and Decrementer Registers to the following values:

e Time Base Upper Register (TBU) = 0x‘0000 0000’
e Time Base Lower Register (TBL) = 0x‘0000 0000’
¢ Decrementer Register (DEC) = Ox‘FFFF FFFF’

4.5.20 External Access Instructions

The 970 implements the eciwx and ecowx instructions. Executing these instructions while MSR[DR] =0 is
considered a programming error, and the physical address on the bus is undefined. Executing these instruc-
tions to a direct-store (T = 1) segment causes a data-storage exception (DSI).

The 970 implements the External Access Register (EAR) to support the external access instructions. Bit 0
implements the Enable bit. Bits 1 to 25 are reserved. Bits 26 and 27 are not implemented and are reserved.
Bits 28 - 31 are the implemented bits of the Resource ID (RID).
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5. Memory Management

This chapter describes the 750CL microprocessor’s implementation of the memory management unit (MMU)
specifications provided by the operating environment architecture (OEA) for PowerPC® processors. The
primary function of the MMU in a PowerPC processor is the translation of logical (effective) addresses to
physical addresses (referred to as real addresses in the architecture specification) for memory accesses and
I/O accesses (I/0O accesses are assumed to be memory-mapped). In addition, the MMU provides access
protection on a segment, block, or page basis. This chapter describes the specific hardware used to imple-
ment the MMU model of the OEA in 750CL. Refer to Chapter 7, “Memory Management,” in the PowerPC
Microprocessor Family: The Programming Environments manual for a complete description of the conceptual
model. Note that 750CL does not implement the optional direct-store facility and it is not likely to be supported
in future devices.

Two general types of memory accesses generated by PowerPC processors require address translation—
instruction accesses and data accesses generated by load and store instructions. Generally, the address
translation mechanism is defined in terms of the segment descriptors and page tables PowerPC processors
use to locate the effective-to-physical address mapping for memory accesses. The segment information
translates the effective address to an interim virtual address, and the page table information translates the
interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as on-chip segment
registers on 32-bit implementations (such as 750CL). In addition, two translation lookaside buffers (TLBs) are
implemented on the 750CL to keep recently-used page address translations on-chip. Although the PowerPC
OEA describes one MMU (conceptually), 750CL hardware maintains separate TLBs and table search
resources for instruction and data accesses that can be performed independently (and simultaneously).
Therefore, the 750CL is described as having two MMUSs, one for instruction accesses (IMMU) and one for
data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores the available block
address translations on-chip. BAT array entries are implemented as pairs of BAT registers that are accessible
as supervisor special-purpose registers (SPRs). There are separate instruction and data BAT mechanisms,
and in 750CL, they reside in the instruction and data MMUs, respectively.

The MMUs, together with the exception processing mechanism, provide the necessary support for the oper-
ating system to implement a paged virtual-memory environment and for enforcing protection of designated
memory areas.

Exception processing is described in Section 4 Exceptions on page 157 specifically, Section 4.3 Exception
Processing describes the MSR, which controls some of the critical functionality of the MMUs.

5.1 MMU Overview

750CL implements the memory management specification of the PowerPC OEA for 32-bit implementations.
Thus, it provides 4 GB of effective address space accessible to supervisor and user programs, with a 4 KB
page size and 256 MB segment size. In addition, the MMUs of 32-bit PowerPC processors use an interim
virtual address (52 bits) and hashed page tables in the generation of 32-bit physical addresses. PowerPC
processors also have a BAT mechanism for mapping large blocks of memory. Block sizes range 128 KB -
256 MB and are software programmable.
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Basic features of 750CL MMU implementation defined by the OEA are as follows:

* Support for real addressing mode—Effective-to-physical address translation can be disabled separately
for data and instruction accesses.

Block address translation—Each of the BAT array entries (8 IBAT entries and 8 DBAT entries) provides a
mechanism for translating blocks as large as 256 MB from the 32-bit effective address space into the
physical memory space. This can be used for translating large address ranges whose mappings do not
change frequently.

Segmented address translation—The 32-bit effective address is extended to a 52-bit virtual address by
substituting 24 bits of upper address bits from the segment register, for the 4 upper bits of the EA, which
are used as an index into the segment register file. This 52-bit virtual address space is divided into 4 KB
pages, each of which can be mapped to a physical page.

750CL also provides the following features that are not required by the PowerPC Architecture™:

¢ Separate translation lookaside buffers (TLBs)—The 128-entry, two-way set-associative ITLBs and DTLBs

keep recently-used page address translations on-chip.

Table search operations performed in hardware—The 52-bit virtual address is formed and the MMU
attempts to fetch the PTE, which contains the physical address, from the appropriate TLB on-chip. If the
translation is not found in a TLB (that is, a TLB miss occurs), the hardware performs a table search oper-
ation (using a hashing function) to search for the PTE.

TLB invalidation—750CL implements the optional TLB Invalidate Entry (tlbie) and TLB Synchronize (tlb-
sync) instructions, which can be used to invalidate TLB entries. For more information on the tlbie and
tibsync instructions, see Section 5.4.3.2.

Figure 5-1 summarizes 750CL MMU features, including those defined by the PowerPC Architecture (OEA)
for 32-bit processors and those specific to 750CL.

Table 5-1. MMU Feature Summary (Page 1 of 2)

Architecturally Defined/

Feature Category 750CL-Specific Feature

2%2 pytes of effective address

Address ranges

Page size

Segment size

Block address translation

Memory protection

Page history

Memory Management
Page 182 of 619

Architecturally defined

Architecturally defined

Architecturally defined

Architecturally defined

Architecturally defined

Architecturally defined

252 pytes of virtual address

2%2 pytes of physical address

4 KB

256 MB

Range of 128 KB - 256 MB sizes

Implemented with IBAT and DBAT registers
in BAT array

Segments selectable as no-execute

Pages selectable as user/supervisor and
read-only or guarded

Blocks selectable as user/supervisor and
read-only or guarded

Referenced and changed bits defined and
maintained
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Table 5-1. MMU Feature Summary (Page 2 of 2)

Architecturally Defined/

Feature Category 750CL-Specific Feature

Translations stored as PTEs in hashed page

tables in memory
Page address translation Architecturally defined

Page table size determined by mask in
SDR1 register

Instructions for maintaining TLBs (tlbie and

Architecturally defined tibsync instructions in 750CL)

TLBs 128-entry, two-way set associative ITLB
750CL-specific 128-entry, two-way set associative DTLB
LRU replacement algorithm

Stored as segment registers on-chip (two

Segment descriptors Architecturally defined identical copies maintained)

750CL-specific 750CL performs the table search operation

Page table search support in hardware.

5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a load, store, branch, or cache instruction, and when it fetches the next instruction. The effective
address is translated to a physical address according to the procedures described in Chapter 7, “Memory
Management” in the PowerPC Microprocessor Family: The Programming Environments manual, augmented
with information in this chapter. The memory subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3 Effective Address Calculation.

5.1.2 MMU Organization

Figure 5-1 on page 185 shows the conceptual organization of a PowerPC MMU in a 32-bit implementation;
note that it does not describe the specific hardware used to implement the memory management function for
a particular processor. Processors may optionally implement on-chip TLBs, hardware support for the auto-
matic search of the page tables for PTEs, and other hardware features (invisible to the system software) not
shown.

750CL maintains two on-chip TLBs with the following characteristics:
* 128 entries, two-way set associative (64 x 2), LRU replacement
* Data TLB supports the DMMU; instruction TLB supports the IMMU
e Hardware TLB update

* Hardware update of referenced (R) and changed (C) bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of a translation table
search operation.

Figure 5-2 on page 186 and Figure 5-3 on page 187 show the conceptual organization of 750CL’s instruction
and data MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated by the processor
for sequential instruction fetches and addresses that correspond to a change of program flow. Data
addresses shown in Figure 5-3 are generated by load, store, and cache instructions.

05_750CL.fm.1.0 Memory Management
August 8, 2007 Page 183 of 619



User’'s Manual

IBM 750CL RISC Microprocessor Preliminary

As shown in the figures, after an address is generated, the high-order bits of the effective address, EA[0—19]
(or a smaller set of address bits, EA[0—n], in the cases of blocks), are translated into physical address bits
PA[0-19]. The low-order address bits, A[20—31], are untranslated and are therefore identical for both effective
and physical addresses. After translating the address, the MMUs pass the resulting 32-bit physical address to
the memory subsystem. The MMUs record whether the translation is for an instruction or data access,
whether the processor is in user or supervisor mode and, for data accesses, whether the access is a load or
a store operation.

The MMUs use this information to appropriately direct the address translation and to enforce the protection
hierarchy programmed by the operating system. Section 4.3 Exception Processing describes the MSR, which
controls some of the critical functionality of the MMUs.

The figures show how address bits A[20—-26] index into the on-chip instruction and data caches to select a
cache set. The remaining physical address bits are then compared with the tag fields (comprised of bits
PA[0—19]) of the two selected cache blocks to determine if a cache hit has occurred. In the case of a cache
miss on 750CL, the instruction or data access is then forwarded to the L2 tags to check for an L2 cache hit. In
case of a miss the access is forwarded to the bus interface unit which initiates an external memory access.
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Figure 5-1. MMU Conceptual Block Diagram
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Figure 5-2. PowerPC 750CL Microprocessor IMMU Block Diagram
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5.1.3 Address Translation Mechanisms
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PowerPC processors support the following three types of address translation:

¢ Page address translation—translates the page frame address for a 4 KB page size

» Block address translation—translates the block number for blocks that range in size of 128 KB - 256 MB.
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* Real addressing mode address translation—when address translation is disabled, the physical address is
identical to the effective address.

Figure 5-4 shows the three address translation mechanisms provided by the MMUs. The segment descriptors
shown in the figure control the page address translation mechanism. When an access uses page address
translation, the appropriate segment descriptor is required. In 32-bit implementations, the appropriate
segment descriptor is selected from the 16 on-chip segment registers by the four highest-order effective
address bits.

A control bit in the corresponding segment descriptor then determines if the access is to memory (memory-
mapped) or to the direct-store interface space. Note that the direct-store interface was present in the architec-
ture only for compatibility with existing 1/0 devices that used this interface. However, it is being removed from
the architecture, and 750CL does not support it. When an access is determined to be to the direct-store inter-
face space, 750CL takes a data-storage exception (DSI) exception if it is a data access (see Section 4.5.3
DSI Exception (0x00300)), and takes an ISI exception if it is an instruction access (see Section 4.5.4 IS/
Exception (0x00400)).

For memory accesses translated by a segment descriptor, the interim virtual address is generated using the
information in the segment descriptor. Page address translation corresponds to the conversion of this virtual
address into the 32-bit physical address used by the memory subsystem. In most cases, the physical address
for the page resides in an on-chip TLB and is available for quick access. However, if the page address trans-
lation misses in the on-chip TLB, the MMU causes a search of the page tables in memory (using the virtual
address information and a hashing function) to locate the required physical address.

Because blocks are larger than pages, there are fewer upper-order effective address bits to be translated into
physical address bits (more low-order address bits (at least 17) are untranslated to form the offset into a
block) for block address translation. Also, instead of segment descriptors and a TLB, block address transla-
tions use the on-chip BAT registers as a BAT array. If an effective address matches the corresponding field of
a BAT register, the information in the BAT register is used to generate the physical address; in this case, the
results of the page translation (occurring in parallel) are ignored.
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Figure 5-4. Address Translation Types
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When the processor generates an access, and the corresponding address translation enable bit in MSR is
cleared, the resulting physical address is identical to the effective address and all other translation mecha-
nisms are ignored. Instruction address translation and data address translation are enabled by setting
MSRJ[IR] and MSR[DR], respectively.

5.1.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMUs provide access protec-
tion of supervisor areas from user access and can designate areas of memory as read-only as well as no-
execute or guarded. Table 5-2 shows the protection options supported by the MMUs for pages.
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Table 5-2. Access Protection Options for Pages

User Read Supervisor Read
Option User Write Supervisor Write

I-Fetch Data I-Fetch Data
Supervisor-only — — — b b b
Supervisor-only-no-execute — — — — b b
Supervisor-write-only b b — b b b
Supervisor-write-only-no-execute — b — — b b
Both (user/supervisor) b b b b b b
Both (user-/supervisor) no-execute — b b — b b
Both (user-/supervisor) read-only b b — b b —
Both (user/supervisor) read-only-no-execute — b — — b —

D Access permitted
— Protection violation

The no-execute option provided in the segment register lets the operating system program determine
whether instructions can be fetched from an area of memory. The remaining options are enforced based on a
combination of information in the segment descriptor and the page table entry. Thus, the supervisor-only
option allows only read and write operations generated while the processor is operating in supervisor mode
(MSR[PR] = 0) to access the page. User accesses that map into a supervisor-only page cause an exception.

Finally, a facility in the VEA and OEA allows pages or blocks to be designated as guarded, preventing out-of-
order accesses that may cause undesired side effects. For example, areas of the memory map used to
control I/0 devices can be marked as guarded so accesses do not occur unless they are explicitly required by
the program.

For more information on memory protection, see “Memory Protection Facilities,” in Chapter 7, “Memory
Management,” in the PowerPC Microprocessor Family: The Programming Environments manual.

5.1.5 Page History Information

The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the page address
translation mechanism that can be used as history information relevant to the page. The operating system
can use these bits to determine which areas of memory to write back to disk when new pages must be allo-
cated in main memory. While these bits are initially programmed by the operating system into the page table,
the architecture specifies that they can be maintained either by the processor hardware (automatically) or by
some software-assist mechanism.

Implementation Note—When loading the TLB, 750CL checks the state of the changed and referenced bits
for the matched PTE. If the referenced bit is not set and the table search operation is initially caused by a load
operation or by an instruction fetch, 750CL automatically sets the referenced bit in the translation table. Simi-
larly, if the table search operation is caused by a store operation and either the referenced bit or the changed
bit is not set, the hardware automatically sets both bits in the translation table. In addition, when the address
translation of a store operation hits in the DTLB, 750CL checks the state of the changed bit. If the bit is not
already set, the hardware automatically updates the DTLB and the translation table in memory to set the
changed bit. For more information, see Section 5.4.1 Page History Recording.
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5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate effective
addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation Selection

When an instruction or data access is generated and the corresponding instruction or data translation is
disabled (MSR][IR] = 0 or MSR[DR] = 0), real addressing mode is used (physical address equals effective

address) and the access continues to the memory subsystem as described in Section 5.2 Real Addressing
Mode.

Table 5-5 shows the flow the MMUs use in determining whether to select real addressing mode, block
address translation, or the segment descriptor to select page address translation.

Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Effective Address
Generated

I-Access D-Access
Instruction /O\/Instruction Data\/o\ Data
Translation Disabled  Translation Enabled Translation Enabled Translation Disabled
(MSRJ[IR] = 0) (MSR[IR] =1) )

\T/ (MSR[DR] = 1) (MSR[DR] = 0

Perform Real

Addressing Mode
Translation

Perform Real

Addressing Mode
Translation

Compare Address with

Instruction or Data BAT
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BAT Array BAT Array (See The Programming
Miss Hit Environments Manual)

Perform Address

Translation with Seg-
ment Descriptor

Access

Access Permitted
(See Figure 5-6 on W

Protected
page 193)
Translate Address
( Access Faulted )

Continue Access
to Memory

Note: If the BAT array search results in a hit, the access is qualified with the appropriate protection bits. If the
access violates the protection mechanism, an exception (either ISI or DSI) is generated.
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5.1.6.2 Page Address Translation Selection

If address translation is enabled and the effective address information does not match a BAT array entry, the
segment descriptor must be located. When the segment descriptor is located, the T bit in the segment
descriptor selects whether the translation is to a page or to a direct-store segment as shown in Figure 5-6
General Flow of Page and Direct-Store Interface Address Translation.

For 32-bit implementations, the segment descriptor for an access is contained in one of 16 on-chip segment
registers; effective address bits EA[0-3] select one of the 16 segment registers.

Note that 750CL does not implement the direct-store interface, and accesses to these segments cause a DSI
or ISl exception. In addition, Figure 5-6 also shows the way in which the no-execute protection is enforced; if
the N bit in the segment descriptor is set and the access is an instruction fetch, the access is faulted as
described in Chapter 7, “Memory Management,” in the PowerPC Microprocessor Family: The Programming
Environments manual. Note that the figure shows the flow for these cases as described by the PowerPC
OEA, and so the TLB references are shown as optional. Because 750CL implements TLBs, these branches
are valid and are described in more detail throughout this chapter.
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Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation
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If SR[T] = 0, page address translation is selected. The information in the segment descriptor is then used to
generate the 52-bit virtual address. The virtual address is then used to identify the page address translation
information (stored as page table entries (PTEs) in a page table in memory). For increased performance,
750CL has two on-chip TLBs to cache recently-used translations on-chip.

If an access hits in the appropriate TLB, page translation succeeds and the physical address bits are
forwarded to the memory subsystem. If the required translation is not resident, the MMU performs a search of
the page table. If the required PTE is found, a TLB entry is allocated and the page translation is attempted
again. This time, the TLB is guaranteed to hit. When the translation is located, the access is qualified with the
appropriate protection bits. If the access causes a protection violation, either an ISI or DSI exception is gener-
ated.

If the PTE is not found by the table search operation, a page fault condition exists, and an ISI or DSI excep-
tion occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary

To complete any memory access, the effective address must be translated to a physical address. As speci-
fied by the architecture, an MMU exception condition occurs if this translation fails for one of the following
reasons:

* Page fault—there is no valid entry in the page table for the page specified by the effective address (and
segment descriptor) and there is no valid BAT translation.

¢ An address translation is found but the access is not allowed by the memory protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause either the ISI or the
DSI exception to be taken as shown in Table 5-3.

Table 5-3. Translation Exception Conditions (Page 1 of 2)

Condition Description Exception

| access: ISI exception

i i ; SRR1[1] =1
Page fault (no PTE found) No matching PTE found in page tables (and no matching

BAT array entry) D access: DSI exception

DSISR[1] =1

| access: ISI exception

Conditions described for block in “Block Memory Protec- SRR1[4] = 1

tion” in Chapter 7, “Memory Management,” in the Pow-
erPC Microprocessor Family: The Programming
Environments manual.”

Block protection violation
D access: DSI exception

DSISR[4] = 1

| access: ISI exception

Conditions described for page in “Page Memory Protec- SRR1[4] = 1

tion” in Chapter 7, “Memory Management,” in the Pow-
erPC Microprocessor Family: The Programming
Environments manual.

Page protection violation
D access: DSI exception

DSISR[4] =1
No-execute protection violation Attempt to fetch instruction when SR[N] = 1 ISt excepstlngln 3] = 1
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Table 5-3. Translation Exception Conditions (Page 2 of 2)

Condition Description Exception

Instruction fetch from direct-store seg- . . _ ISI exception
ment Attempt to fetch instruction when SR[T] =1 SRR1[3] =1

Data access to direct-store segment Attempt to perform load or store (including FP load or DSl exception
(including floating-point accesses) store) when SR[T] =1 DSISR[5] =1

Attempt to fetch instruction when MSR[IR] = 1 and either ISI exception
Instruction fetch from guarded memory ' matching xBAT[G] = 1, or no matching BAT entry and S
PTE[G] =1 RR1[3] =1

The state saved by the processor for each of these exceptions contains information that identifies the address
of the failing instruction. See Section 4 Exceptions on page 157 for a more detailed description of exception
processing.

In addition to the translation exceptions, there are other MMU-related conditions (some of them defined as
implementation-specific, and therefore not required by the architecture) that can cause an exception to occur.

These exception conditions map to processor exceptions as shown in Table 5-4. The only MMU exception
conditions that occur when MSR[DR] = 0 are those that cause an alignment exception for data accesses. For
more detailed information about the conditions that cause an alignment exception (in particular for
string/multiple instructions), see Section 4.5.6 Alignment Exception (0x00600) on page 174.

Note: Some exception conditions depend upon whether the memory area is set up as write-though (W = 1)
or cache-inhibited (I = 1).

These bits are described fully in “Memory/Cache Access Attributes,” in Chapter 5, “Cache Model and Memory
Coherency,” of the PowerPC Microprocessor Family: The Programming Environments manual.

Also refer to Section 4 Exceptions on page 157 and to Chapter 6, “Exceptions,” in the PowerPC Micropro-
cessor Family: The Programming Environments manual for a complete description of the SRR1 and DSISR
bit settings for these exceptions.

Table 5-4. Other MMU Exception Conditions for the 750CL Processor (Page 1 of 2)

Condition Description Exception
. _ _ dcbz or debz_lI instruction to write-through or Alignment exception (not required by
dcbz or debz_| with W =1 or =1 cache-inhibited segment or block architecture for this condition)

Reservation instruction to write-through segment or | DSI exception

Iwarx or stwex. with W =1 block DSISR[5] = 1

Iwarx, stwex., eciwx, or ecowx instruc- | Reservation instruction or external control instruc- | DSI exception
tion to direct-store segment tion when SRI[T] =1 DSISR[5] =1

Floating-point load or store to direct-store See data access to direct-store seg-

FP memory access when SR[T] =1

segment ment in Table 5-4.
Ié(r)re:: or store that results in a direct-store Does not oceur in 750CL Does not apply
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Table 5-4. Other MMU Exception Conditions for the 750CL Processor (Page 2 of 2)

Condition Description Exception

eciwx or ecowx attempted when external . . _ DSI exception
control facility disabled eciwx or ecowx attempted with EAR[E] =0 DSISR[11] = 1

Imw, stmw, Iswi, Iswx, stswi, or stswx | Imw, stmw, Iswi, Iswx, stswi, or stswx instruction

instruction attempted in little-endian mode | attempted while MSR[LE] = 1 Alignment exception

Translation enabled and a floating-point load/store
Operand misalignment stmw, stwex., Imw, lwarx, eciwx, or ecowx
instruction operand is not word-aligned

’ | Alignment exception (some of these
cases are implementation-specific)

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers allow the operating system to set up the block address translation areas
and the page tables in memory.

Note: Because the implementation of TLBs is optional, the instructions that refer to these structures are also
optional. However, as these structures serve as caches of the page table, the architecture specifies a soft-
ware protocol for maintaining coherency between these caches and the tables in memory whenever the
tables in memory are modified. When the tables in memory are changed, the operating system purges these
caches of the corresponding entries, allowing the translation caching mechanism to refetch from the tables
when the corresponding entries are required. Also note that 750CL implements all TLB-related instructions
except tlbia, which is treated as an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended that the software
that uses these instructions and registers be encapsulated into subroutines to minimize the impact of
migrating across the family of implementations.

Table 5-5 summarizes 750CL’s instructions that specifically control the MMU. For more detailed information
about the instructions, refer to Section 2 Programming Model on page 53 and Chapter 8, “Instruction Set,” in
the PowerPC Microprocessor Family: The Programming Environments manual.

Table 5-5. 750CL Microprocessor Instruction Summary—Control MMUs (Page 1 of 2)

Instruction Description

mtsr SR,rS Move to Segment Register

SR[SR#]¢<— rS
. Move to Segment Register Indirect
mtsrin rS,rB SRIrB[0—3]]<—rS
Move from Segment Register
misr rD,SR rD<—SR[SR#]
Note:

1. These instructions are defined by the PowerPC Architecture, but are optional.
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Table 5-5. 750CL Microprocessor Instruction Summary—Control MMUs (Page 2 of 2)

Instruction

mfsrin rD,rB

tibie rB!

tibsync'

Note:

Description

Move from Segment Register Indirect
rD<—SR[rB[0-3]]

TLB Invalidate Entry

For effective address specified by rB, TLB[V]¢—0

The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the instruction and data
TLBs simultaneously invalidating four TLB entries. The index corresponds to bits 14—19 of the EA.

Software must ensure that instruction fetches or memory references to the virtual pages specified by the tlbie
instruction have been completed prior to executing the tlbie instruction.

TLB Synchronize

Synchronizes the execution of all other tlbie instructions in the system. In 750CL, when the TLBISYNC signal is
negated, instruction execution may continue or resume after the completion of a tlbsync instruction. When the
TLBISYNC signal is asserted, instruction execution stops after the completion of a tlbsync instruction.

1. These instructions are defined by the PowerPC Architecture, but are optional.

Table 5-6 summarizes the registers that the operating system uses to program 750CL’s MMUs. These regis-
ters are accessible to supervisor-level software only.

These registers are described in Section 2 Programming Model on page 53.
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Table 5-6. 750CL Microprocessor MMU Registers

Register Description

The sixteen 32-bit segment registers are present only in 32-bit implementations of the PowerPC
Architecture. The fields in the segment register are interpreted differently depending on the value of
bit 0. The segment registers are accessed by the mtsr, mtsrin, mfsr, and mfsrin instructions.

Segment registers
(SR0O-SR15)

BAT registers

(IBATO?J—IBAT?U, There are 32 BAT registers, organized as 8 pairs of instruction BAT registers (IBATOU-IBAT7U

IBATOL-IBAT7L paired with IBATOL-IBAT7L) and 8 pairs of data BAT registers (DBATOU-DBAT7U paired with
’ DBATOL-DBAT?7L). The BAT registers are defined as 32-bit registers in 32-bit implementations.

DBATOU-DBAT7U, These are special-purpose registers that are accessed by the mtspr and mfspr instructions.

and DBATOL-DBAT7L)

The SDRH1 register specifies the variables used in accessing the page tables in memory. SDR1 is
SDR1 defined as a 32-bit register for 32-bit implementations. This special-purpose register is accessed by
the mtspr and mfspr instructions.

5.2 Real Addressing Mode

If address translation is disabled (MSRJ[IR] = 0 or MSR[DR] = 0) for a particular access, the effective address
is treated as the physical address and is passed directly to the memory subsystem as described in Chapter 7,
“Memory Management,” in the PowerPC Microprocessor Family: The Programming Environments manual.

Note that the default WIMG bits (0b0011) cause data accesses to be considered cacheable (I = 0) and thus
load and store accesses are weakly ordered. This is the case even if the data cache is disabled in the HIDO
register (as it is out of hard reset). If I/O devices require load and store accesses to occur in strict program
order (strongly ordered), translation must be enabled so that the corresponding | bit can be set. Note also,
that the G bit must be set to ensure that the accesses are strongly ordered. For instruction accesses, the
default memory access mode bits (WIMG) are also 0b0011. Memory coherency is not required. Systems with
multiple 750 processors must use software to maintain memory coherency when modified data and instruc-
tions share the same cache block. That is, instruction accesses are considered cacheable (I = 0), and the
memory is guarded. Again, instruction accesses are considered cacheable even if the instruction cache is
disabled in the HIDO register (as it is out of hard reset). The W and M bits have no effect on the instruction
cache.

For information on the synchronization requirements for changes to MSR[IR] and MSR[DR], refer to

Section 2.3.2.4 Synchronization in this manual and the section “Synchronization Requirements for Special
Registers and for Lookaside Buffers” in Chapter 2 of the PowerPC Microprocessor Family: The Programming
Environments manual.

5.3 Block Address Translation

The block address translation (BAT) mechanism in the OEA provides a way to map ranges of effective
addresses larger than a single page into contiguous areas of physical memory. Such areas can be used for
data that is not subject to normal virtual-memory handling (paging), such as a memory-mapped display buffer
or an extremely large array of numerical data.

Block address translation in 750CL is described in Chapter 7, “Memory Management,” in the PowerPC Micro-
processor Family: The Programming Environments manual for 32-bit implementations.
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The 750CL has an enhanced BAT facility containing twice the number of registers described in the OEA.
These additional registers, IBAT4U-IBAT7U, IBAT4L-IBAT7L, DBAT4U-DBAT7U and DBAT4L-DBAT7L, are
available when HID4[SBE] = '1'. In this enhanced mode, up to eight blocks of memory can be mapped for
instructions and up to eight blocks of memory can be mapped for data, using the BAT facility. Figure 2-1
shows these additional BAT registers with their corresponding SPR numbers.

Implementation Note—750CL’s BAT registers are not initialized by the hardware after the power-up or reset
sequence. Consequently, all valid bits in both instruction and data BATs must be cleared before setting any
BAT for the first time. If the additional four IBAT and four DBAT register pairs are enabled, or planned to be
enabled, they should also be cleared at the same time. If these additional registers will not be enabled, they
need not be cleared. The BATs must be initialized whether or not address translation is enabled. Software
must avoid overlapping blocks while updating a BAT or areas. Even if translation is disabled, multiple BAT
hits are treated as programming errors and can corrupt the BAT registers and produce unpredictable results.
Always rezero during the reset ISR. After zeroing all BATs, set them (in order) to the desired values. HRESET
disorders the BATs. SRESET does not.

5.4 Memory Segment Model

750CL adheres to the memory segment model as defined in Chapter 7, “Memory Management,” in the
PowerPC Microprocessor Family: The Programming Environments manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256 MB segments. This segmented memory model provides a
way to map 4 KB pages of effective addresses to 4 KB pages in physical memory (page address translation),
while providing the programming flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address translation
(BAT) mechanism described Section 5.3 Block Address Translation. If not, the translation proceeds in the
following two steps:

1. From effective address to the virtual address (which never exists as a specific entity but can be consid-
ered to be the concatenation of the virtual page number and the byte offset within a page), and

2. From virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that are specific to
750CL.

5.4.1 Page History Recording

Referenced (R) and changed (C) bits in each PTE keep history information about the page. They are main-
tained by a combination of 750CL’s table search hardware and the system software. The operating system
uses this information to determine which areas of memory to write back to disk when new pages must be allo-
cated in main memory. Referenced and changed recording is performed only for accesses made with page
address translation and not for translations made with the BAT mechanism or for accesses that correspond to
direct-store (T = 1) segments. Furthermore, R and C bits are maintained only for accesses made while
address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In 750CL, the referenced and changed bits are updated as follows:
e For TLB hits, the C bit is updated according to Table 5-7.

* For TLB misses, when a table search operation is in progress to locate a PTE. The R and C bits are
updated (set, if required) to reflect the status of the page based on this access.
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Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

R and C bits in TLB Entry Processor Action
00 Combination does not occur
01 Combination does not occur

Read: No special action

10 ) o .
Write: 750CL initiates a table search operation to update C.

11 No special action for read or write

The table shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is what causes the
processor to update the C bit in the PTE (the R bit is assumed to be set in the page tables if there is a TLB
hit). Therefore, when software clears the R and C bits in the page tables in memory, it must invalidate the TLB
entries associated with the pages whose referenced and changed bits were cleared.

The dcbt and dcbtst instructions can execute if there is a TLB/BAT hit or if the processor is in real
addressing mode. In case of a TLB or BAT miss, these instructions are treated as no-ops; they do not initiate
a table search operation and they do not set either the R or C bits.

As defined by the PowerPC Architecture, the referenced and changed bits are updated as if address transla-
tion were disabled (real addressing mode). If these update accesses hit in the data cache, they are not seen
on the external bus. If they miss in the data cache, they are performed as typical cache line fill accesses on
bus (assuming the data cache is enabled).

5.4.1.1 Referenced Bit

The referenced (R) bit of a page is located in the PTE in the page table. Every time a page is referenced (with
a read or write access) and the R bit is zero, 750CL sets the R bit in the page table. The OEA specifies that
the referenced bit may be set immediately, or the setting may be delayed until the memory access is deter-
mined to be successful. Because the reference to a page is what causes a PTE to be loaded into the TLB, the
referenced bit in all TLB entries is effectively always set. The processor never automatically clears the refer-
enced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At times, the referenced
bit may be set although the access was not logically required by the program or even if the access was
prevented by memory protection. Examples of this in PowerPC systems include the following:

¢ Fetching of instructions not subsequently executed
* A memory reference caused by a speculatively executed instruction that is mispredicted
¢ Accesses generated by an Iswx or stswx instruction with a zero length

¢ Accesses generated by an stwex. instruction when no store is performed because a reservation does not
exist

¢ Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit

The changed bit of a page is located both in the PTE in the page table and in the copy of the PTE loaded into
the TLB (if a TLB is implemented, as in 750CL). Whenever a data store instruction is executed successfully, if
the TLB search (for page address translation) results in a hit, the changed bit in the matching TLB entry is
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checked. If it is already set, it is not updated. If the TLB changed bit is 0, 750CL initiates the table search
operation to set the C bit in the corresponding PTE in the page table. 750CL then reloads the TLB (with the C
bit set).

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store operation is
allowed by the page memory protection mechanism and the store is guaranteed to be in the execution path
(unless an exception, other than those caused by the sc, rfi, or trap instructions, occurs). Furthermore, the
following conditions may cause the C bit to be set:

¢ The execution of an stwex. instruction is allowed by the memory protection mechanism but a store oper-
ation is not performed.

¢ The execution of an stswx instruction is allowed by the memory protection mechanism but a store opera-
tion is not performed because the specified length is zero.

¢ The store operation is not performed because an exception occurs before the store is performed.

Again, note that although the execution of the debt and dcbtst instructions may cause the R bit to be set,
they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by PowerPC processors for
maintaining the referenced and changed bits. In some scenarios, the bits are guaranteed to be set by the
processor, in some scenarios, the architecture allows that the bits may be set (not absolutely required), and in
some scenarios, the bits are guaranteed to not be set. Note that when 750CL updates the R and C bits in
memory, the accesses are performed as if MSR[DR] = 0 and G = 0 (that is, as nonguarded cacheable opera-
tions in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries in the table are
prioritized from top to bottom, such that a matching scenario occurring closer to the top of the table takes
precedence over a matching scenario closer to the bottom of the table. For example, if an stwex. instruction
causes a protection violation and there is no reservation, the C bit is not altered, as shown for the protection
violation case. Note that in the table, load operations include those generated by load instructions, by the
eciwx instruction, and by the cache management instructions that are treated as a load with respect to
address translation. Similarly, store operations include those operations generated by store instructions, by
the ecowx instruction, and by the cache management instructions that are treated as a store with respect to
address translation.

Table 5-8. Model for Guaranteed R and C Bit Settings (Page 1 of 2)

Causes Setting of R Bit Causes Setting of C Bit
Priority Scenario
OEA 750CL OEA 750CL
1 No-execute protection violation No No No No
2 Page protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No

Out-of-order store operation. Would be required by the
sequential execution model in the absence of system-
4 caused or imprecise exceptions, or of floating-point assist Maybe1 No No No
exception for instructions that would cause no other kind
of precise exception.

1. If Cis set, R is guaranteed to be set also.
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Table 5-8. Model for Guaranteed R and C Bit Settings (Page 2 of 2)

Causes Setting of R Bit Causes Setting of C Bit
Priority Scenario
OEA 750CL OEA 750CL
5 All other out-of-order store operations Maybe1 No Maybe1 No
6 Zero-length load (Iswx) Maybe No No No
7 Zero-length store (stswx) Maybe' No Maybe' No
8 Store conditional (stwex.) that does not store Maybe' Yes Maybe' Yes
9 In-order instruction fetch Yes Yes No No
10 Load instruction or eciwx Yes Yes No No
11 Store instruction, ecowx, dcbz_| or dcbz instruction Yes Yes Yes Yes
12 icbi, dcbt, or dcbtst instruction Maybe No No No
13 dcbst or debf instruction Maybe Yes No No
14 dcbi instruction Maybe' Yes Maybe' Yes

1. If Cis set, R is guaranteed to be set also.

For more information, see “Page History Recording” in Chapter 7, “Memory Management,” of the PowerPC
Microprocessor Family: The Programming Environments manual.

5.4.2 Page Memory Protection

750CL implements page memory protection as it is defined in Chapter 7, “Memory Management,” in the
PowerPC Microprocessor Family: The Programming Environments manual.

5.4.3 TLB Description

750CL implements separate 128-entry data and instruction TLBs to maximize performance. This section
describes the hardware resources provided in 750CL to facilitate page address translation. Note that the
hardware implementation of the MMU is not specified by the architecture, and while this description applies to
750CL, it does not necessarily apply to other PowerPC processors.

5.4.3.1 TLB Organization

Because 750CL has two MMUs (IMMU and DMMU) that operate in parallel, some of the MMU resources are
shared, and some are actually duplicated (shadowed) in each MMU to maximize performance. For example,
although the architecture defines a single set of segment registers for the MMU, 750CL maintains two iden-
tical sets of segment registers, one for the IMMU and one for the DMMU; when an instruction that updates the
segment register executes, 750CL automatically updates both sets.

Each TLB contains 128 entries organized as a two-way set-associative array with 64 sets as shown in
Figure 5-7 for the DTLB (the ITLB organization is the same). When an address is being translated, a set of
two TLB entries is indexed in parallel with the access to a segment register. If the address in one of the two
TLB entries is valid and matches the 40-bit virtual page number, that TLB entry contains the translation. If no
match is found, a TLB miss occurs.
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Figure 5-7. Segment Register and DTLB Organization
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Unless the access is the result of an out-of-order access, a hardware table search operation begins if there is
a TLB miss. If the access is out of order, the table search operation is postponed until the access is required,
at which point the access is no longer out of order. When the matching PTE is found in memory, it is loaded
into the TLB entry selected by the least-recently-used (LRU) replacement algorithm, and the translation
process begins again, this time with a TLB hit.

» PA[0-19]

To uniquely identify a TLB entry as the required PTE, the TLB entry also contains four more bits of the page
index, EA[10—-13] (in addition to the API bits in of the PTE).

Software cannot access the TLB arrays directly, except to invalidate an entry with the tlbie instruction.

Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated any time either entry is
used, even if the access is speculative. Invalid entries are always the first to be replaced.
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Although both MMUs can be accessed simultaneously (both sets of segment registers and TLBs can be
accessed in the same clock), only one exception condition can be reported at a time. ITLB miss exception
conditions are reported when there are no more instructions to be dispatched or retired (the pipeline is
empty), and DTLB miss exception conditions are reported when the load or store instruction is ready to be
retired. Refer to Section 6 Instruction Timing on page 211 for more detailed information about the internal
pipelines and the reporting of exceptions.

When an instruction or data access occurs, the effective address is routed to the appropriate MMU. EA[0-3]
select one of the 16 segment registers and the remaining effective address bits and the VSID field from the
segment register is passed to the TLB. EA[14—-19] then select two entries in the TLB; the valid bits are
checked and the 40-bit virtual page number (24-bit VSID and EA[14—19]) must match the VSID, EAPI, and
API fields of the TLB entries. If one of the entries hits, the PP bits are checked for a protection violation. If
these bits don’t cause an exception, the C bit is checked and a table search operation is initiated if C must be
updated. If C does not require updating, the RPN value is passed to the memory subsystem and the WIMG
bits are then used as attributes for the access.

Although address translation is disabled on a reset condition, the valid bits of TLB entries are not automati-
cally cleared. Thus, TLB entries must be explicitly cleared by the system software (with the tlbie instruction)
before the valid entries are loaded and address translation is enabled. Also, note that the segment registers
do not have a valid bit, and so they should also be initialized before translation is enabled.

5.4.3.2 TLB Invalidation

750CL implements the optional tibie and tlbsync instructions, which are used to invalidate TLB entries. The
execution of the tlbie instruction always invalidates four entries—both the ITLB and DTLB entries indexed by
EA[14-19].

The architecture allows tlbie to optionally enable a TLB invalidate signaling mechanism in hardware so that
other processors also invalidate their resident copies of the matching PTE. 750CL does not signal the TLB
invalidation to other processors nor does it perform any action when a TLB invalidation is performed by
another processor.

The tlbsync instruction causes instruction execution to stop if the TLBISYNC signal is asserted. If TLBISYNC
is negated, instruction execution may continue or resume after the completion of a tilbsync instruction.
Section 8.10.2 TLBISYNC Input describes the TLB synchronization mechanism in further detail.

The tlbia instruction is not implemented on 750CL and when its opcode is encountered, an illegal instruction
program exception is generated. To invalidate all entries of both TLBs, 64 tlbie instructions must be
executed, incrementing the value in EA14—EA19 by one each time.

(See Chapter 8, “Instruction Set” in the the PowerPC Microprocessor Family: The Programming Environ-
ments manual for detailed information about this instruction.)

Software must ensure that instruction fetches or memory references to the virtual pages specified by the tlbie
have been completed prior to executing the tlbie instruction.

Other than the possible TLB miss on the next instruction prefetch, the tlbie instruction does not affect the
instruction fetch operation—that is, the prefetch buffer is not purged and does not cause these instructions to
be refetched.
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5.4.4 Page Address Translation Summary

Figure 5-8 Page Address Translation Flow—TLB Hit provides the detailed flow for the page address transla-
tion mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands on the ‘TLB Hit’
branch of Figure 5-6.

The detailed flow for the ‘TLB Miss’ branch of Figure 5-6 is described in Section 5.4.5 Page Table Search
Operation.

Note: As in the case of block address translation, if an attempt is made to execute a debz or debz_lI instruc-
tion to a page marked either write-through or caching-inhibited (W =1 or | = 1), an alignment exception is
generated. The checking of memory protection violation conditions is described in Chapter 7, “Memory Man-
agement” in the PowerPC Microprocessor Family: The Programming Environments manual.
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Figure 5-8. Page Address Translation Flow—TLB Hit
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5.4.5 Page Table Search Operation

If the translation is not found in the TLBs (a TLB miss), 750CL initiates a table search operation which is
described in this section. Formats for the PTE are given in “PTE Format for 32-Bit Implementations,” in
Chapter 7, “Memory Management” of the PowerPC Microprocessor Family: The Programming Environments
manual.

The following is a summary of the page table search process performed by 750CL.:

1. The 32-bit physical address of the primary PTEG is generated as described in “Page Table Addresses” in
Chapter 7, “Memory Management” of the PowerPC Microprocessor Family: The Programming Environ-
ments manual.

2. The first PTE (PTEO) in the primary PTEG is read from memory. PTE reads occur with an implied WIM
memory/cache mode control bit setting of 0b001. Therefore, they are considered cacheable and read
(burst) from memory and placed in the cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page number (VPN) of the access.
The VPN is the VSID concatenated with the page index field of the virtual address. For a match to occur,
the following must be true:

PTE[H]=0

PTE[V]=1

PTE[VSID] = VA[0-23]

PTE[API] = VA[24-29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the primary PTEG. If a

match is found, the table search process continues as described in step 8. If a match is not found within
the 8 PTEs of the primary PTEG, the address of the secondary PTEG is generated.

5. The first PTE (PTEO) in the secondary PTEG is read from memory. Again, because PTE reads have a
WIM bit combination of Ob001, an entire cache line is read into the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page number (VPN) of the
access. For a match to occur, the following must be true:
— PTE[H] =1
- PTE[V] =1
— PTE[VSID] = VA[0-23]
— PTE[API] = VA[24-29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the secondary PTEG. Ifitis
never found, an exception is taken (step 9).

8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated in the PTE in memory
(if necessary). If there is no memory protection violation, the C bit is also updated in memory (if the
access is a write operation) and the table search is complete.

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails, and a page fault excep-
tion condition occurs (either an I1SI exception or a DSI exception).

Figure 5-9 on page 208 and Figure 5-10 on page 209 show how the conceptual model for the primary and
secondary page table search operations, described in the PowerPC Microprocessor Family: The Program-
ming Environments manual, are realized in 750CL.

Figure 5-9 shows the case of a dcbz or debz_| instruction that is executed with W =1 or | = 1, and that the R
bit may be updated in memory (if required) before the operation is performed or the alignment exception
occurs. The R bit may also be updated if memory protection is violated.
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Figure 5-9. Primary Page Table Search
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Figure 5-10. Secondary Page Table Search Flow
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The LSU initiates out-of-order accesses without knowledge of whether it is legal to do so. Therefore, the
MMU does not perform hardware table search due to TLB misses until the request is required by the program
flow. In these out-of-order cases, the MMU does detect protection violations and whether a debz or dcbz_|
instruction specifies a page marked as write-through or cache-inhibited. The MMU also detects alignment
exceptions caused by the debz or debz_lI instruction and prevents the changed bit in the PTE from being
updated erroneously in these cases.

If an MMU register is being accessed by an instruction in the instruction stream, the IMMU stalls for one
translation cycle to perform that operation. The sequencer serializes instructions to ensure the data correct-
ness. For updating the IBATs and SRs, the sequencer classifies those operations as fetch serializing. After
such an instruction is dispatched, the instruction buffer is flushed and the fetch stalls until the instruction
completes. However, for reading from the IBATSs, the operation is classified as execution serializing. As long
as the LSU ensures that all previous instructions can be executed, subsequent instructions can be fetched
and dispatched.
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5.4.6 Page Table Updates

When TLBs are implemented (as in 750CL) they are defined as non coherent caches of the page tables. TLB
entries must be flushed explicitly with the TLB invalidate entry instruction (tlbie) whenever the corresponding
PTE is modified. As 750CL is intended primarily for uniprocessor environments, it does not provide coher-
ency of TLBs between multiple processors. If 750CL is used in a multiprocessor environment where TLB
coherency is required, all synchronization must be implemented in software.

Processors may write referenced and changed bits with unsynchronized, atomic byte store operations. Note
that the V, R, and C bits each reside in a distinct byte of a PTE. Therefore, extreme care must be taken to use
byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering PTEs, or certain system
registers, may have the side effect of changing the effective or physical addresses from which the current
instruction stream is being fetched. This kind of side effect is defined as an implicit branch. Implicit branches
are not supported and an attempt to perform one causes boundedly-undefined results. Therefore, PTEs must
not be changed in a manner that causes an implicit branch.

Chapter 2, “PowerPC Register Set” in the PowerPC Microprocessor Family: The Programming Environments
manual, lists the possible implicit branch conditions that can occur when system registers and MSR bits are
changed.

5.4.7 Segment Register Updates

Synchronization requirements for using the move to segment register instructions are described in “Synchro-
nization Requirements for Special Registers and for Lookaside Buffers” in Chapter 2, “PowerPC Register Set”
in the PowerPC Microprocessor Family: The Programming Environments manual.
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6. Instruction Timing

This chapter describes how the PowerPC 750CL microprocessor fetches, dispatches, and executes instruc-
tions and how it reports the results of instruction execution. It gives detailed descriptions of how the 750CL’s
execution units work, and how those units interact with other parts of the processor, such as the instruction
fetching mechanism, register files, and caches. It gives examples of instruction sequences, showing potential
bottlenecks and how to minimize their effects. Finally, it includes tables that identify the unit that executes
each instruction implemented on the 750CL, the latency for each instruction, and other information that is
useful for the assembly language programmer.

6.1 Terminology and Conventions

This section provides an alphabetical glossary of terms used in this chapter. These definitions are provided
as a review of commonly used terms and as a way to point out specific ways these terms are used in this
chapter.

» Branch prediction—The process of guessing whether a branch will or will not be taken. Such predictions
can be correct or incorrect; the term ‘predicted’ as it is used here does not imply that the prediction is cor-
rect (successful). Instructions along the predicted path are fetch and dispatched to their respective execu-
tion units conditionally and can reach the completion unit. However, these instructions must first be
validated by the branch resolution process before they can be retired.

The PowerPC Architecture™ defines a means for static branch prediction as part of the instruction
encoding. The 750CL processor implements two types of dynamic branch prediction. See Section 6.4.1.2
Branch Instructions and Completion below.

¢ Branch resolution—The determination of the path that a branch instruction must take. If a branch predic-
tion and branch resolution occur on the same cycle, the processor simply fetches instructions on the cor-
rect path as determined by the branch instruction. For predicted branches, branch resolution must
determine if the prediction was correct. If the prediction was correct all speculatively fetched instructions
that have been passed to their execution units are validated. If the prediction was wrong, the speculatively
fetched instructions must be invalidated (flushed) and instruction fetching must resume along the other
path for the branch instruction.

¢ Completion—Completion occurs when an instruction has finished executing and it results are stored in a
rename register that had been allocated to it by the dispatch unit. These results are available to subse-
quent instructions or previously predicted branches.

» Dispatch—the process of moving an instruction from the instruction queue to an execution unit. In the
750CL processor the dispatch unit can process up to three instruction in a single cycle if one of the three
is a branch. For the nonbranch type instructions the dispatch must do a partial decode to determine the
type of instruction in order to pass it to it respective execution unit. Also, a rename register and a place in
the completion queue must be reserved, otherwise a stall occurs. If a branch updates either the link reg-
ister (LR) or the count register (CTR) it also must be allocated to a completion queue entry.

¢ Fall-through —A not-taken branch.

* Fetch—The process of bringing instructions from the system memory (such as a cache or the main mem-
ory) into the instruction queue.

¢ Folding (branch folding)—On the 750CL, a branch is expunged from (folded out) the instruction queue
through the dispatch mechanism, without either being passed to an execution unit and or given a position
in the completion queue. Subsequent instructions are fetched from the target address calculated by the
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branch instruction, for branches taken or sequential instructions following the branch for a branch-not-
taken, placed into a reservation register to which the instruction is dispatched.

* Finish—Finishing occurs in the last cycle of execution. (This could also be the first cycle of execution for
instruction that only require one cycle for execution) In this cycle, the output rename register and the com-
pletion queue entry are updated to indicate that the instruction has finished executing.

e Latency— The number of clock cycles necessary to execute an instruction and make ready the results of
that execution for a subsequent instruction.

* Pipeline—In the context of instruction timing, the term ‘pipeline’ refers to the interconnection of the
stages. The events necessary to process an instruction are broken into several cycle-length tasks to allow
work to be performed on several instructions simultaneously—analogous to an assembly line. As an
instruction is processed, it passes from one stage to the next. When it does, the stage becomes available
for the next instruction.

¢ Although an individual instruction may take many cycles to complete (the number of cycles is called
instruction latency), pipelining makes it possible to overlap the processing so that the throughput (number
of instructions completed per cycle) is greater than if pipelining were not implemented.

¢ Program order—The order of instructions in an executing program. More specifically, this term is used to
refer to the original order in which program instructions are fetched into the instruction queue from the
system memory.

* Rename register—Temporary buffers used to hold either source or destination values for instructions that
are in a stage of execution. This simplifies the passing of data outside of the general purpose register file
(GPR) between instructions during execution.

¢ Reservation station—A buffer between the dispatch and execute units where instructions await execution.

* Retirement—Removal of a completed instruction from the completion queue. At this time any output from
the completed instruction is written to the appropriate architected destination register. This may be a
GPR, floating-point register (FPR), or a CR field.

» Stage—The processing of instructions in the 750CL is done in stages. They are: fetch, decode/dispatch,
execute, complete and retirement. The fetch unit brings instructions from the memory system into the
instruction queue. Once in the instruction queue the dispatch unit must do a partial decode on the instruc-
tion to determine it’'s type. If the instruction is an integer it is passed to the integer execution unit, if it is a
floating-point type, it is passed to the floating-point execution unit, if it is a branch it is processed immedi-
ately by branch folding and branch prediction functions. Instructions spend one or more cycles in each
stage as they are being processed by the 750CL processor.

¢ Stall—An occurrence when an instruction cannot proceed to the next stage. An instruction can spend
multiple cycles in one stage. An integer multiply, for example, takes multiple cycles in the execute stage.
When this occurs, subsequent instructions may stall.

* Superscalar—A superscalar processor is one that has multiple execution units. The 750CL processor has
one floating-point unit, two integer units, one load/store unit, and a system unit for miscellaneous instruc-
tions. PowerPC instructions are processed in parallel by these execution units.

¢ Throughput—A measure of the total number of instructions that are processed by all execution units per
unit of time.

* Write-back—Write-back (in the context of instruction handling) occurs when a result is written into the
architectural registers (typically the GPRs and FPRs). Results are written back at retirement time from
rename registers for most instructions. The instruction is also removed from the completion queue at this
time.
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6.2 Instruction Timing Overview

The 750CL design minimizes average instruction execution latency, the number of clock cycles it takes to
fetch, decode, dispatch, and execute instructions and make the results available for a subsequent instruction.
Some instructions, such as loads and stores, access memory and require additional clock cycles between the
execute phase and the write-back phase. These latencies vary depending on whether the access is to cache-
able or noncacheable memory, whether it hits in the L1 or L2 cache, whether the cache access generates a
write-back to memory, whether the access causes a snoop hit from another device that generates additional
activity, and other conditions that affect memory accesses.

The 750CL implements many features to improve throughput, such as pipelining, superscalar instruction
issue, branch folding, two-level speculative handling, two types of branch prediction, and multiple execution
units that operate independently and in parallel.

As an instruction passes from stage to stage in a pipelined system, multiple instruction are in various stages
of execution at any given time. Also, with multiple execution units operating in parallel, more then one instruc-
tion can be completed in a single cycle.
The 750CL contains the following execution units that operate independently and in parallel:

¢ Branch processing unit (BPU)

* Integer unit 1 (IU1)—executes all integer instructions

* Integer unit 2 (IU2)—executes all integer instructions except multiplies and divides

¢ 64-bit floating-point unit (FPU)

¢ Load/store unit (LSU)

* System register unit (SRU)

Figure 6-1 represents a generic pipelined execution unit.

Figure 6-1. Pipelined Execution Unit
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Clock 3 | Instruction D

Instruction C | Instruction B
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The 750CL can retire two instructions on every clock cycle. In general, the 750CL processes instructions in
four stages—fetch, decode/dispatch, execute, and complete as shown in Figure 6-2. Note that the example of
a pipelined execution unit in Figure 6-1 is similar to the three-stage FPU pipeline in Figure 6-2.
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Figure 6-2. Superscalar/Pipeline Diagram
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The instruction pipeline stages are described as follows:

Maximum two -instruction
completion per clock cycle

* The instruction fetch stage includes the clock cycles necessary to request instructions from the memory
system and the time the memory system takes to respond to the request. Instruction fetch timing
depends on many variables, such as whether the instruction is in the branch target instruction cache, the
L1 instruction cache, or the L2 cache. Those factors increase when it is necessary to fetch instructions
from system memory, and include the processor-to-bus clock ratio, the amount of bus traffic, and whether
any cache coherency operations are required.

Because there are so many variables, unless otherwise specified, the instruction timing examples below
assume optimal performance, that the instructions are available in the instruction queue in the same
clock cycle that they are requested. The fetch stage ends when the instruction is dispatched.

¢ The decode/dispatch stage consists of the time it takes to decode the instruction and dispatch it from the
instruction queue to the appropriate execution unit. Instruction dispatch requires the following:

— Instructions can be dispatched only from the two lowest instruction queue entries, IQ0 and I1Q1.

— A maximum of two instructions can be dispatched per clock cycle (and one additional branch instruc-

tion can be handled by the BPU).

— Only one instruction can be dispatched to each execution unit per clock cycle.

— There must be a vacancy in the specified execution unit reservation station.

— A rename register must be available for each destination operand specified by the instruction.

— For an instruction to dispatch, the appropriate execution unit reservation station must be available
and there must be an open position in the completion queue. If no entry is available, the instruction
remains in the instruction queue (1Q).

Instruction Timing
Page 214 of 619

06_750CL.fm.1.0
August 8, 2007



Preliminary

User's Manual

IBM 750CL RISC Microprocessor

* The execute stage consists of the time between dispatch to the execution unit (or reservation station) and
the point at which the instruction vacates the execution unit.

Most integer instructions have a one-cycle latency; results of these instructions can be used in the clock
cycle after an instruction enters the execution unit. However, integer multiply and divide instructions take
multiple clock cycles to complete. The IU1 can process all integer instructions; the IU2 can process all
integer instructions except multiply and divide instructions.

The LSU and FPU are pipelined (as shown in Figure 6-2).

e The complete (complete/write-back) pipeline stage maintains the correct architectural machine state and
commits it to the architectural registers at the proper time. If the completion logic detects an instruction
containing an exception status, all following instructions are cancelled, their execution results in rename
registers are discarded, and the correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be retired per cycle.
Instructions are retired only from the two lowest completion queue entries, CQ0 and CQ1.

The notation conventions used in the instruction timing examples are as follows:

L]

E—
—
I
—

Fetch—The fetch stage includes the time between when an instruction is requested and
when it is brought into the instruction queue. This latency can be vary, depending upon
whether the instruction is in the branch target instruction cache (BTIC), the L1 cache, the
L2 cache, or system memory (in which case latency can be affected by bus speed and
traffic on the system bus, and address translation issues). Therefore, in the examples in
this chapters, the fetch stage is usually idealized, that is, an instruction is usually shown to
be in the fetch stage when it is a valid instruction in the instruction queue. The instruction
gueue has six entries, |IQ0-1Q5.

In dispatch entry (IQ0/IQ1)—Instructions can be dispatched from IQ0 and IQ1. Because
dispatch is instantaneous, it is perhaps more useful to describe it as an event that marks
the point in time between the last cycle in the fetch stage and the first cycle in the execute
stage.

Execute—The operations specified by an instruction are being performed by the appro-
priate execution unit. The black stripe is a reminder that the instruction occupies an entry
in the completion queue, described in Figure 6-3.

Complete—The instruction is in the completion queue. In the final stage, the results of the
executed instruction are written back and the instruction is retired. The completion queue
has six entries, CQ0-CQ5.

In retirement entry—Completed instructions can be retired from CQO0 and CQ1. Like
dispatch, retirement is an event that in this case occurs at the end of the final cycle of the
complete stage.

Figure 6-3 on page 216 shows the stages of the 750CL’s execution units.
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6.3 Timing Considerations

The 750CL is a superscalar processor; as many as three instructions can be issued to the execution units
(one branch instruction to the branch processing unit, and two instructions issued from the dispatch queue to
the other execution units) during each clock cycle. Only one instruction can be dispatched to each execution
unit.

Although instructions appear to the programmer to execute in program order, the 750CL improves perfor-
mance by executing multiple instructions at a time, using hardware to manage dependencies. When an
instruction is dispatched, the register file or rename register from a previous instruction provides the source
data to the execution unit. The register files and rename register have sufficient bandwidth to allow dispatch
of two instructions per clock under most conditions.

Figure 6-3. PowerPC 750CL Microprocessor Pipeline Stages
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1. Several integer instructions, such as multiply and divide instructions, require multiple cycles in
the execute stage.

2. Only those branch instructions that update the LR or CTR take an entry in the completion queue.

The 750CL’s BPU decodes and executes branches immediately after they are fetched. When a conditional
branch cannot be resolved due to a CR data (or any) dependency, the branch direction is predicted and
execution continues on the predicted path. If the prediction is incorrect, the following steps are taken:

1. The instruction queue is purged and fetching continues from the correct path.

2. Any instructions behind (in program order) the predicted branch in the completion queue are allowed to
complete.

3. Instructions fetched on the mispredicted path of the branch are purged.

4. Fetching resumes along the correct (other) path.
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After an execution unit finishes executing an instruction, it places resulting data into the appropriate GPR or
FPR rename register. The results are then stored into the correct GPR or FPR during the write-back stage
(retirement). If a subsequent instruction needs the result as a source operand, it is made available simulta-
neously to the appropriate execution unit, which allows a data-dependent instruction to be decoded and
dispatched without waiting to read the data from the register file. Branch instructions that update either the LR
or CTR write back their results in a similar fashion.

The following section describes this process in greater detail.

6.3.1 General Instruction Flow

As many as four instructions can be fetched into the 1Q in a single clock cycle. Instructions enter the IQ and
are issued to the various execution units from the dispatch queue. The 750CL tries to keep the IQ full at all
times, unless instruction cache throttling is operating.

The number of instructions requested in a clock cycle is determined by the number of vacant spaces in the 1Q
during the previous clock cycle. This is shown in the examples in this chapter. Although the instruction queue
can accept as many as four new instructions in a single clock cycle, if only one 1Q entry is vacant, only one
instruction is fetched. Typically instructions are fetched from the L1 instruction cache, but they may also be
fetched from the BTIC if a branch is taken. If the branch taken instruction request hits in the BTIC, it can
usually present the first two instructions of the new instruction stream in the next clock cycle, giving enough
time for the next pair of instructions to be fetched from the instruction L1 cache resulting in no idle cycles in
the instruction stream (also known as the zero cycle branch). If instructions are not in the BTIC or the L1
instruction cache, they are fetched from the L2 cache or from system memory.

The 750CL’s instruction cache throttling feature, managed through the instruction cache throttling control
(ICTC) register, can lower the processor’s overall junction temperature by slowing the instruction fetch rate.
See Section 10 Power and Thermal Management on page 329 for more information.

Branch instructions are identified by the fetcher, and forwarded to the BPU directly, bypassing the dispatch
queue. If the branch is unconditional or if the specified conditions are already known, the branch can be
resolved immediately. That is, the branch direction is known and instruction fetching can continue along the
correct path. Otherwise, the branch direction must be predicted.

The 750CL offers several resources to aid in quick resolution of branch instructions and for improving the
accuracy of branch predictions. These include the following:

» Branch target instruction cache—The 64-entry (four-way-associative) BTIC holds branch target instruc-
tions so when a branch is encountered in a repeated loop, usually the first two instructions in the target
stream can be fetched into the instruction queue on the next clock cycle. The BTIC can be disabled and
invalidated through bits in HIDO. Coherency of the BTIC table is maintained by table reset on an icache
flash invalidate, icbi, isynch or rfi instruction execution or when an exception is taken.

* Dynamic branch prediction—The 512-entry branch history table (BHT) is implemented with two bits per
entry for four degrees of prediction—not-taken, strongly not-taken, taken, strongly taken. Whether a
branch instruction is taken or not-taken can change the strength of the next prediction. This dynamic
branch prediction is not defined by the PowerPC Architecture.

To reduce aliasing, only predicted branches update the BHT entries. Dynamic branch prediction is
enabled by setting HIDO[BHT]; otherwise, static branch prediction is used.

¢ Static branch prediction—Static branch prediction is defined by the PowerPC Architecture and involves
encoding the branch instructions. See Static Branch Prediction on page 230.
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Branch instructions that do not update the LR or CTR are removed from the instruction stream either by
branch folding, as described in Section 6.4.1.1. Branch instructions that update the LR or CTR are treated as
if they require dispatch (even through they are not issued to an execution unit in the process). They are
assigned a position in the completion queue to ensure that the CTR and LR are updated in correct program
order.

All other instructions are issued from the 1Q0 and IQ1. The dispatch rate depends upon the availability of
resources such as the execution units, rename registers, and completion queue entries, and upon the serial-
izing behavior of some instructions. Instructions are dispatched in program order; an instruction in IQ1 cannot
be dispatched ahead of one in Q0.

6.3.2 Instruction Fetch Timing

Instruction fetch latency depends on whether the fetch hits the BTIC, the L1 instruction cache, or the L2
cache. If no cache hit occurs, a memory transaction is required in which case fetch latency is affected by bus
traffic, bus clock speed, and memory translation. These issues are discussed further in the following sections.

6.3.2.1 Cache Arbitration

When the instruction fetcher requests instructions from the instruction cache, two things may happen. If the
instruction cache is idle and the requested instructions are present, they are provided on the next clock cycle.
However, if the instruction cache is busy due to a cache-line-reload operation, instructions cannot be fetched
until that operation completes.

6.3.2.2 Cache Hit

If the instruction fetch hits the instruction cache, it takes only one clock cycle after the request for as many as
four instructions to enter the instruction queue. Note that the cache is not blocked to internal accesses during
a cache reload completes (hits under misses). The critical doubleword is written simultaneously to the cache
and forwarded to the requesting unit, minimizing stalls due to load delays.

Figure 6-4 on page 219 shows the paths taken by instructions.
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Figure 6-4. Instruction Flow Diagram
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Figure 6-5 shows a simple example of instruction fetching that hits in the L1 cache. This example uses a
series of integer add and double-precision floating-point add instructions to show how the number of instruc-
tions to be fetched is determined, how program order is maintained by the instruction and completion queues,
how instructions are dispatched and retired in pairs (maximum), and how the FPU, 1U1, and 1U2 pipelines
function. The following instruction sequence is examined:

0 add
1 fadd
2 add
3 fadd
4 br 6
5 fsub
6 fadd
7 fadd
8 add
9 add
10  add
11  add
12 fadd
13 add
14  fadd
15

16

17
Instruction Timing 06_750CL.fm.1.0
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Figure 6-5. Instruction Timing—Cache Hit
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The instruction timing for this example is described cycle-by-cycle as follows:

0.

In cycle 0, instructions 0—-3 are fetched from the instruction cache. Instructions 0 and 1 are placed in
the two entries in the instruction queue from which they can be dispatched on the next clock cycle.

. In cycle 1, instructions 0 and 1 are dispatched to the IU2 and FPU, respectively. Notice that for

instructions to be dispatched they must be assigned positions in the completion queue. In this case,
since the completion queue was empty, instructions 0 and 1 take the two lowest entries in the com-
pletion queue. Instructions 2 and 3 drop into the two dispatch positions in the instruction queue.
Because there were two positions available in the instruction queue in clock cycle 0, two instructions
(4 and 5) are fetched into the instruction queue. Instruction 4 is a branch unconditional instruction,
which resolves immediately as taken. Because the branch is taken, it can therefore be folded from the
instruction queue.

In cycle 2, assume a BTIC hit occurs and target instructions 6 and 7 are fetched into the instruction
queue, replacing the folded b instruction (4) and instruction 5. Instruction 0 completes, writes back its
results and vacates the completion queue by the end of the clock cycle. Instruction 1 enters the sec-
ond FPU execute stage, instruction 2 is dispatched to the IU2, and instruction 3 is dispatched into the
first FPU execute stage. Because the taken branch instruction (4) does not update either CTR or LR,
it does not require a position in the completion queue and can be folded.

In cycle 3, target instructions (6 and 7) are fetched, replacing instructions 4 and 5 in IQ0 and 1Q1.
This replacement on taken branches is called branch folding. Instruction 1 proceeds through the last
of the three FPU execute stages. Instruction 2 has executed but must remain in the completion queue
until instruction 1 completes. Instruction 3 replaces instruction 1 in the second stage of the FPU, and
instruction 6 replaces instruction 3 in the first stage.

Because there were four vacancies in the instruction queue in the previous clock cycle, instructions
8—-11 are fetched in this clock cycle.

Instruction 1 completes in cycle 4, allowing instruction 2 to complete. Instructions 3 and 6 continue
through the FPU pipeline. Because there were two openings in the completion queue in the previous
cycle, instructions 7 and 8 are dispatched to the FPU and 1U2, respectively, filling the completion
queue. Similarly, because there was one opening in the instruction queue in clock cycle 3, one
instruction is fetched.

In cycle 5, instruction 3 completes, and instructions 13 and 14 are fetched. Instructions 6 and 7 con-
tinue through the FPU pipeline. No instructions are dispatched in this clock cycle because there were
no vacant CQ entries in cycle 4.

In cycle 6, instruction 6 completes, instruction 7 is in stage 3 of the FPU execute stage, and although
instruction 8 has executed, it must wait for instruction 7 to complete. The two integer instructions, 9
and 10, are dispatched to the 1U2 and U1, respectively. No instructions are fetched because the
instruction queue was full on the previous cycle.

. In cycle 7, instruction 7 completes, allowing instruction 8 to complete as well. Instructions 9 and 10

remain in the completion stage, since at most two instructions can complete in a cycle. Because
there was one opening in the completion queue in cycle 6, instructions 11 is dispatched to the 1U2.
Two more instructions (15 and 16, which are shown only in the instruction queue) are fetched.

In cycle 8, instructions 9—11 are through executing. Instructions 9 and 10 complete, write back, and
vacate the completion queue. Instruction 11 must wait to complete on the following cycle. Because
the completion queue had one opening in the previous cycle, instruction 12 can be dispatched to the
FPU. Similarly, the instruction queue had one opening in the previous cycle, so one additional instruc-
tion, 17, can be fetched.
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9. In cycle 9, instruction 11 completes, instruction 12 continues through the FPU pipeline, and instruc-
tions 13 and 14 are dispatched. One new instruction, 18, can be fetched on this cycle because the
instruction queue had one opening on the previous clock cycle.

6.3.2.3 Cache Miss

Figure 6-6 shows an instruction fetch that misses both the L1 cache and L2 cache. A processor/bus clock
ratio is 1:2 is used. The same instruction sequence is used as in Section 6.3.2.2 however in this example, the
branch target instruction is not in either the L1 or L2 cache.

A cache miss, extends the latency of the fetch stage, so in this example, the fetch stage shown represents
not only the time the instruction spends in the 1Q, but the time required for the instruction to be loaded from
system memory, beginning in clock cycle 2.

During clock cycle 3, the target instruction for the b instruction is not in the BTIC, the instruction cache or the
L2 cache; therefore, a memory access must occur. During clock cycle 5, the address of the block of instruc-
tions is sent to the system bus. During clock cycle 7, two instructions (64 bits) are returned from memory on
the first beat and are forwarded both to the cache and the instruction fetcher.
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Figure 6-6. Instruction Timing—Cache Miss
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6.3.2.4 L2 Cache Access Timing Considerations

If an instruction fetch misses both the BTIC and the L1 instruction cache, the 750CL next looks in the L2
cache. If the requested instructions are there, they are burst into the 750CL in much the same way as shown
in Figure 6-6. The formula for the L2 cache latency for instruction accesses is as follows:

1 processor clock + 3 L2 clocks + 1 processor clock

Therefore, since the L2 is operating in 1:1 mode, the instruction fetch takes 5 processor clock cycles.

6.3.2.5 Instruction Dispatch and Completion Considerations

Several factors affect the 750CL’s ability to dispatch instructions at a peak rate of two per cycle—the avail-
ability of the execution unit, destination rename registers, and completion queue, as well as the handling of
completion-serialized instructions. Several of these limiting factors are illustrated in the previous instruction
timing examples.

To reduce dispatch unit stalls due to instruction data dependencies, the 750CL provides a single-entry reser-
vation station for the FPU, SRU, and each IU, and a two-entry reservation station for the LSU. If a data
dependency keeps an instruction from starting execution, that instruction is dispatched to the reservation
station associated with its execution unit (and the rename registers are assigned), thereby freeing the posi-
tions in the instruction queue so instructions can be dispatched to other execution units. Execution begins
during the same clock cycle that the rename buffer is updated with the data the instruction is dependent on.

If both instructions in IQ0 and IQ1 require the same execution unit they must be executed sequentially where
I1Q1 follows 1QO0 through the execution unit. If these instructions require different execution units, they can be
dispatched on the same cycle, execute in parallel on separate execution units and could complete together
and be retired together on the same cycle.

The completion unit maintains program order after instructions are dispatched from the instruction queue,
guaranteeing in-order completion and a precise exception model. Completing an instruction implies commit-
ting execution results to the architected destination registers. In-order completion ensures the correct archi-
tectural state when the 750CL must recover from a mispredicted branch or an exception.

Instruction state and all information required for completion is kept in the six-entry, first-in/first-out completion
queue. A completion queue entry is allocated for each instruction when it is dispatched to an execute unit; if
no entry is available, the dispatch unit stalls. A maximum of two instructions per cycle may be completed and
retired from the completion queue, and the flow of instructions can stall when a longer-latency instruction
reaches the last position in the completion queue. Subsequent instructions cannot be completed and retired
until that longer-latency instruction completes and retires. Examples of this are shown in Section 6.3.2.2 and
Section 6.3.2.3.

The 750CL can execute instructions out-of-order, but in-order completion by the completion unit ensures a
precise exception mechanism. Program-related exceptions are signaled when the instruction causing the
exception reaches the last position in the completion queue. By this time previous instructions are retired.

6.3.2.6 Rename Register Operation

To avoid contention for a given register file location in the course of out-of-order execution, the 750CL
provides rename registers for holding instruction results before the completion commits them to the archi-
tected register. There are six GPR rename registers, six FPR rename registers, and one each for the CR, LR,
and CTR.
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When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename register (or regis-
ters) for the results of that instruction. If an instruction is dispatched to a reservation station associated with
an execution unit due to a data dependency, the dispatcher also provides a tag to the execution unit identi-
fying the rename register that forwards the required data at completion. When the source data reaches the
rename register, execution can begin.

Instruction results are transferred from the rename registers to the architected registers by the completion
unit when an instruction is retired from the completion queue, providing no exceptions proceed it and also any
predicted branch conditions have been resolved correctly. If a branch prediction was incorrect, the instruc-
tions fetched along the predicted path are flushed from the completion queue, and any results of those
instructions are flushed from the rename registers.

6.3.2.7 Instruction Serialization

Although the 750CL can dispatch and complete two instructions per cycle, so-called serializing instructions
limit dispatch and completion to one instruction per cycle. There are three types of instruction serialization:

¢ Execution serialization—Execution-serialized instructions are dispatched, held in the functional unit and
do not execute until all prior instructions have completed. A functional unit holding an execution-serialized
instruction will not accept further instructions from the dispatcher. For example, execution serialization is
used for instructions that modify nonrenamed resources. Results from these instructions are generally
not available or forwarded to subsequent instructions until the instruction completes (using mtspr to write
to LR or CTR does provide forwarding to branch instructions).

e Completion serialization (also referred to as post-dispatch or tail serialization)—Completion-serialized
instructions inhibit dispatching of subsequent instructions until the serialized instruction completes. Com-
pletion serialization is used for instructions that bypass the normal rename mechanism.

¢ Refetch serialization (flush serialization)—Refetch-serialized instructions inhibit dispatch of subsequent
instructions and force refetching of subsequent instructions after completion.

6.4 Execution Unit Timings

The following sections describe instruction timing considerations within each of the respective execution units
in the 750CL.

6.4.1 Branch Processing Unit Execution Timing

Flow control operations (conditional branches, unconditional branches, and traps) are typically expensive to
execute in most machines because they disrupt normal flow in the instruction stream. When a change in
program flow occurs, the IQ must be reloaded with the target instruction stream. Previously issued instruc-
tions will continue to execute while the new instruction stream makes its way into the 1Q, but depending on
whether the target instruction is in the BTIC, instruction L1 cache, L2 cache, or in system memory, some
opportunities may be missed to execute instructions, as the example in Section 6.3.2.3 shows.

Performance features such as the branch folding, BTIC, dynamic branch prediction (implemented in the
BHT), two-level branch prediction, and the implementation of nonblocking caches minimize the penalties
associated with flow control operations on the 750CL. The timing for branch instruction execution is deter-
mined by many factors including the following:
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¢ Whether the branch is taken

* Whether instructions in the target stream, typically the first two instructions in the target stream, are in the
BTIC

* Whether the target instruction stream is in the L1 cache
¢ Whether the branch is predicted

* Whether the prediction is correct

6.4.1.1 Branch Folding

When a branch instruction is encountered by the fetcher, the BPU immediately begins to decode it and tries
to resolve it. Branch folding is the removal of branches from the instruction stream. This is independent of
whether the branch is taken or not taken. However, if the branch instruction updates either the LR or CTR it
can not be removed and must be allocated a position in the completion queue. If a branch cannot be
resolved, immediately, it is predicted and instruction fetching resumes along the predicted path and those
instructions are conditionally fed into the instruction queue. Later, if the prediction is finally resolved correct,
the fetched instructions are validated and allowed to complete and be retired. If the prediction is resolved
incorrect, instructions fetched are invalidated and instruction fetching resumes along the other path of the
branch.

Figure 6-7 shows branch folding. Here a br instruction is encountered in a series of add instructions. The
branch is resolved as taken. What happens on the next clock cycle depends on whether the target instruction
stream is in the BTIC, the instruction L1 cache, or if it must be fetched from the L2 cache or from system
memory.

Figure 6-7 shows cases where there is a BTIC hit, and when there is a BTIC miss (and instruction cache hit).

If there is a BTIC hit on the next clock cycle the b instruction is replaced by the target instruction, and1, that
was found in the BTIC; the second and instruction is also fetched from the BTIC. On the next clock cycle, the
next four and instructions from the target stream are fetched from the instruction cache.

If the target instruction is not in the BTIC, there is an idle cycle while the fetcher attempts to fetch the first four
instructions from the instruction cache (on the next clock cycle). In the example in Figure 6-7, the first four
target instructions are fetched on the next clock.

If it misses in the BTIC or L1 caches, an L2 cache or memory access is required, the latency of which is
dependent on several factors, such as processor/bus clock ratios. In most cases, new instructions arrive in
the 1Q before the execution units become idle.

Figure 6-7. Branch Taken

Branch Folding Branch Folding

(Taken Branch/BTIC Hit) (Taken Branch/BTIC Miss)

Clock 0 Clock 1 Clock 2 Clock 0 Clock 1 Clock 2
1Q5| add5 1Q5| add5
1Q4| add4 1Q4| add4
1Q3| add3 and6é 1Q3| add3 and4
Q2 b and5 Q2] b and3
1Q1| add2 and2 and4 Q1| add2 and2
1Q0 add1 and1 and3 Q0| add1 and1
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Figure 6-8 shows the removal of fall-through branch instructions, which occurs when a branch is not taken or
is predicted as not taken.

Figure 6-8. Removal of Fall-Through Branch Instruction

Branch Fall-Through
(Not-Taken Branch)

Clock 0 Clock 1 Clock 2

Q5| add5 add8 etc.
1Q4| add4 add7 add9
Q3| add3 addé adds
Q2 b add5 add7
Q1| add2 add4 addé
Q0| add1 add3 add5

When a branch instruction is detected before it reaches a dispatch position, and if the branch is correctly
predicted as taken, folding the branch instruction (and any instructions from the incorrect path) reduces the
latency required for flow control to zero; instruction execution proceeds as though the branch was never
there.

The advantage of removing the fall-through branch instructions at dispatch is only marginally less than that of
branch folding. Because the branch is not taken, only the branch instruction needs to be discarded. The only
cost of expelling the branch instruction from one of the dispatch entries rather than folding it is missing a
chance to dispatch an executable instruction from that position.

6.4.1.2 Branch Instructions and Completion

As described in the previous section, instructions that do not update either the LR or CTR are removed from
the instruction stream before they reach the completion queue, either for branch taken or by removing fall-
through branch instructions at dispatch. However, branch instructions that update the architected LR and
CTR must do so in program order and therefore must perform write-back in the completion stage, like the
instructions that update the FPRs and GPRs.

Branch instructions that update the CTR or LR pass through the instruction queue like nonbranch instruc-
tions. At the point of dispatch, however, they are not sent to an execution unit, but rather are assigned a slot
in the completion queue, as shown in Figure 6-9.
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Figure 6-9. Branch Completion

Branch Completion
(LR/CTR Write-Back)

Clock 0 Clock 1 Clock 2 Clock 3

1Q5 add5

1Q4| add4

1Q3| add3 add5 add7 add9
1Q2| bc add4 addé add8
1Q1| add2 add3 add5 add7
1Q0| add1 bc add4 addé
CQ5

CcQ4

CQs3

CcQ2

cQi add2 add3 add5
CQo add1 bc add4

In this example, the be instruction is encoded to decrement the CTR. It is predicted as not-taken in clock
cycle 0. In clock cycle 2, be and add3 are both dispatched. In clock cycle 3, the architected CTR is updated
and the bc instruction is retired from the completion queue.

6.4.1.3 Branch Prediction and Resolution

The 750CL supports the following two types of branch prediction:

» Static branch prediction—This is defined by the PowerPC Architecture as part of the encoding of branch
instructions.

¢ Dynamic branch prediction—This is a processor-specific mechanism implemented in hardware (in partic-
ular the branch history table, or BHT) that monitors branch instruction behavior and maintains a record
from which the next occurrence of the branch instruction is predicted.

When a conditional branch cannot be resolved due to a CR data dependency, the BPU predicts whether it is
taken, and instruction fetching proceeds down the predicted path. If the branch prediction resolves as incor-
rect, the instruction queue and all subsequently executed instructions are purged, instructions executed prior
to the predicted branch are allowed to complete, and instruction fetching resumes down the correct path.

The 750CL executes through two levels of prediction. Instructions from the first unresolved branch can
execute, but they cannot be retired until the branch is resolved. If a second branch instruction is encountered
in the predicted instruction stream, it can be predicted and instructions can be fetched, but not executed, from
the second branch. No action can be taken for a third branch instruction until at least one of the two previous
branch instructions is resolved.

The number of instructions that can be executed after the issue of a predicted branch instruction is limited by
the fact that no instruction executed after a predicted branch may actually update (be retired) the register files
or memory until the branch is resolved. That is, instructions may be issued and executed, but cannot be
retired from the completion unit. When an instruction following a predicted branch completes execution, it
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does not write back its results to the architected registers, instead, it stalls in the completion queue. Of
course, when the completion queue is full, no additional instructions can be dispatched, even if an execution
unit is idle.

In the case of a misprediction, the 750CL can easily redirect the instruction stream because the programming
model has not been updated. When a branch is mispredicted, all instructions that were dispatched after the
predicted branch instruction are flushed from the completion queue and any results are flushed from the
rename registers.

The BTIC is a cache of two recently used instructions at the target (branch to address) of branch instructions.
If a taken-branch hits in the BTIC, two instructions are fed into the instruction queue on the next cycle. If a
taken-branch misses in the BTIC instruction fetching is done from the L1 instruction cache. Coherency of the
BTIC table is maintained by table reset on an icache flush invalidate, icbi or rfi instruction execution or when
an exception is taken.

In some situations, an instruction sequence creates dependencies that keep a branch instruction from being
predicted because the address for the target of the branch is not available. This delays execution of the
subsequent instruction stream. The instruction sequences and the resulting action of the branch instruction
are described as follows.

* An mtspr (LR) followed by a belr—Fetching stops and the branch waits for the mtspr to execute.
* An mtspr (CTR) followed by a bectr—Fetching stops and the branch waits for the mtspr to execute.

* An mtspr (CTR) followed by a be (CTR decrement)—Fetching stops and the branch waits for the mtspr
to execute.

¢ A third be (based-on-CR) is encountered while there are two unresolved be (based-on-CR). The third be
(based-on-CR) is not executed and fetching stops until one of the previous be (based-on-CR) is resolved.
(Note that branch conditions can be a function of the CTR and the CR,; if the CTR condition is sufficient to
resolve the branch, then a CR-dependency is ignored.)

Static Branch Prediction

The PowerPC Architecture provides a field in branch instructions (the BO field) to allow software to speculate
(hint) whether a branch is likely to be taken. Rather than delaying instruction processing until the condition is
known, the 750CL uses the instruction encoding to predict whether the branch is likely to be taken and begins
fetching and executing along that path. When the branch condition is known, the prediction is evaluated. If the
prediction was correct, program flow continues along that path; otherwise, the processor flushes any instruc-
tions and their results from the mispredicted path, and program flow resumes along the correct path.

Static branch prediction is used when HIDO[BHT] is cleared. That is, the branch history table, which is used
for dynamic branch prediction, is disabled.

For information about static branch prediction, see “Conditional Branch Control,” in Chapter 4, “Addressing
Modes and Instruction Set Summary” in the PowerPC Microprocessor Family: The Programming Environ-
ments manual.
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Figure 6-10 shows cases where branch instructions are predicted. It shows how both taken and not-taken
branches are handled and how the 750CL handles both correct and incorrect predictions. The example

shows the timing for the following instruction sequence:

0

O NOOT B WN =

T0
T1
T2
T3
T4
T5

06_750CL.fm.1.0
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add

add
bc
mulhw
bc TO
fadd
and
or
sub

add
add
add
add
add
or
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Figure 6-10. Branch Instruction Timing

0 1 2 3 4 5 6 7 8 9 10
[ 1 L1 L L1 1 | L L L1 L1 1
| I | I | | | |
L | | I
—0 add— : Fetch
I
I

In dispatch entry (1Q0/IQ1)

‘M‘:ﬂ

Execute

Complete (In CQ)

In retirement entry (CQ0/CQ1)

[ ]
—
| Predict
[ ]
I
—

[
|
|
[
| |
| |
[ I [ [ [
| | | | |
| | | | | | | | |
! ! ! | T2add |—o| ! ! !
| | | | | |
I | I T3 add | | |
| | | | | |
[ I I 'T4—and'—‘ [ [ [
[ I I f | i [ [ [
I | | 'W’—’ | | |
| | | I T 1 | | |
| | | | |
! | | I | \M‘:M
| | | | | | | |
I | | | | 6 and*
| | | | | | | | | | oo |
| | | | | | | | | | |
Instruction | I I I I I I [ [ [ [
Queue I | | | | | | I I I I
| | | | | | | | | | |
| | | | | | | | | | |
s s T e
S T T4 o | | |
1 3 T1 T3 T3 6
0 2 TO T2 T2
Completion
Queue
3 T (8) (8) (8)
2 TO T (7) (7) (7)
1 1 TO 6 6 6
0 0 2 3 5 5 5

* Instructions 5 and 6 are not in the 1Q in clock cycle 5. Here, the fetch stage shows cache latency.

0. During clock cycle 0, instructions 0 and 1 are dispatched to their respective execution units. Instruc-
tion 2 is a branch instruction that updates the CTR. It is predicted as not taken in clock cycle 0.
Instruction 3 is a mulhw instruction on which instruction 4 depends.
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1. In clock cycle 1, instructions 2 and 3 enter the dispatch entries in the IQ. Instruction 4 (a second bec
instruction) and 5 are fetched. The second bc instruction is predicted as taken. It can be folded, but it
cannot be resolved until instruction 3 writes back.

2. In clock cycle 2, instruction 4 has been folded and instruction 5 has been flushed from the 1Q. The
two target instructions, TO and T1, are both in the BTIC, so they are fetched in this cycle. Note that
even though the first be instruction may not have resolved by this point (we can assume it has), the
750CL allows fetching from a second predicted branch stream. However, these instructions could not
be dispatched until the previous branch has resolved.

3. In clock cycle 3, target instructions T2—T5 are fetched as TO and T1 are dispatched.

4. In clock cycle 4, instruction 3, on which the second branch instruction depended, writes back and the
branch prediction is proven incorrect. Even though TO is in CQ1, from which it could be written back,
it is not written back because the branch prediction was incorrect. All target instructions are flushed
from their positions in the pipeline at the end of this clock cycle, as are any results in the rename reg-
isters.

After one clock cycle required to refetch the original instruction stream, instruction 5, the same instruction that
was fetched in clock cycle 1, is brought back into the 1Q from the instruction cache, along with three others
(not all of which are shown).

6.4.2 Integer Unit Execution Timing

The 750CL has two integer units. The U1 can execute all integer instructions; and the 1U2 can execute all
integer instructions except multiply and divide instructions. As shown in Figure 6-2, each integer unit has one
execute pipeline stage, thus when a multicycle (e.g., divide) integer instruction is being executed, no addi-
tional integer instruction can begin to execute in that unit. However, the other unit I[U2 can continue to execute
integer instructions. Table 6-6 lists integer instruction latencies.

Most integer instructions have an execution latency of one clock cycle.

6.4.3 Floating-Point Unit Execution Timing

The floating-point unit on the 750CL executes all floating-point instructions. Execution of most floating-point
instructions is pipelined within the FPU, allowing up to three instructions to be executing in the FPU concur-
rently. While most floating-point instructions execute with three- or four-cycle latency, and one- or two-cycle
throughput, two instructions (fdivs and fdiv) execute with latencies of 11 to 33 cycles. The fdivs, fdiv,
mtfsb0, mtfsb1, mtfsfi, mffs, and mtfsf instructions block the floating-point unit pipeline until they complete
execution, and thereby inhibit the dispatch of additional floating-point instructions. See Figure for floating-
point instruction execution timing.

6.4.4 Effect of Floating-Point Exceptions on Performance
For the fastest and most predictable floating-point performance, all exceptions should be disabled in the
floating-point status and control register (FPSCR) and machine state register (MSR).

6.4.5 Load/Store Unit Execution Timing

The execution of most load and store instructions is pipelined. The LSU has two pipeline stages. The first is
for effective address calculation and memory management unit (MMU) translation and the second is for
accessing data in the cache. Load and store instructions have a two-cycle latency and one-cycle throughput.
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For instructions that store FPR values (stfd, stfs, and their variations), the data to be stored is prefetched
from the source register during the first pipeline stage. In cases where this register is updated that same
cycle, the instruction will stall to get the correct data, resulting in one additional cycle of latency.

If operands are misaligned, additional latency may be required either for an alignment exception to be taken
or for additional bus accesses. Load instructions that miss in the cache, block subsequent cache accesses
during the cache line refill. Table 6-7 gives load and store instruction execution latencies.

6.4.6 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in memory may affect the
relative performance of memory accesses, and in some cases affect it significantly. The effects memory
operand placement has on performance are shown in Table 6-1.

The best performance is guaranteed if memory operands are aligned on natural boundaries. For the best
performance across the widest range of implementations, the programmer should assume the performance
model described in Chapter 3, “Operand Conventions” in the PowerPC Microprocessor Family: The Program-
ming Environments manual.

The effect of misalignment on memory access latency is the same for big and little-endian addressing modes
except for multiple and string operations that cause an alignment exception in little-endian mode.

Table 6-1. Performance Effects of Memory Operand Placement

Operand Boundary Crossing
Size Byte Alignment None 8 Byte Cache Block Protection Boundary
Integer
4 Optimal1 — — —
4 byte
<4 Optimal Good Good Good
2 Optimal — — —
2 byte
<2 Optimal Good Good Good
1 byte 1 Optimal — — —
Imw, 4 Good 3 Good Good Good
stmw <4 Poor 4 Poor Poor Poor
String 2 — Good Good Good Good
Floating Point
8 Optimal — — —
8 byte 4 — Good Good Good
<4 — Poor Poor Poor
4 Optimal — — —
4 byte
<4 Poor Poor Poor Poor
Note:

1. Optimal means one EA calculation occurs.

2. Not supported in little-endian mode, causes an alignment exception.

3. Good means multiple EA calculations occur that may cause additional bus activities with multiple bus transfers.
4. Poor means that an alignment exception occurs.
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6.4.7 Integer Store Gathering

The 750CL performs store gathering for write-through operations to nonguarded space. It performs cache-
inhibited stores to nonguarded space for 4-byte, word-aligned stores. These stores are combined in the LSU
to form a doubleword and are sent out on the 60x bus as a single-beat operation. However, stores are gath-
ered only if the successive stores meet the criteria and are queued and pending. Store gathering occurs
regardless of the address order of the stores. Store gathering is enabled by setting HIDO[SGE]. Stores can be
gathered in both endian modes.

Store gathering is not done for the following:
¢ Cacheable store operations
» Stores to guarded cache-inhibited or write-through space
* Byte-reverse store operations
* stwex. instructions
* ecowx instructions
* A store that occurs during a table search operation
* Floating-point store operations

If store gathering is enabled and the stores do not fall under the above categories, an eieio or sync instruc-
tion must be used to prevent two stores from being gathered.

6.4.8 System Register Unit Execution Timing

Most instructions executed by the SRU either directly access renamed registers or access or modify nonre-
named registers. They generally execute in a serial manner. Results from these instructions are not available
to subsequent instructions until the instruction completes and is retired. See Section 6.3.2.7 for more informa-
tion on serializing instructions executed by the SRU, and refer to Table 6-4 and Table 6-5 for SRU instruction
execution timings.

6.5 Memory Performance Considerations

Because the 750CL can have a maximum instruction throughput of three instructions per clock cycle, lack of
memory bandwidth can affect performance. For the 750CL to maximize performance, it must be able to read
and write data efficiently. If a system has multiple bus devices, one of them may experience long memory
latencies while another bus master (for example, a direct-memory access controller) is using the external
bus.

6.5.1 Caching and Memory Coherency

To minimize the effect of bus contention, the PowerPC Architecture defines WIM bits that are used to
configure memory regions as caching-enforced or caching-inhibited. Accesses to such memory locations
never update the L1 cache. If a cache-inhibited access hits the L1 cache, the cache block is invalidated. If the
cache block is marked modified, it is copied back to memory before being invalidated. Where caching is
permitted, memory is configured as either write-back or write-through, which are described as follows:

* Write-back— Configuring a memory region as write-back lets a processor modify data in the cache with-
out updating system memory. For such locations, memory updates occur only on modified cache block
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replacements, cache flushes, or when one processor needs data that is modified in another’s cache.
Therefore, configuring memory as write-back can help when bus traffic could cause bottlenecks, espe-
cially for multiprocessor systems and for regions in which data, such as local variables, is used often and
is coupled closely to a processor.

If multiple devices use data in a memory region marked write-through, snooping must be enabled to allow
the copy-back and cache invalidation operations necessary to ensure cache coherency. The 750CL’s
snooping hardware keeps other devices from accessing invalid data. For example, when snooping is
enabled, the 750CL monitors transactions of other bus devices. For example, if another device needs
data that is modified on the 750CL’s cache, the access is delayed so the 750CL can copy the modified
data to memory.

* Write-through—Store operations to memory marked write-through always update both system memory
and the L1 cache on cache hits. Because valid cache contents always match system memory marked
write-through, cache hits from other devices do not cause modified data to be copied back as they do for
locations marked write-back. However, all write operations are passed to the bus, which can limit perfor-
mance. Load operations that miss the L1 cache must wait for the external store operation.

Write-through configuration is useful when cached data must agree with external memory (for example,
video memory), when shared (global) data may be needed often, or when it is undesirable to allocate a
cache block on a cache miss.

Figure 3-1 Cache Integration describes the caches, memory configuration, and snooping in detail.

6.5.2 Effect of TLB Miss

If a page address translation is not in a TLB, the 750CL hardware searches the page tables and updates the
TLB when a translation is found. Table 6-2 shows the estimated latency for the hardware translation looka-
side buffer (TLB) load for different cache configurations and conditions.

Table 6-2. TLB Miss Latencies

e L2 Contor ProcegsorSystam ous v
100% cache hit — — 7
100% cache miss 100% cache hit — 13
100% cache miss 100% cache miss 2.5:1 (6:3:3:3 memory) 62
100% cache miss 100% cache miss 4:1 (5:2:2:2 memory) 77

The PTE table search assumes a hit in the first entry of the primary PTEG.

6.6 Instruction Scheduling Guidelines

The performance of the 750CL can be improved by avoiding resource conflicts and scheduling instructions to
take fullest advantage of the parallel execution units. Instruction scheduling on the 750CL can be improved by
observing the following guidelines:

¢ To reduce mispredictions, separate the instruction that sets CR bits from the branch instruction that eval-
uates them. Because there can be no more than 12 instructions in the processor (with the instruction that
sets CR in CQO and the dependent branch instruction in IQ5), there is no advantage to having more than
10 instructions between them.
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* Likewise, when branching to a location specified by the CTR or LR, separate the mtspr instruction that
initializes the CTR or LR from the dependent branch instruction. This ensures the register values are
available sooner to the branch instruction.

Schedule instructions such that two can be dispatched at a time.
* Schedule instructions to minimize stalls due to execution units being busy.

¢ Avoid scheduling high-latency instructions close together. Interspersing single-cycle latency integer
instructions between longer-latency instructions minimizes the effect that instructions such as integer
divide and multiply can have on throughput.

* Avoid using serializing instructions.
¢ Schedule instructions to avoid dispatch stalls:

— Six instructions can be tracked in the completion queue; therefore, only six instructions can be in the
execute stages at any one time.

— There are six GPR rename registers; therefore only six GPRs can be specified as destination oper-
ands at any time. If no rename registers are available, instructions cannot enter the execute stage
and remain in the reservation station or instruction queue until they become available.

Note: Load with update address instructions use two rename registers.

— Similarly, there are six FPR rename registers, so only six FPR destination operands can be in the
execute and complete stages at any time.

6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements

This section describes the specific resources required to avoid stalls during branch resolution, instruction
dispatching, and instruction completion.

6.6.1.1 Branch Resolution Resource Requirements
The following is a list of branch instructions and the resources required to avoid stalling the fetch unit in the
course of branch resolution:

¢ The bclr instruction requires LR availability.

* The bectr instruction requires CTR availability.

* Branch and link instructions require shadow LR availability.

¢ The “branch conditional on counter decrement and the CR” condition requires CTR availability or the CR
condition must be false, and the 750CL cannot execute instructions after an unresolved predicted branch
when the BPU encounters a branch.

* A branch conditional on CR condition cannot be executed following an unresolved predicted branch
instruction.

6.6.1.2 Dispatch Unit Resource Requirements
The following is a list of resources required to avoid stalls in the dispatch unit. IQ[0] and IQ[1] are the two
dispatch entries in the instruction queue:

* Requirements for dispatching from 1Q[0] are as follows:

— Needed execution unit available
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Needed GPR rename registers available

Needed FPR rename registers available

Completion queue is not full.

A completion-serialized instruction is not being executed.

* Requirements for dispatching from 1Q[1] are as follows:

Instruction in IQ[0] must dispatch.

Instruction dispatched by IQ[0] is not completion- or refetch-serialized.
Needed execution unit is available (after dispatch from 1Q[0]).

Needed GPR rename registers are available (after dispatch from 1Q[0]).
Needed FPR rename register is available (after dispatch from 1Q[0]).
Completion queue is not full (after dispatch from 1Q[0]).

6.6.1.3 Completion Unit Resource Requirements

The following is a list of resources required to avoid stalls in the completion unit; note that the two completion
entries are described as CQ[0] and CQ[1], where CQ[0] is the completion queue located at the end of the
completion queue (see Figure 6-4).

* Requirements for completing an instruction from CQ[0] are as follows:

— Instruction in CQ[0] must be finished.
— Instruction in CQ[0] must not follow an unresolved predicted branch.
— Instruction in CQ[0] must not cause an exception.

¢ Requirements for completing an instruction from CQ[1] are as follows:

— Instruction in CQ[0] must complete in same cycle.

— Instruction in CQ[1] must be finished.

— Instruction in CQ[1] must not follow an unresolved predicted branch.

— Instruction in CQ[1] must not cause an exception.

— Instruction in CQ[1] must be an integer or load instruction.

— Number of CR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of GPR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of FPR updates from both CQ[0] and CQ[1] must not exceed two.

6.7 Instruction Latency Summary

Table 6-3 through Table 6-7 on page 243 list the latencies associated with instructions executed by each
execution unit. Table 6-3 describes branch instruction latencies.

Table 6-3. Branch Instructions

Mnemonic Primary Extended Latency
b[l][a] 18 —
bell][a] 16 — Unless these instructions update either the CTR or the LR, branch operations are folded
if they are either taken or predicted as taken. They fall through if they are not taken or
becetr(l] 19 528 predicted as not taken.
belr(l] 19 16

Table 6-4 lists system register instruction latencies.
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Table 6-4. System Register Instructions

Mnemonic Primary Extended Unit Cycles Serialization
eieio 31 854 SRU 1 —
isync 19 150 SRU 2 Completion, refetch
mfmsr 31 83 SRU 1 —
mfspr (DBATS) 31 339 SRU 3 Execution
mfspr (IBATs) 31 339 SRU 3 —
mfspr (not I/DBATS) 31 339 SRU 1 Execution
mfsr 31 595 SRU 3 —
mfsrin 31 659 SRU 3 Execution
mftb 31 371 SRU 1 —
mtmsr 31 146 SRU 1 Execution
mtspr (DBATS) 31 467 SRU 2 Execution
mtspr (IBATs) 31 467 SRU 2 Execution
mtspr (not I/DBATS) 31 467 SRU 2 Execution
mtsr 31 210 SRU 2 Execution
mtsrin 31 242 SRU 2 Execution
mttb 31 467 SRU 1 Execution
rfi 19 50 SRU 2 Completion, refetch
sc 17 --1 SRU 2 Completion, refetch
sync 31 598 SRU 3! —
tibsync 2 31 566 — —
Notes:
Notes:

1. This assumes no pending stores in the store queue. If there are, the sync completes after they complete to memory. If broadcast
is enabled on the 60x bus, sync completes only after a successful broadcast.

2. tlbsync is dispatched only to the completion buffer (not to any execution unit) and is marked finished as it is dispatched. Upon
retirement, it waits for an external TLBISYNC signal to be asserted. In most systems TLBISYNC is always asserted so the instruc-
tion is a no-op.

Table 6-5 lists condition register logical instruction latencies.

Table 6-5. Condition Register Logical Instructions (Sheet 1 of 2)

Mnemonic Primary Extended Unit Cycles Serialization
crand 19 257 SRU 1 Execution
crandc 19 129 SRU 1 Execution
creqv 19 289 SRU 1 Execution
crnand 19 225 SRU 1 Execution
crnor 19 33 SRU 1 Execution
cror 19 449 SRU 1 Execution
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Table 6-5. Condition Register Logical Instructions (Sheet 2 of 2)

Mnemonic Primary Extended Unit Cycles
crorc 19 417 SRU 1
crxor 19 193 SRU 1
mcerf 19 0 SRU 1
mcerxr 31 512 SRU 1
mfcr 31 19 SRU 1
mtcrf 31 144 SRU 1

Preliminary

Serialization

Execution
Execution
Execution
Execution
Execution

Execution

Table 6-6 shows integer instruction latencies. Note that the IU1 executes all integer arithmetic instructions—
multiply, divide, shift, rotate, add, subtract, and compare. The U2 executes all integer instructions except

multiply and divide (that is, shift, rotate, add, subtract, and compare).

Table 6-6. Integer Instructions (Sheet 1 of 2)

Mnemonic Primary Extended Unit Cycles
addc[o][.] 31 10 1U1/1U2 1
adde[o][.] 31 138 1U1/1U2 1
addi 14 — 1U1/1U2 1
addic 12 — 1U1/1U2 1
addic. 13 — 1U1/1U2 1
addis 15 — 1U1/1U2 1
addmelo][.] 31 234 1U1/1U2 1
addze[o][.] 31 202 1U1/1U2 1
add[o][.] 31 266 1U1/1U2 1
andcl[.] 31 60 1U1/1U2 1
andi. 28 — 1U1/1U2 1
andis. 29 — 1U1/1U2 1
and[.] 31 28 1U1/1U2 1
cmp 31 0 1U1/1U2 1
cmpi 11 — 1U1/1U2 1
cmpl 31 32 1U1/1U2 1
cmpli 10 — 1U1/1U2 1
cntlzwl.] 31 26 1U1/1U2 1
divwul[o][.] 31 459 U1 19
divwl[o][.] 31 491 U1 19
eqv].] 31 284 IU1/1U2 1
extsbl.] 31 954 1U1/1U2 1
extsh[.] 31 922 U1/1U2 1
mulhwul.] 31 11 U1 2,3,45,6
mulhw[.] 31 75 U1 2,345
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Table 6-6. Integer Instructions (Sheet 2 of 2)

Mnemonic Primary Extended Unit Cycles Serialization
mulli 7 — U1 2,3 —
muli[o][.] 31 235 U1 2,345 —
nand[.] 31 476 1U1/1U2 1 —
nego][.] 31 104 1U1/1u2 1 —
nor[.] 31 124 IU1/1U2 1 —
orcl.] 31 412 1U1/1U2 1 —
ori 24 — 1U1/1U2 1 —
oris 25 — 1U1/1U2 1 —
orl.] 31 444 1U1/1U2 1 —
riwimil[.] 20 — 1U1/1U2 1 —
rlwinm[.] 21 — 1U1/1U2 1 —
riwnm[.] 23 — 1U1/1U2 1 —
slwl.] 31 24 1U1/1U2 1 —
srawil.] 31 824 1U1/1U2 1 —
sraw[.] 31 792 1U1/1U2 1 —
srw[.] 31 536 1U1/1U2 1 —
subfc[o][.] 31 8 1U1/1U2 1 —
subfe[o][.] 31 136 1U1/1U2 1 Execution
subfic 8 — 1U1/1U2 1 —
subfmelo][.] 31 232 1U1/1U2 1 Execution
subfze[o][.] 31 200 1U1/1U2 1 Execution
subf[.] 31 40 1U1/1U2 1 —
tw 31 4 1U1/1U2 2 —
twi 3 — 1U1/1U2 2 —
xori 26 — 1U1/1U2 1 —
xoris 27 — 1U1/1U2 1 —
xorl[.] 31 316 1U1/1U2 1 —

Table shows latencies for floating-point instructions. Pipelined floating-point instructions are shown with
number of clocks in each pipeline stage separated by dashes. Floating-point instructions with a single entry in
the cycles column are not pipelined; when the FPU executes these non pipelined instructions, it remains busy
for the full duration of the instruction execution and is not available for subsequent instructions.

Floating-Point Instructions (Sheet 1 of 3)

Mnemonic Primary Extended Unit Cycles Serialization
fabsl.] 63 264 FPU 1-1-1 —
faddsl.] 59 21 FPU 1-1-1 —
fadd[.] 63 21 FPU 1-1-1 —
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Floating-Point Instructions (Sheet 2 of 3)

Mnemonic
fcmpo
fempu
fetiwz[.]
fetiw[.]
fdivsl[.]
fdiv[.]
fmadds|.]
fmadd|.]
fmr[.]
fmsubs.]
fmsubl.]
fmuls[.]
fmul[.]
fnabs|.]
fnegl.]
fnmadds|.]
fnmadd][.]
fnmsubs|.]
fnmsubl.]
fres[.]
frspl.]
frsqrte[.]
fsell.]
fsubs].]
ps_abs|.]
ps_add[.]
ps_cmpo0
ps_cmpo1i
ps_cmpu0
ps_cmpufl
ps_div[.]
ps_madd[.]
ps_maddsO0].]
ps_madds1[.]
ps_merge00].]
ps_merge01[.]
ps_merge10][.]
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Extended
32
0
15
14
18
18
29
29
72
28
28
25
25
136
40
31
31
30
30
24
12
26
23
20
264
21
32
96

64
18
29
14
15

528

560

592

Unit
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU
FPU

Cycles
1-1-1
1-1-1
1-1-1
1-1-1

17
31
1-1-1
2-1-1
1-1-1
1-1-1
2-1-1
1-1-1
2-1-1
1-1-1
1-1-1
1-1-1
2-1-1
1-1-1
2-141
2-1-1
1-1-1
2-141
1-1-1
1-1-1
1-1-1
1-1-1
1-1-1
1-1-1
1-1-1
1-1-1
17
1-1-1
1-1-1
1-1-1
1-1-1
1-1-1
1-1-1
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Floating-Point Instructions (Sheet 3 of 3)

Mnemonic Primary Extended Unit Cycles Serialization
ps_merge_11[.] 4 624 FPU 1-1-1 —
ps_mr[.] 4 72 FPU 1-1-1 —
ps_msubl.] 4 28 FPU 1-1-1 —
ps_mul[.] 4 25 FPU 1-1-1 —
ps_muls0[.] 4 12 FPU 1-1-1 —
ps_muils1[.] 4 13 FPU 1-1-1 —
ps_nabs[.] 4 136 FPU 1-1-1 —
ps_neg][.] 4 40 FPU 1-1-1 —
ps_nmadd[.] 4 31 FPU 1-1-1 —
ps_nmsubl.] 4 30 FPU 1-1-1 —
ps_res|[.] 4 24 FPU 2-1-1 —
ps_rsqrte[.] 4 26 FPU 2-1-1 —
ps_sel[.] 4 23 FPU 1-1-1 —
ps_subl.] 4 20 FPU 1-1-1 —
ps_sumO|.] 4 10 FPU 1-1-1 —
ps_sumi[.] 4 11 FPU 1-1-1 —
fsub[.] 63 20 FPU 1-1-1 —
mcrfs 63 64 FPU 1-1-1 Execution
mffs[.] 63 583 FPU 1-1-1 Execution
mtfsbOv 63 70 FPU 3 —
mtfsb1[.] 63 38 FPU 3 —
mtfsfi[.] 63 134 FPU 3 —
mtfsf[.] 63 711 FPU 3 —

Table 6-7 shows load and store instruction latencies. Pipelined load/store instructions are shown with cycles
of total latency and throughput cycles separated by a colon.

Table 6-7. Load and Store Instructions (Sheet 1 of 4)

Mnemonic 