HLE DSP: Implement per-voice mixing stage

This commit is contained in:
wheremyfoodat 2024-11-03 19:50:27 +02:00
parent 884597615b
commit 07cee43a2b
2 changed files with 45 additions and 3 deletions

View file

@ -47,14 +47,17 @@ namespace Audio {
// Buffer of decoded PCM16 samples. TODO: Are there better alternatives to use over deque?
using SampleBuffer = std::deque<std::array<s16, 2>>;
using BufferQueue = std::priority_queue<Buffer>;
BufferQueue buffers;
SampleFormat sampleFormat = SampleFormat::ADPCM;
SourceType sourceType = SourceType::Stereo;
std::array<float, 3> gain0, gain1, gain2;
// There's one gain configuration for each of the 3 intermediate mixing stages
// And each gain configuration is composed of 4 gain values, one for each sample in a quad-channel sample
std::array<std::array<float, 4>, 3> gains;
u32 samplePosition; // Sample number into the current audio buffer
float rateMultiplier;
u16 syncCount;
@ -112,6 +115,10 @@ namespace Audio {
template <typename T>
using QuadFrame = Frame<T, 4>;
// Internally the DSP uses four channels when mixing.
// Neatly, QuadFrame<s32> means that every sample is a uint32x4 value, which is particularly nice for SIMD mixing
using IntermediateMix = QuadFrame<s32>;
private:
using ChannelFormat = HLE::DspConfiguration::OutputFormat;
// The audio from each DSP voice is converted to quadraphonic and then fed into 3 intermediate mixing stages
@ -151,7 +158,8 @@ namespace Audio {
using Source = Audio::DSPSource;
using SampleBuffer = Source::SampleBuffer;
using IntermediateMix = DSPMixer::IntermediateMix;
private:
enum class DSPState : u32 {
Off,

View file

@ -228,6 +228,7 @@ namespace Audio {
// The DSP checks the DSP configuration dirty bits on every frame, applies them, and clears them
read.dspConfiguration.dirtyRaw = 0;
read.dspConfiguration.dirtyRaw2 = 0;
std::array<IntermediateMix, 3> mixes{};
for (int i = 0; i < sourceCount; i++) {
// Update source configuration from the read region of shared memory
@ -250,6 +251,24 @@ namespace Audio {
status.samplePosition = source.samplePosition;
source.isBufferIDDirty = false;
// If the source is still enabled, mix its output into the intermediate mix buffers
if (source.enabled) {
for (int mix = 0; mix < mixes.size(); mix++) {
IntermediateMix& intermediateMix = mixes[mix];
const std::array<float, 4>& gains = source.gains[mix];
// TODO: SIMD implementations
for (usize sampleIndex = 0; sampleIndex < Audio::samplesInFrame; sampleIndex++) {
// Mono samples are in the format: (l, r)
// When converting to quad, gain0 and gain2 are applied to the left sample, gain1 and gain3 to the right one
intermediateMix[sampleIndex][0] += s32(source.currentSamples[sampleIndex][0] * gains[0]);
intermediateMix[sampleIndex][1] += s32(source.currentSamples[sampleIndex][1] * gains[1]);
intermediateMix[sampleIndex][2] += s32(source.currentSamples[sampleIndex][0] * gains[2]);
intermediateMix[sampleIndex][3] += s32(source.currentSamples[sampleIndex][1] * gains[3]);
}
}
}
}
performMix(read, write);
@ -374,6 +393,21 @@ namespace Audio {
}
}
#define CONFIG_GAIN(index) \
if (config.gain##index##Dirty) { \
auto& dest = source.gains[index]; \
auto& source = config.gain[index]; \
\
dest[0] = float(source[0]); \
dest[1] = float(source[1]); \
dest[2] = float(source[2]); \
dest[3] = float(source[3]); \
}
CONFIG_GAIN(0);
CONFIG_GAIN(1);
CONFIG_GAIN(2);
#undef CONFIG_GAIN
config.dirtyRaw = 0;
}