Introduce "Renderer" abstraction layer

Adds a `renderer` class for which a rendering backend must implement and
will conditionally use OpenGL in the case that `ENABLE_GL` is enabled.
This commit is contained in:
Wunkolo 2023-07-10 08:53:16 -07:00
parent d664d5caf0
commit 2a1683ba62
9 changed files with 224 additions and 156 deletions

View file

@ -93,7 +93,7 @@ endif()
set(SOURCE_FILES src/main.cpp src/emulator.cpp src/io_file.cpp src/config.cpp
src/core/CPU/cpu_dynarmic.cpp src/core/CPU/dynarmic_cycles.cpp
src/core/memory.cpp src/httpserver.cpp src/stb_image_write.c
src/core/memory.cpp src/renderer.cpp src/httpserver.cpp src/stb_image_write.c
)
set(CRYPTO_SOURCE_FILES src/core/crypto/aes_engine.cpp)
set(KERNEL_SOURCE_FILES src/core/kernel/kernel.cpp src/core/kernel/resource_limits.cpp

View file

@ -21,7 +21,7 @@ class ShaderJIT {
ShaderCache cache;
#endif
public:
public:
#ifdef PANDA3DS_SHADER_JIT_SUPPORTED
// Call this before starting to process a batch of vertices
// This will read the PICA config (uploaded shader and shader operand descriptors) and search if we've already compiled this shader
@ -29,9 +29,7 @@ public:
// The caller must make sure the entrypoint has been properly set beforehand
void prepare(PICAShader& shaderUnit);
void reset();
void run(PICAShader& shaderUnit) {
prologueCallback(shaderUnit, entrypointCallback);
}
void run(PICAShader& shaderUnit) { prologueCallback(shaderUnit, entrypointCallback); }
static constexpr bool isAvailable() { return true; }
#else
@ -44,7 +42,7 @@ public:
}
// Define dummy callback. This should never be called if the shader JIT is not supported
using Callback = void(*)(PICAShader& shaderUnit);
using Callback = void (*)(PICAShader& shaderUnit);
Callback activeShaderCallback = nullptr;
void reset() {}

View file

@ -1,39 +1,39 @@
#pragma once
#include <array>
#include "PICA/dynapica/shader_rec.hpp"
#include "PICA/float_types.hpp"
#include "PICA/pica_vertex.hpp"
#include "PICA/regs.hpp"
#include "PICA/shader_unit.hpp"
#include "config.hpp"
#include "helpers.hpp"
#include "logger.hpp"
#include "memory.hpp"
#include "PICA/float_types.hpp"
#include "PICA/regs.hpp"
#include "PICA/shader_unit.hpp"
#include "PICA/dynapica/shader_rec.hpp"
#include "renderer_gl/renderer_gl.hpp"
#include "PICA/pica_vertex.hpp"
#include "renderer.hpp"
class GPU {
static constexpr u32 regNum = 0x300;
using vec4f = OpenGL::Vector<Floats::f24, 4>;
using vec4f = std::array<Floats::f24, 4>;
using Registers = std::array<u32, regNum>;
Memory& mem;
EmulatorConfig& config;
ShaderUnit shaderUnit;
ShaderJIT shaderJIT; // Doesn't do anything if JIT is disabled or not supported
ShaderJIT shaderJIT; // Doesn't do anything if JIT is disabled or not supported
u8* vram = nullptr;
MAKE_LOG_FUNCTION(log, gpuLogger)
static constexpr u32 maxAttribCount = 12; // Up to 12 vertex attributes
static constexpr u32 maxAttribCount = 12; // Up to 12 vertex attributes
static constexpr u32 vramSize = u32(6_MB);
Registers regs; // GPU internal registers
std::array<vec4f, 16> currentAttributes; // Vertex attributes before being passed to the shader
Registers regs; // GPU internal registers
std::array<vec4f, 16> currentAttributes; // Vertex attributes before being passed to the shader
std::array<vec4f, 16> immediateModeAttributes; // Vertex attributes uploaded via immediate mode submission
std::array<vec4f, 16> immediateModeAttributes; // Vertex attributes uploaded via immediate mode submission
std::array<PICA::Vertex, 3> immediateModeVertices;
uint immediateModeVertIndex;
uint immediateModeAttrIndex; // Index of the immediate mode attribute we're uploading
uint immediateModeAttrIndex; // Index of the immediate mode attribute we're uploading
template <bool indexed, bool useShaderJIT>
void drawArrays();
@ -42,35 +42,33 @@ class GPU {
void drawArrays(bool indexed);
struct AttribInfo {
u32 offset = 0; // Offset from base vertex array
int size = 0; // Bytes per vertex
u32 offset = 0; // Offset from base vertex array
int size = 0; // Bytes per vertex
u32 config1 = 0;
u32 config2 = 0;
u32 componentCount = 0; // Number of components for the attribute
u32 componentCount = 0; // Number of components for the attribute
u64 getConfigFull() {
return u64(config1) | (u64(config2) << 32);
}
u64 getConfigFull() { return u64(config1) | (u64(config2) << 32); }
};
u64 getVertexShaderInputConfig() {
return u64(regs[PICA::InternalRegs::VertexShaderInputCfgLow]) | (u64(regs[PICA::InternalRegs::VertexShaderInputCfgHigh]) << 32);
}
std::array<AttribInfo, maxAttribCount> attributeInfo; // Info for each of the 12 attributes
u32 totalAttribCount = 0; // Number of vertex attributes to send to VS
u32 fixedAttribMask = 0; // Which attributes are fixed?
u32 fixedAttribIndex = 0; // Which fixed attribute are we writing to ([0, 11] range)
u32 fixedAttribCount = 0; // How many attribute components have we written? When we get to 4 the attr will actually get submitted
std::array<u32, 3> fixedAttrBuff; // Buffer to hold fixed attributes in until they get submitted
std::array<AttribInfo, maxAttribCount> attributeInfo; // Info for each of the 12 attributes
u32 totalAttribCount = 0; // Number of vertex attributes to send to VS
u32 fixedAttribMask = 0; // Which attributes are fixed?
u32 fixedAttribIndex = 0; // Which fixed attribute are we writing to ([0, 11] range)
u32 fixedAttribCount = 0; // How many attribute components have we written? When we get to 4 the attr will actually get submitted
std::array<u32, 3> fixedAttrBuff; // Buffer to hold fixed attributes in until they get submitted
// Command processor pointers for GPU command lists
u32* cmdBuffStart = nullptr;
u32* cmdBuffEnd = nullptr;
u32* cmdBuffCurr = nullptr;
Renderer renderer;
std::unique_ptr<Renderer> renderer;
PICA::Vertex getImmediateModeVertex();
public:
@ -84,11 +82,9 @@ class GPU {
// Set to false by the renderer when the lighting_lut is uploaded ot the GPU
bool lightingLUTDirty = false;
GPU(Memory& mem, GLStateManager& gl, EmulatorConfig& config);
void initGraphicsContext() { renderer.initGraphicsContext(); }
void getGraphicsContext() { renderer.getGraphicsContext(); }
void display() { renderer.display(); }
void screenshot(const std::string& name) { renderer.screenshot(name); }
GPU(Memory& mem, EmulatorConfig& config);
void initGraphicsContext() { renderer->initGraphicsContext(); }
void display() { renderer->display(); }
void fireDMA(u32 dest, u32 source, u32 size);
void reset();
@ -106,14 +102,12 @@ class GPU {
// TODO: Emulate the transfer engine & its registers
// Then this can be emulated by just writing the appropriate values there
void clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
renderer.clearBuffer(startAddress, endAddress, value, control);
}
void clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) { renderer->clearBuffer(startAddress, endAddress, value, control); }
// TODO: Emulate the transfer engine & its registers
// Then this can be emulated by just writing the appropriate values there
void displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
renderer.displayTransfer(inputAddr, outputAddr, inputSize, outputSize, flags);
renderer->displayTransfer(inputAddr, outputAddr, inputSize, outputSize, flags);
}
// Read a value of type T from physical address paddr

37
include/renderer.hpp Normal file
View file

@ -0,0 +1,37 @@
#pragma once
#include <array>
#include <span>
#include "PICA/pica_vertex.hpp"
#include "PICA/regs.hpp"
#include "helpers.hpp"
class GPU;
class Renderer {
protected:
GPU& gpu;
static constexpr u32 regNum = 0x300; // Number of internal PICA registers
const std::array<u32, regNum>& regs;
public:
Renderer(GPU& gpu, const std::array<u32, regNum>& internalRegs);
virtual ~Renderer();
static constexpr u32 vertexBufferSize = 0x10000;
virtual void reset() = 0;
virtual void display() = 0; // Display the 3DS screen contents to the window
virtual void initGraphicsContext() = 0; // Initialize graphics context
virtual void clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) = 0; // Clear a GPU buffer in VRAM
virtual void displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) = 0; // Perform display transfer
virtual void drawVertices(PICA::PrimType primType, std::span<const PICA::Vertex> vertices) = 0; // Draw the given vertices
virtual void setFBSize(u32 width, u32 height) = 0;
virtual void setColourFormat(PICA::ColorFmt format) = 0;
virtual void setDepthFormat(PICA::DepthFmt format) = 0;
virtual void setColourBufferLoc(u32 loc) = 0;
virtual void setDepthBufferLoc(u32 loc) = 0;
};

View file

@ -4,20 +4,20 @@
#include <stb_image_write.h>
#include "PICA/float_types.hpp"
#include "PICA/pica_vertex.hpp"
#include "PICA/regs.hpp"
#include "gl_state.hpp"
#include "helpers.hpp"
#include "logger.hpp"
#include "renderer.hpp"
#include "surface_cache.hpp"
#include "textures.hpp"
#include "PICA/regs.hpp"
#include "PICA/pica_vertex.hpp"
// More circular dependencies!
class GPU;
class Renderer {
GPU& gpu;
GLStateManager& gl;
class RendererGL final : public Renderer {
GLStateManager gl = {};
OpenGL::Program triangleProgram;
OpenGL::Program displayProgram;
@ -31,7 +31,7 @@ class Renderer {
GLint textureEnvCombinerLoc = -1;
GLint textureEnvColorLoc = -1;
GLint textureEnvScaleLoc = -1;
// Uniform of PICA registers
GLint picaRegLoc = -1;
@ -50,7 +50,7 @@ class Renderer {
OpenGL::uvec2 fbSize; // The size of the framebuffer (ie both the colour and depth buffer)'
u32 colourBufferLoc; // Location in 3DS VRAM for the colour buffer
u32 colourBufferLoc; // Location in 3DS VRAM for the colour buffer
PICA::ColorFmt colourBufferFormat; // Format of the colours stored in the colour buffer
// Same for the depth/stencil buffer
@ -61,9 +61,6 @@ class Renderer {
OpenGL::VertexArray dummyVAO;
OpenGL::VertexBuffer dummyVBO;
static constexpr u32 regNum = 0x300; // Number of internal PICA registers
const std::array<u32, regNum>& regs;
OpenGL::Texture screenTexture;
GLuint lightLUTTextureArray;
OpenGL::Framebuffer screenFramebuffer;
@ -79,12 +76,11 @@ class Renderer {
void updateLightingLUT();
public:
Renderer(GPU& gpu, GLStateManager& gl, const std::array<u32, regNum>& internalRegs) : gpu(gpu), gl(gl), regs(internalRegs) {}
RendererGL(GPU& gpu, const std::array<u32, regNum>& internalRegs) : Renderer(gpu, internalRegs) {}
void reset();
void display(); // Display the 3DS screen contents to the window
void initGraphicsContext(); // Initialize graphics context
void getGraphicsContext(); // Set up graphics context for rendering
void clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control); // Clear a GPU buffer in VRAM
void displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags); // Perform display transfer
void drawVertices(PICA::PrimType primType, std::span<const PICA::Vertex> vertices); // Draw the given vertices
@ -107,6 +103,4 @@ class Renderer {
void setColourBufferLoc(u32 loc) { colourBufferLoc = loc; }
void setDepthBufferLoc(u32 loc) { depthBufferLoc = loc; }
static constexpr u32 vertexBufferSize = 0x10000;
};

View file

@ -2,19 +2,28 @@
#include <array>
#include <bitset>
#include <cstdio>
#include <cstddef>
#include <cstdio>
#include "PICA/float_types.hpp"
#include "PICA/regs.hpp"
#if ENABLE_OPENGL
#include "renderer_gl/renderer_gl.hpp"
#endif
using namespace Floats;
// Note: For when we have multiple backends, the GL state manager can stay here and have the constructor for the Vulkan-or-whatever renderer ignore it
// Thus, our GLStateManager being here does not negatively impact renderer-agnosticness
GPU::GPU(Memory& mem, GLStateManager& gl, EmulatorConfig& config) : mem(mem), renderer(*this, gl, regs), config(config) {
GPU::GPU(Memory& mem, EmulatorConfig& config) : mem(mem), config(config) {
vram = new u8[vramSize];
mem.setVRAM(vram); // Give the bus a pointer to our VRAM
mem.setVRAM(vram); // Give the bus a pointer to our VRAM
// TODO: configurable backend
#if ENABLE_OPENGL
renderer.reset(new RendererGL(*this, regs));
#endif
}
void GPU::reset() {
@ -41,7 +50,7 @@ void GPU::reset() {
e.config2 = 0;
}
renderer.reset();
renderer->reset();
}
// Call the correct version of drawArrays based on whether this is an indexed draw (first template parameter)
@ -73,15 +82,14 @@ void GPU::drawArrays() {
// Base address for vertex attributes
// The vertex base is always on a quadword boundary because the PICA does weird alignment shit any time possible
const u32 vertexBase = ((regs[PICA::InternalRegs::VertexAttribLoc] >> 1) & 0xfffffff) * 16;
const u32 vertexCount = regs[PICA::InternalRegs::VertexCountReg]; // Total # of vertices to transfer
const u32 vertexCount = regs[PICA::InternalRegs::VertexCountReg]; // Total # of vertices to transfer
// Configures the type of primitive and the number of vertex shader outputs
const u32 primConfig = regs[PICA::InternalRegs::PrimitiveConfig];
const PICA::PrimType primType = static_cast<PICA::PrimType>(Helpers::getBits<8, 2>(primConfig));
if (vertexCount > Renderer::vertexBufferSize) Helpers::panic("[PICA] vertexCount > vertexBufferSize");
if ((primType == PICA::PrimType::TriangleList && vertexCount % 3) ||
(primType == PICA::PrimType::TriangleStrip && vertexCount < 3) ||
if ((primType == PICA::PrimType::TriangleList && vertexCount % 3) || (primType == PICA::PrimType::TriangleStrip && vertexCount < 3) ||
(primType == PICA::PrimType::TriangleFan && vertexCount < 3)) {
Helpers::panic("Invalid vertex count for primitive. Type: %d, vert count: %d\n", primType, vertexCount);
}
@ -89,10 +97,10 @@ void GPU::drawArrays() {
// Get the configuration for the index buffer, used only for indexed drawing
u32 indexBufferConfig = regs[PICA::InternalRegs::IndexBufferConfig];
u32 indexBufferPointer = vertexBase + (indexBufferConfig & 0xfffffff);
bool shortIndex = Helpers::getBit<31>(indexBufferConfig); // Indicates whether vert indices are 16-bit or 8-bit
bool shortIndex = Helpers::getBit<31>(indexBufferConfig); // Indicates whether vert indices are 16-bit or 8-bit
// Stuff the global attribute config registers in one u64 to make attr parsing easier
// TODO: Cache this when the vertex attribute format registers are written to
// TODO: Cache this when the vertex attribute format registers are written to
u64 vertexCfg = u64(regs[PICA::InternalRegs::AttribFormatLow]) | (u64(regs[PICA::InternalRegs::AttribFormatHigh]) << 32);
if constexpr (!indexed) {
@ -111,24 +119,24 @@ void GPU::drawArrays() {
constexpr size_t vertexCacheSize = 64;
struct {
std::bitset<vertexCacheSize> validBits{0}; // Shows which tags are valid. If the corresponding bit is 1, then there's an entry
std::array<u32, vertexCacheSize> ids; // IDs (ie indices of the cached vertices in the 3DS vertex buffer)
std::array<u32, vertexCacheSize> bufferPositions; // Positions of the cached vertices in our own vertex buffer
std::bitset<vertexCacheSize> validBits{0}; // Shows which tags are valid. If the corresponding bit is 1, then there's an entry
std::array<u32, vertexCacheSize> ids; // IDs (ie indices of the cached vertices in the 3DS vertex buffer)
std::array<u32, vertexCacheSize> bufferPositions; // Positions of the cached vertices in our own vertex buffer
} vertexCache;
for (u32 i = 0; i < vertexCount; i++) {
u32 vertexIndex; // Index of the vertex in the VBO for indexed rendering
u32 vertexIndex; // Index of the vertex in the VBO for indexed rendering
if constexpr (!indexed) {
vertexIndex = i + regs[PICA::InternalRegs::VertexOffsetReg];
} else {
if (shortIndex) {
auto ptr = getPointerPhys<u16>(indexBufferPointer);
vertexIndex = *ptr; // TODO: This is very unsafe
vertexIndex = *ptr; // TODO: This is very unsafe
indexBufferPointer += 2;
} else {
auto ptr = getPointerPhys<u8>(indexBufferPointer);
vertexIndex = *ptr; // TODO: This is also very unsafe
vertexIndex = *ptr; // TODO: This is also very unsafe
indexBufferPointer += 1;
}
}
@ -152,22 +160,22 @@ void GPU::drawArrays() {
}
int attrCount = 0;
int buffer = 0; // Vertex buffer index for non-fixed attributes
int buffer = 0; // Vertex buffer index for non-fixed attributes
while (attrCount < totalAttribCount) {
// Check if attribute is fixed or not
if (fixedAttribMask & (1 << attrCount)) { // Fixed attribute
vec4f& fixedAttr = shaderUnit.vs.fixedAttributes[attrCount]; // TODO: Is this how it works?
if (fixedAttribMask & (1 << attrCount)) { // Fixed attribute
vec4f& fixedAttr = shaderUnit.vs.fixedAttributes[attrCount]; // TODO: Is this how it works?
vec4f& inputAttr = currentAttributes[attrCount];
std::memcpy(&inputAttr, &fixedAttr, sizeof(vec4f)); // Copy fixed attr to input attr
std::memcpy(&inputAttr, &fixedAttr, sizeof(vec4f)); // Copy fixed attr to input attr
attrCount++;
} else { // Non-fixed attribute
auto& attr = attributeInfo[buffer]; // Get information for this attribute
u64 attrCfg = attr.getConfigFull(); // Get config1 | (config2 << 32)
} else { // Non-fixed attribute
auto& attr = attributeInfo[buffer]; // Get information for this attribute
u64 attrCfg = attr.getConfigFull(); // Get config1 | (config2 << 32)
u32 attrAddress = vertexBase + attr.offset + (vertexIndex * attr.size);
for (int j = 0; j < attr.componentCount; j++) {
uint index = (attrCfg >> (j * 4)) & 0xf; // Get index of attribute in vertexCfg
uint index = (attrCfg >> (j * 4)) & 0xf; // Get index of attribute in vertexCfg
// Vertex attributes used as padding
// 12, 13, 14 and 15 are equivalent to 4, 8, 12 and 16 bytes of padding respectively
@ -179,15 +187,15 @@ void GPU::drawArrays() {
}
u32 attribInfo = (vertexCfg >> (index * 4)) & 0xf;
u32 attribType = attribInfo & 0x3; // Type of attribute(sbyte/ubyte/short/float)
u32 size = (attribInfo >> 2) + 1; // Total number of components
u32 attribType = attribInfo & 0x3; // Type of attribute(sbyte/ubyte/short/float)
u32 size = (attribInfo >> 2) + 1; // Total number of components
//printf("vertex_attribute_strides[%d] = %d\n", attrCount, attr.size);
// printf("vertex_attribute_strides[%d] = %d\n", attrCount, attr.size);
vec4f& attribute = currentAttributes[attrCount];
uint component; // Current component
uint component; // Current component
switch (attribType) {
case 0: { // Signed byte
case 0: { // Signed byte
s8* ptr = getPointerPhys<s8>(attrAddress);
for (component = 0; component < size; component++) {
float val = static_cast<float>(*ptr++);
@ -197,7 +205,7 @@ void GPU::drawArrays() {
break;
}
case 1: { // Unsigned byte
case 1: { // Unsigned byte
u8* ptr = getPointerPhys<u8>(attrAddress);
for (component = 0; component < size; component++) {
float val = static_cast<float>(*ptr++);
@ -207,7 +215,7 @@ void GPU::drawArrays() {
break;
}
case 2: { // Short
case 2: { // Short
s16* ptr = getPointerPhys<s16>(attrAddress);
for (component = 0; component < size; component++) {
float val = static_cast<float>(*ptr++);
@ -217,7 +225,7 @@ void GPU::drawArrays() {
break;
}
case 3: { // Float
case 3: { // Float
float* ptr = getPointerPhys<float>(attrAddress);
for (component = 0; component < size; component++) {
float val = *ptr++;
@ -251,8 +259,8 @@ void GPU::drawArrays() {
const u32 mapping = (inputAttrCfg >> (j * 4)) & 0xf;
std::memcpy(&shaderUnit.vs.inputs[mapping], &currentAttributes[j], sizeof(vec4f));
}
if constexpr (useShaderJIT) {
if constexpr (useShaderJIT) {
shaderJIT.run(shaderUnit.vs);
} else {
shaderUnit.vs.run();
@ -264,14 +272,14 @@ void GPU::drawArrays() {
for (int i = 0; i < totalShaderOutputs; i++) {
const u32 config = regs[PICA::InternalRegs::ShaderOutmap0 + i];
for (int j = 0; j < 4; j++) { // pls unroll
for (int j = 0; j < 4; j++) { // pls unroll
const u32 mapping = (config >> (j * 8)) & 0x1F;
out.raw[mapping] = shaderUnit.vs.outputs[i][j];
}
}
}
renderer.drawVertices(primType, std::span(vertices).first(vertexCount));
renderer->drawVertices(primType, std::span(vertices).first(vertexCount));
}
PICA::Vertex GPU::getImmediateModeVertex() {
@ -289,7 +297,9 @@ PICA::Vertex GPU::getImmediateModeVertex() {
std::memcpy(&v.s.colour, &shaderUnit.vs.outputs[1], sizeof(vec4f));
std::memcpy(&v.s.texcoord0, &shaderUnit.vs.outputs[2], 2 * sizeof(f24));
printf("(x, y, z, w) = (%f, %f, %f, %f)\n", (double)v.s.positions[0], (double)v.s.positions[1], (double)v.s.positions[2], (double)v.s.positions[3]);
printf(
"(x, y, z, w) = (%f, %f, %f, %f)\n", (double)v.s.positions[0], (double)v.s.positions[1], (double)v.s.positions[2], (double)v.s.positions[3]
);
printf("(r, g, b, a) = (%f, %f, %f, %f)\n", (double)v.s.colour[0], (double)v.s.colour[1], (double)v.s.colour[2], (double)v.s.colour[3]);
printf("(u, v ) = (%f, %f)\n", (double)v.s.texcoord0[0], (double)v.s.texcoord0[1]);

View file

@ -1,4 +1,5 @@
#include "renderer_gl/renderer_gl.hpp"
#include "PICA/float_types.hpp"
#include "PICA/gpu.hpp"
#include "PICA/regs.hpp"
@ -576,7 +577,7 @@ const char* displayFragmentShader = R"(
}
)";
void Renderer::reset() {
void RendererGL::reset() {
depthBufferCache.reset();
colourBufferCache.reset();
textureCache.reset();
@ -592,10 +593,10 @@ void Renderer::reset() {
const auto oldProgram = OpenGL::getProgram();
gl.useProgram(triangleProgram);
oldDepthScale = -1.0; // Default depth scale to -1.0, which is what games typically use
oldDepthOffset = 0.0; // Default depth offset to 0
oldDepthmapEnable = false; // Enable w buffering
oldDepthScale = -1.0; // Default depth scale to -1.0, which is what games typically use
oldDepthOffset = 0.0; // Default depth offset to 0
oldDepthmapEnable = false; // Enable w buffering
glUniform1f(depthScaleLoc, oldDepthScale);
glUniform1f(depthOffsetLoc, oldDepthOffset);
@ -605,10 +606,10 @@ void Renderer::reset() {
}
}
void Renderer::initGraphicsContext() {
void RendererGL::initGraphicsContext() {
OpenGL::Shader vert(vertexShader, OpenGL::Vertex);
OpenGL::Shader frag(fragmentShader, OpenGL::Fragment);
triangleProgram.create({ vert, frag });
triangleProgram.create({vert, frag});
gl.useProgram(triangleProgram);
textureEnvSourceLoc = OpenGL::uniformLocation(triangleProgram, "u_textureEnvSource");
@ -630,10 +631,10 @@ void Renderer::initGraphicsContext() {
OpenGL::Shader vertDisplay(displayVertexShader, OpenGL::Vertex);
OpenGL::Shader fragDisplay(displayFragmentShader, OpenGL::Fragment);
displayProgram.create({ vertDisplay, fragDisplay });
displayProgram.create({vertDisplay, fragDisplay});
gl.useProgram(displayProgram);
glUniform1i(OpenGL::uniformLocation(displayProgram, "u_texture"), 0); // Init sampler object
glUniform1i(OpenGL::uniformLocation(displayProgram, "u_texture"), 0); // Init sampler object
vbo.createFixedSize(sizeof(Vertex) * vertexBufferSize, GL_STREAM_DRAW);
gl.bindVBO(vbo);
@ -669,10 +670,10 @@ void Renderer::initGraphicsContext() {
dummyVAO.create();
// Create texture and framebuffer for the 3DS screen
const u32 screenTextureWidth = 400; // Top screen is 400 pixels wide, bottom is 320
const u32 screenTextureHeight = 2 * 240; // Both screens are 240 pixels tall
glGenTextures(1,&lightLUTTextureArray);
const u32 screenTextureWidth = 400; // Top screen is 400 pixels wide, bottom is 320
const u32 screenTextureHeight = 2 * 240; // Both screens are 240 pixels tall
glGenTextures(1, &lightLUTTextureArray);
auto prevTexture = OpenGL::getTex2D();
screenTexture.create(screenTextureWidth, screenTextureHeight, GL_RGBA8);
@ -684,8 +685,7 @@ void Renderer::initGraphicsContext() {
screenFramebuffer.createWithDrawTexture(screenTexture);
screenFramebuffer.bind(OpenGL::DrawAndReadFramebuffer);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
Helpers::panic("Incomplete framebuffer");
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) Helpers::panic("Incomplete framebuffer");
// TODO: This should not clear the framebuffer contents. It should load them from VRAM.
GLint oldViewport[4];
@ -699,20 +699,31 @@ void Renderer::initGraphicsContext() {
}
// Set up the OpenGL blending context to match the emulated PICA
void Renderer::setupBlending() {
void RendererGL::setupBlending() {
const bool blendingEnabled = (regs[PICA::InternalRegs::ColourOperation] & (1 << 8)) != 0;
// Map of PICA blending equations to OpenGL blending equations. The unused blending equations are equivalent to equation 0 (add)
static constexpr std::array<GLenum, 8> blendingEquations = {
GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX, GL_FUNC_ADD, GL_FUNC_ADD, GL_FUNC_ADD
};
static constexpr std::array<GLenum, 8> blendingEquations = {GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX, GL_FUNC_ADD,
GL_FUNC_ADD, GL_FUNC_ADD};
// Map of PICA blending funcs to OpenGL blending funcs. Func = 15 is undocumented and stubbed to GL_ONE for now
static constexpr std::array<GLenum, 16> blendingFuncs = {
GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA,
GL_SRC_ALPHA_SATURATE, GL_ONE
};
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR,
GL_CONSTANT_ALPHA,
GL_ONE_MINUS_CONSTANT_ALPHA,
GL_SRC_ALPHA_SATURATE,
GL_ONE};
if (!blendingEnabled) {
gl.disableBlend();
@ -743,14 +754,12 @@ void Renderer::setupBlending() {
}
}
void Renderer::setupTextureEnvState() {
void RendererGL::setupTextureEnvState() {
// TODO: Only update uniforms when the TEV config changed. Use an UBO potentially.
static constexpr std::array<u32, 6> ioBases = {
PICA::InternalRegs::TexEnv0Source, PICA::InternalRegs::TexEnv1Source,
PICA::InternalRegs::TexEnv2Source, PICA::InternalRegs::TexEnv3Source,
PICA::InternalRegs::TexEnv4Source, PICA::InternalRegs::TexEnv5Source
};
static constexpr std::array<u32, 6> ioBases = {PICA::InternalRegs::TexEnv0Source, PICA::InternalRegs::TexEnv1Source,
PICA::InternalRegs::TexEnv2Source, PICA::InternalRegs::TexEnv3Source,
PICA::InternalRegs::TexEnv4Source, PICA::InternalRegs::TexEnv5Source};
u32 textureEnvSourceRegs[6];
u32 textureEnvOperandRegs[6];
@ -775,10 +784,9 @@ void Renderer::setupTextureEnvState() {
glUniform1uiv(textureEnvScaleLoc, 6, textureEnvScaleRegs);
}
void Renderer::bindTexturesToSlots() {
void RendererGL::bindTexturesToSlots() {
static constexpr std::array<u32, 3> ioBases = {
PICA::InternalRegs::Tex0BorderColor, PICA::InternalRegs::Tex1BorderColor, PICA::InternalRegs::Tex2BorderColor
};
PICA::InternalRegs::Tex0BorderColor, PICA::InternalRegs::Tex1BorderColor, PICA::InternalRegs::Tex2BorderColor};
for (int i = 0; i < 3; i++) {
if ((regs[PICA::InternalRegs::TexUnitCfg] & (1 << i)) == 0) {
@ -805,13 +813,13 @@ void Renderer::bindTexturesToSlots() {
glActiveTexture(GL_TEXTURE0);
}
void Renderer::updateLightingLUT() {
void RendererGL::updateLightingLUT() {
gpu.lightingLUTDirty = false;
std::array<u16, GPU::LightingLutSize> u16_lightinglut;
std::array<u16, GPU::LightingLutSize> u16_lightinglut;
for (int i = 0; i < gpu.lightingLUT.size(); i++) {
uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
u16_lightinglut[i] = value * 65535 / 4095;
uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
u16_lightinglut[i] = value * 65535 / 4095;
}
glActiveTexture(GL_TEXTURE0 + 3);
@ -824,11 +832,9 @@ void Renderer::updateLightingLUT() {
glActiveTexture(GL_TEXTURE0);
}
void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> vertices) {
void RendererGL::drawVertices(PICA::PrimType primType, std::span<const Vertex> vertices) {
// The fourth type is meant to be "Geometry primitive". TODO: Find out what that is
static constexpr std::array<OpenGL::Primitives, 4> primTypes = {
OpenGL::Triangle, OpenGL::TriangleStrip, OpenGL::TriangleFan, OpenGL::Triangle
};
static constexpr std::array<OpenGL::Primitives, 4> primTypes = {OpenGL::Triangle, OpenGL::TriangleStrip, OpenGL::TriangleFan, OpenGL::Triangle};
const auto primitiveTopology = primTypes[static_cast<usize>(primType)];
gl.disableScissor();
@ -836,7 +842,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
gl.bindVAO(vao);
gl.useProgram(triangleProgram);
OpenGL::enableClipPlane(0); // Clipping plane 0 is always enabled
OpenGL::enableClipPlane(0); // Clipping plane 0 is always enabled
if (regs[PICA::InternalRegs::ClipEnable] & 1) {
OpenGL::enableClipPlane(1);
}
@ -852,9 +858,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
const int colourMask = getBits<8, 4>(depthControl);
gl.setColourMask(colourMask & 1, colourMask & 2, colourMask & 4, colourMask & 8);
static constexpr std::array<GLenum, 8> depthModes = {
GL_NEVER, GL_ALWAYS, GL_EQUAL, GL_NOTEQUAL, GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL
};
static constexpr std::array<GLenum, 8> depthModes = {GL_NEVER, GL_ALWAYS, GL_EQUAL, GL_NOTEQUAL, GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL};
const float depthScale = f24::fromRaw(regs[PICA::InternalRegs::DepthScale] & 0xffffff).toFloat32();
const float depthOffset = f24::fromRaw(regs[PICA::InternalRegs::DepthOffset] & 0xffffff).toFloat32();
@ -865,7 +869,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
oldDepthScale = depthScale;
glUniform1f(depthScaleLoc, depthScale);
}
if (oldDepthOffset != depthOffset) {
oldDepthOffset = depthOffset;
glUniform1f(depthOffsetLoc, depthOffset);
@ -917,7 +921,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
constexpr u32 topScreenBuffer = 0x1f000000;
constexpr u32 bottomScreenBuffer = 0x1f05dc00;
void Renderer::display() {
void RendererGL::display() {
gl.disableScissor();
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
@ -925,7 +929,7 @@ void Renderer::display() {
glBlitFramebuffer(0, 0, 400, 480, 0, 0, 400, 480, GL_COLOR_BUFFER_BIT, GL_LINEAR);
}
void Renderer::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
void RendererGL::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
return;
log("GPU: Clear buffer\nStart: %08X End: %08X\nValue: %08X Control: %08X\n", startAddress, endAddress, value, control);
@ -947,9 +951,9 @@ void Renderer::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 cont
OpenGL::clearColor();
}
OpenGL::Framebuffer Renderer::getColourFBO() {
//We construct a colour buffer object and see if our cache has any matching colour buffers in it
// If not, we allocate a texture & FBO for our framebuffer and store it in the cache
OpenGL::Framebuffer RendererGL::getColourFBO() {
// We construct a colour buffer object and see if our cache has any matching colour buffers in it
// If not, we allocate a texture & FBO for our framebuffer and store it in the cache
ColourBuffer sampleBuffer(colourBufferLoc, colourBufferFormat, fbSize.x(), fbSize.y());
auto buffer = colourBufferCache.find(sampleBuffer);
@ -960,7 +964,7 @@ OpenGL::Framebuffer Renderer::getColourFBO() {
}
}
void Renderer::bindDepthBuffer() {
void RendererGL::bindDepthBuffer() {
// Similar logic as the getColourFBO function
DepthBuffer sampleBuffer(depthBufferLoc, depthBufferFormat, fbSize.x(), fbSize.y());
auto buffer = depthBufferCache.find(sampleBuffer);
@ -979,14 +983,14 @@ void Renderer::bindDepthBuffer() {
glFramebufferTexture2D(GL_FRAMEBUFFER, attachment, GL_TEXTURE_2D, tex, 0);
}
OpenGL::Texture Renderer::getTexture(Texture& tex) {
OpenGL::Texture RendererGL::getTexture(Texture& tex) {
// Similar logic as the getColourFBO/bindDepthBuffer functions
auto buffer = textureCache.find(tex);
if (buffer.has_value()) {
return buffer.value().get().texture;
} else {
const void* textureData = gpu.getPointerPhys<void*>(tex.location); // Get pointer to the texture data in 3DS memory
const void* textureData = gpu.getPointerPhys<void*>(tex.location); // Get pointer to the texture data in 3DS memory
Texture& newTex = textureCache.add(tex);
newTex.decodeTexture(textureData);
@ -994,7 +998,7 @@ OpenGL::Texture Renderer::getTexture(Texture& tex) {
}
}
void Renderer::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
void RendererGL::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
const u32 inputWidth = inputSize & 0xffff;
const u32 inputGap = inputSize >> 16;
@ -1022,12 +1026,12 @@ void Renderer::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32
// Hack: Detect whether we are writing to the top or bottom screen by checking output gap and drawing to the proper part of the output texture
// We consider output gap == 320 to mean bottom, and anything else to mean top
if (outputGap == 320) {
OpenGL::setViewport(40, 0, 320, 240); // Bottom screen viewport
OpenGL::setViewport(40, 0, 320, 240); // Bottom screen viewport
} else {
OpenGL::setViewport(0, 240, 400, 240); // Top screen viewport
OpenGL::setViewport(0, 240, 400, 240); // Top screen viewport
}
OpenGL::draw(OpenGL::TriangleStrip, 4); // Actually draw our 3DS screen
OpenGL::draw(OpenGL::TriangleStrip, 4); // Actually draw our 3DS screen
}
void Renderer::screenshot(const std::string& name) {
@ -1035,8 +1039,35 @@ void Renderer::screenshot(const std::string& name) {
constexpr uint height = 2 * 240;
std::vector<uint8_t> pixels, flippedPixels;
pixels.resize(width * height * 4);
flippedPixels.resize(pixels.size());;
pixels.resize(width * height * 4);
flippedPixels.resize(pixels.size());
;
OpenGL::bindScreenFramebuffer();
glReadPixels(0, 0, width, height, GL_BGRA, GL_UNSIGNED_BYTE, pixels.data());
// Flip the image vertically
for (int y = 0; y < height; y++) {
memcpy(&flippedPixels[y * width * 4], &pixels[(height - y - 1) * width * 4], width * 4);
// Swap R and B channels
for (int x = 0; x < width; x++) {
std::swap(flippedPixels[y * width * 4 + x * 4 + 0], flippedPixels[y * width * 4 + x * 4 + 2]);
// Set alpha to 0xFF
flippedPixels[y * width * 4 + x * 4 + 3] = 0xFF;
}
}
stbi_write_png(name.c_str(), width, height, 4, flippedPixels.data(), 0);
}
void Renderer::screenshot(const std::string& name) {
constexpr uint width = 400;
constexpr uint height = 2 * 240;
std::vector<uint8_t> pixels, flippedPixels;
pixels.resize(width * height * 4);
flippedPixels.resize(pixels.size());
;
OpenGL::bindScreenFramebuffer();
glReadPixels(0, 0, width, height, GL_BGRA, GL_UNSIGNED_BYTE, pixels.data());

View file

@ -16,7 +16,7 @@ _declspec(dllexport) DWORD AmdPowerXpressRequestHighPerformance = 1;
}
#endif
Emulator::Emulator() : kernel(cpu, memory, gpu), cpu(memory, kernel), gpu(memory, gl, config), memory(cpu.getTicksRef()) {
Emulator::Emulator() : kernel(cpu, memory, gpu), cpu(memory, kernel), gpu(memory, config), memory(cpu.getTicksRef()) {
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS) < 0) {
Helpers::panic("Failed to initialize SDL2");
}

4
src/renderer.cpp Normal file
View file

@ -0,0 +1,4 @@
#include "renderer.hpp"
Renderer::Renderer(GPU& gpu, const std::array<u32, regNum>& internalRegs) : gpu(gpu), regs(internalRegs) {}
Renderer::~Renderer() {}