Moar timer

This commit is contained in:
wheremyfoodat 2023-08-14 15:13:37 +03:00
parent fa58c7a7d6
commit 1354b0f7fa
4 changed files with 91 additions and 18 deletions

View file

@ -82,6 +82,8 @@ private:
bool canThreadRun(const Thread& t);
bool shouldWaitOnObject(KernelObject* object);
void releaseMutex(Mutex* moo);
void cancelTimer(Timer* timer);
void signalTimer(Handle timerHandle, Timer* timer);
// Wake up the thread with the highest priority out of all threads in the waitlist
// Returns the index of the woken up thread

View file

@ -207,21 +207,23 @@ struct KernelObject {
}
// Retrieves a reference to the waitlist for a specified object
// We return a reference because this function is only called in the kernel threading internals
// We want the kernel to be able to easily manage waitlists, by reading/parsing them or setting/clearing bits.
// As we mention in the definition of the "Event" struct, the format for wailists is very simple and made to be efficient.
// Each bit corresponds to a thread index and denotes whether the corresponding thread is waiting on this object
// For example if bit 0 of the wait list is set, then the thread with index 0 is waiting on our object
u64& getWaitlist() {
// This code is actually kinda trash but eh good enough
switch (type) {
case KernelObjectType::Event: return getData<Event>()->waitlist;
case KernelObjectType::Mutex: return getData<Mutex>()->waitlist;
case KernelObjectType::Semaphore: return getData<Mutex>()->waitlist;
case KernelObjectType::Thread: return getData<Thread>()->threadsWaitingForTermination;
// This should be unreachable once we fully implement sync objects
default: [[unlikely]]
// We return a reference because this function is only called in the kernel threading internals
// We want the kernel to be able to easily manage waitlists, by reading/parsing them or setting/clearing bits.
// As we mention in the definition of the "Event" struct, the format for wailists is very simple and made to be efficient.
// Each bit corresponds to a thread index and denotes whether the corresponding thread is waiting on this object
// For example if bit 0 of the wait list is set, then the thread with index 0 is waiting on our object
u64& getWaitlist() {
// This code is actually kinda trash but eh good enough
switch (type) {
case KernelObjectType::Event: return getData<Event>()->waitlist;
case KernelObjectType::Mutex: return getData<Mutex>()->waitlist;
case KernelObjectType::Semaphore: return getData<Mutex>()->waitlist;
case KernelObjectType::Thread: return getData<Thread>()->threadsWaitingForTermination;
case KernelObjectType::Timer: return getData<Timer>()->waitlist;
// This should be unreachable once we fully implement sync objects
default: [[unlikely]]
Helpers::panic("Called GetWaitList on kernel object without a waitlist (Type: %s)", getTypeName());
}
}
}
}
};

View file

@ -252,6 +252,14 @@ void Kernel::acquireSyncObject(KernelObject* object, const Thread& thread) {
case KernelObjectType::Thread:
break;
case KernelObjectType::Timer: {
Timer* timer = object->getData<Timer>();
if (timer->resetType == ResetType::OneShot) { // One-shot timers automatically get cleared after waking up a thread
timer->fired = false;
}
break;
}
default: Helpers::panic("Acquiring unimplemented sync object %s", object->getTypeName());
}
}

View file

@ -4,20 +4,81 @@ Handle Kernel::makeTimer(ResetType type) {
Handle ret = makeObject(KernelObjectType::Timer);
objects[ret].data = new Timer(type);
if (type == ResetType::Pulse) Helpers::panic("Created pulse timer");
return ret;
}
void Kernel::cancelTimer(Timer* timer) {
// TODO: When we have a scheduler this should properly cancel timer events in the scheduler
}
void Kernel::signalTimer(Handle timerHandle, Timer* timer) {
timer->fired = true;
wakeupAllThreads(timer->waitlist, timerHandle);
switch (timer->resetType) {
case ResetType::OneShot: timer->fired = false; break;
case ResetType::Sticky: break;
case ResetType::Pulse: Helpers::panic("Signalled pulsing timer"); break;
}
}
void Kernel::svcCreateTimer() {
const u32 resetType = regs[1];
if (resetType > 2) {
Helpers::panic("Invalid reset type for event %d", resetType);
}
// Have a warning here until our timers don't suck
Helpers::warn("Called Kernel::CreateTimer");
logSVC("CreateTimer (resetType = %s)\n", resetTypeToString(resetType));
regs[0] = Result::Success;
regs[1] = makeTimer(static_cast<ResetType>(resetType));
}
void Kernel::svcSetTimer() { Helpers::panic("Kernel::SetTimer"); }
void Kernel::svcClearTimer() { Helpers::panic("Kernel::ClearTimer"); }
void Kernel::svcSetTimer() {
Handle handle = regs[0];
// TODO: Is this actually s64 or u64? 3DBrew says s64, but u64 makes more sense
const s64 initial = s64(u64(regs[1]) | (u64(regs[2]) << 32));
const s64 interval = s64(u64(regs[3]) | (u64(regs[4]) << 32));
logSVC("SetTimer (handle = %X, initial delay = %llxX, interval delay = %llx)\n", handle, initial, interval);
KernelObject* object = getObject(handle, KernelObjectType::Timer);
if (object == nullptr) {
Helpers::panic("Tried to set non-existent timer %X\n", handle);
regs[0] = Result::Kernel::InvalidHandle;
}
Timer* timer = object->getData<Timer>();
cancelTimer(timer);
timer->initialDelay = initial;
timer->interval = interval;
// If the initial delay is 0 then instantly signal the timer
if (initial == 0) {
signalTimer(handle, timer);
} else {
// This should schedule an event in the scheduler when we have one
}
regs[0] = Result::Success;
}
void Kernel::svcClearTimer() {
Handle handle = regs[0];
logSVC("ClearTimer (handle = %X)\n", handle);
KernelObject* object = getObject(handle, KernelObjectType::Timer);
if (object == nullptr) {
Helpers::panic("Tried to clear non-existent timer %X\n", handle);
regs[0] = Result::Kernel::InvalidHandle;
} else {
object->getData<Timer>()->fired = false;
regs[0] = Result::Success;
}
}
void Kernel::svcCancelTimer() { Helpers::panic("Kernel::CancelTimer"); }