mirror of
https://github.com/wheremyfoodat/Panda3DS.git
synced 2025-04-20 20:49:12 +12:00
Introduce "Renderer" abstraction layer
Adds a `renderer` class for which a rendering backend must implement and will conditionally use OpenGL in the case that `ENABLE_GL` is enabled.
This commit is contained in:
parent
d664d5caf0
commit
2a1683ba62
9 changed files with 224 additions and 156 deletions
|
@ -2,19 +2,28 @@
|
|||
|
||||
#include <array>
|
||||
#include <bitset>
|
||||
#include <cstdio>
|
||||
#include <cstddef>
|
||||
#include <cstdio>
|
||||
|
||||
#include "PICA/float_types.hpp"
|
||||
#include "PICA/regs.hpp"
|
||||
|
||||
#if ENABLE_OPENGL
|
||||
#include "renderer_gl/renderer_gl.hpp"
|
||||
#endif
|
||||
|
||||
using namespace Floats;
|
||||
|
||||
// Note: For when we have multiple backends, the GL state manager can stay here and have the constructor for the Vulkan-or-whatever renderer ignore it
|
||||
// Thus, our GLStateManager being here does not negatively impact renderer-agnosticness
|
||||
GPU::GPU(Memory& mem, GLStateManager& gl, EmulatorConfig& config) : mem(mem), renderer(*this, gl, regs), config(config) {
|
||||
GPU::GPU(Memory& mem, EmulatorConfig& config) : mem(mem), config(config) {
|
||||
vram = new u8[vramSize];
|
||||
mem.setVRAM(vram); // Give the bus a pointer to our VRAM
|
||||
mem.setVRAM(vram); // Give the bus a pointer to our VRAM
|
||||
|
||||
// TODO: configurable backend
|
||||
#if ENABLE_OPENGL
|
||||
renderer.reset(new RendererGL(*this, regs));
|
||||
#endif
|
||||
}
|
||||
|
||||
void GPU::reset() {
|
||||
|
@ -41,7 +50,7 @@ void GPU::reset() {
|
|||
e.config2 = 0;
|
||||
}
|
||||
|
||||
renderer.reset();
|
||||
renderer->reset();
|
||||
}
|
||||
|
||||
// Call the correct version of drawArrays based on whether this is an indexed draw (first template parameter)
|
||||
|
@ -73,15 +82,14 @@ void GPU::drawArrays() {
|
|||
// Base address for vertex attributes
|
||||
// The vertex base is always on a quadword boundary because the PICA does weird alignment shit any time possible
|
||||
const u32 vertexBase = ((regs[PICA::InternalRegs::VertexAttribLoc] >> 1) & 0xfffffff) * 16;
|
||||
const u32 vertexCount = regs[PICA::InternalRegs::VertexCountReg]; // Total # of vertices to transfer
|
||||
const u32 vertexCount = regs[PICA::InternalRegs::VertexCountReg]; // Total # of vertices to transfer
|
||||
|
||||
// Configures the type of primitive and the number of vertex shader outputs
|
||||
const u32 primConfig = regs[PICA::InternalRegs::PrimitiveConfig];
|
||||
const PICA::PrimType primType = static_cast<PICA::PrimType>(Helpers::getBits<8, 2>(primConfig));
|
||||
if (vertexCount > Renderer::vertexBufferSize) Helpers::panic("[PICA] vertexCount > vertexBufferSize");
|
||||
|
||||
if ((primType == PICA::PrimType::TriangleList && vertexCount % 3) ||
|
||||
(primType == PICA::PrimType::TriangleStrip && vertexCount < 3) ||
|
||||
if ((primType == PICA::PrimType::TriangleList && vertexCount % 3) || (primType == PICA::PrimType::TriangleStrip && vertexCount < 3) ||
|
||||
(primType == PICA::PrimType::TriangleFan && vertexCount < 3)) {
|
||||
Helpers::panic("Invalid vertex count for primitive. Type: %d, vert count: %d\n", primType, vertexCount);
|
||||
}
|
||||
|
@ -89,10 +97,10 @@ void GPU::drawArrays() {
|
|||
// Get the configuration for the index buffer, used only for indexed drawing
|
||||
u32 indexBufferConfig = regs[PICA::InternalRegs::IndexBufferConfig];
|
||||
u32 indexBufferPointer = vertexBase + (indexBufferConfig & 0xfffffff);
|
||||
bool shortIndex = Helpers::getBit<31>(indexBufferConfig); // Indicates whether vert indices are 16-bit or 8-bit
|
||||
bool shortIndex = Helpers::getBit<31>(indexBufferConfig); // Indicates whether vert indices are 16-bit or 8-bit
|
||||
|
||||
// Stuff the global attribute config registers in one u64 to make attr parsing easier
|
||||
// TODO: Cache this when the vertex attribute format registers are written to
|
||||
// TODO: Cache this when the vertex attribute format registers are written to
|
||||
u64 vertexCfg = u64(regs[PICA::InternalRegs::AttribFormatLow]) | (u64(regs[PICA::InternalRegs::AttribFormatHigh]) << 32);
|
||||
|
||||
if constexpr (!indexed) {
|
||||
|
@ -111,24 +119,24 @@ void GPU::drawArrays() {
|
|||
constexpr size_t vertexCacheSize = 64;
|
||||
|
||||
struct {
|
||||
std::bitset<vertexCacheSize> validBits{0}; // Shows which tags are valid. If the corresponding bit is 1, then there's an entry
|
||||
std::array<u32, vertexCacheSize> ids; // IDs (ie indices of the cached vertices in the 3DS vertex buffer)
|
||||
std::array<u32, vertexCacheSize> bufferPositions; // Positions of the cached vertices in our own vertex buffer
|
||||
std::bitset<vertexCacheSize> validBits{0}; // Shows which tags are valid. If the corresponding bit is 1, then there's an entry
|
||||
std::array<u32, vertexCacheSize> ids; // IDs (ie indices of the cached vertices in the 3DS vertex buffer)
|
||||
std::array<u32, vertexCacheSize> bufferPositions; // Positions of the cached vertices in our own vertex buffer
|
||||
} vertexCache;
|
||||
|
||||
|
||||
for (u32 i = 0; i < vertexCount; i++) {
|
||||
u32 vertexIndex; // Index of the vertex in the VBO for indexed rendering
|
||||
u32 vertexIndex; // Index of the vertex in the VBO for indexed rendering
|
||||
|
||||
if constexpr (!indexed) {
|
||||
vertexIndex = i + regs[PICA::InternalRegs::VertexOffsetReg];
|
||||
} else {
|
||||
if (shortIndex) {
|
||||
auto ptr = getPointerPhys<u16>(indexBufferPointer);
|
||||
vertexIndex = *ptr; // TODO: This is very unsafe
|
||||
vertexIndex = *ptr; // TODO: This is very unsafe
|
||||
indexBufferPointer += 2;
|
||||
} else {
|
||||
auto ptr = getPointerPhys<u8>(indexBufferPointer);
|
||||
vertexIndex = *ptr; // TODO: This is also very unsafe
|
||||
vertexIndex = *ptr; // TODO: This is also very unsafe
|
||||
indexBufferPointer += 1;
|
||||
}
|
||||
}
|
||||
|
@ -152,22 +160,22 @@ void GPU::drawArrays() {
|
|||
}
|
||||
|
||||
int attrCount = 0;
|
||||
int buffer = 0; // Vertex buffer index for non-fixed attributes
|
||||
int buffer = 0; // Vertex buffer index for non-fixed attributes
|
||||
|
||||
while (attrCount < totalAttribCount) {
|
||||
// Check if attribute is fixed or not
|
||||
if (fixedAttribMask & (1 << attrCount)) { // Fixed attribute
|
||||
vec4f& fixedAttr = shaderUnit.vs.fixedAttributes[attrCount]; // TODO: Is this how it works?
|
||||
if (fixedAttribMask & (1 << attrCount)) { // Fixed attribute
|
||||
vec4f& fixedAttr = shaderUnit.vs.fixedAttributes[attrCount]; // TODO: Is this how it works?
|
||||
vec4f& inputAttr = currentAttributes[attrCount];
|
||||
std::memcpy(&inputAttr, &fixedAttr, sizeof(vec4f)); // Copy fixed attr to input attr
|
||||
std::memcpy(&inputAttr, &fixedAttr, sizeof(vec4f)); // Copy fixed attr to input attr
|
||||
attrCount++;
|
||||
} else { // Non-fixed attribute
|
||||
auto& attr = attributeInfo[buffer]; // Get information for this attribute
|
||||
u64 attrCfg = attr.getConfigFull(); // Get config1 | (config2 << 32)
|
||||
} else { // Non-fixed attribute
|
||||
auto& attr = attributeInfo[buffer]; // Get information for this attribute
|
||||
u64 attrCfg = attr.getConfigFull(); // Get config1 | (config2 << 32)
|
||||
u32 attrAddress = vertexBase + attr.offset + (vertexIndex * attr.size);
|
||||
|
||||
for (int j = 0; j < attr.componentCount; j++) {
|
||||
uint index = (attrCfg >> (j * 4)) & 0xf; // Get index of attribute in vertexCfg
|
||||
uint index = (attrCfg >> (j * 4)) & 0xf; // Get index of attribute in vertexCfg
|
||||
|
||||
// Vertex attributes used as padding
|
||||
// 12, 13, 14 and 15 are equivalent to 4, 8, 12 and 16 bytes of padding respectively
|
||||
|
@ -179,15 +187,15 @@ void GPU::drawArrays() {
|
|||
}
|
||||
|
||||
u32 attribInfo = (vertexCfg >> (index * 4)) & 0xf;
|
||||
u32 attribType = attribInfo & 0x3; // Type of attribute(sbyte/ubyte/short/float)
|
||||
u32 size = (attribInfo >> 2) + 1; // Total number of components
|
||||
u32 attribType = attribInfo & 0x3; // Type of attribute(sbyte/ubyte/short/float)
|
||||
u32 size = (attribInfo >> 2) + 1; // Total number of components
|
||||
|
||||
//printf("vertex_attribute_strides[%d] = %d\n", attrCount, attr.size);
|
||||
// printf("vertex_attribute_strides[%d] = %d\n", attrCount, attr.size);
|
||||
vec4f& attribute = currentAttributes[attrCount];
|
||||
uint component; // Current component
|
||||
uint component; // Current component
|
||||
|
||||
switch (attribType) {
|
||||
case 0: { // Signed byte
|
||||
case 0: { // Signed byte
|
||||
s8* ptr = getPointerPhys<s8>(attrAddress);
|
||||
for (component = 0; component < size; component++) {
|
||||
float val = static_cast<float>(*ptr++);
|
||||
|
@ -197,7 +205,7 @@ void GPU::drawArrays() {
|
|||
break;
|
||||
}
|
||||
|
||||
case 1: { // Unsigned byte
|
||||
case 1: { // Unsigned byte
|
||||
u8* ptr = getPointerPhys<u8>(attrAddress);
|
||||
for (component = 0; component < size; component++) {
|
||||
float val = static_cast<float>(*ptr++);
|
||||
|
@ -207,7 +215,7 @@ void GPU::drawArrays() {
|
|||
break;
|
||||
}
|
||||
|
||||
case 2: { // Short
|
||||
case 2: { // Short
|
||||
s16* ptr = getPointerPhys<s16>(attrAddress);
|
||||
for (component = 0; component < size; component++) {
|
||||
float val = static_cast<float>(*ptr++);
|
||||
|
@ -217,7 +225,7 @@ void GPU::drawArrays() {
|
|||
break;
|
||||
}
|
||||
|
||||
case 3: { // Float
|
||||
case 3: { // Float
|
||||
float* ptr = getPointerPhys<float>(attrAddress);
|
||||
for (component = 0; component < size; component++) {
|
||||
float val = *ptr++;
|
||||
|
@ -251,8 +259,8 @@ void GPU::drawArrays() {
|
|||
const u32 mapping = (inputAttrCfg >> (j * 4)) & 0xf;
|
||||
std::memcpy(&shaderUnit.vs.inputs[mapping], ¤tAttributes[j], sizeof(vec4f));
|
||||
}
|
||||
|
||||
if constexpr (useShaderJIT) {
|
||||
|
||||
if constexpr (useShaderJIT) {
|
||||
shaderJIT.run(shaderUnit.vs);
|
||||
} else {
|
||||
shaderUnit.vs.run();
|
||||
|
@ -264,14 +272,14 @@ void GPU::drawArrays() {
|
|||
for (int i = 0; i < totalShaderOutputs; i++) {
|
||||
const u32 config = regs[PICA::InternalRegs::ShaderOutmap0 + i];
|
||||
|
||||
for (int j = 0; j < 4; j++) { // pls unroll
|
||||
for (int j = 0; j < 4; j++) { // pls unroll
|
||||
const u32 mapping = (config >> (j * 8)) & 0x1F;
|
||||
out.raw[mapping] = shaderUnit.vs.outputs[i][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
renderer.drawVertices(primType, std::span(vertices).first(vertexCount));
|
||||
renderer->drawVertices(primType, std::span(vertices).first(vertexCount));
|
||||
}
|
||||
|
||||
PICA::Vertex GPU::getImmediateModeVertex() {
|
||||
|
@ -289,7 +297,9 @@ PICA::Vertex GPU::getImmediateModeVertex() {
|
|||
std::memcpy(&v.s.colour, &shaderUnit.vs.outputs[1], sizeof(vec4f));
|
||||
std::memcpy(&v.s.texcoord0, &shaderUnit.vs.outputs[2], 2 * sizeof(f24));
|
||||
|
||||
printf("(x, y, z, w) = (%f, %f, %f, %f)\n", (double)v.s.positions[0], (double)v.s.positions[1], (double)v.s.positions[2], (double)v.s.positions[3]);
|
||||
printf(
|
||||
"(x, y, z, w) = (%f, %f, %f, %f)\n", (double)v.s.positions[0], (double)v.s.positions[1], (double)v.s.positions[2], (double)v.s.positions[3]
|
||||
);
|
||||
printf("(r, g, b, a) = (%f, %f, %f, %f)\n", (double)v.s.colour[0], (double)v.s.colour[1], (double)v.s.colour[2], (double)v.s.colour[3]);
|
||||
printf("(u, v ) = (%f, %f)\n", (double)v.s.texcoord0[0], (double)v.s.texcoord0[1]);
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#include "renderer_gl/renderer_gl.hpp"
|
||||
|
||||
#include "PICA/float_types.hpp"
|
||||
#include "PICA/gpu.hpp"
|
||||
#include "PICA/regs.hpp"
|
||||
|
@ -576,7 +577,7 @@ const char* displayFragmentShader = R"(
|
|||
}
|
||||
)";
|
||||
|
||||
void Renderer::reset() {
|
||||
void RendererGL::reset() {
|
||||
depthBufferCache.reset();
|
||||
colourBufferCache.reset();
|
||||
textureCache.reset();
|
||||
|
@ -592,10 +593,10 @@ void Renderer::reset() {
|
|||
const auto oldProgram = OpenGL::getProgram();
|
||||
|
||||
gl.useProgram(triangleProgram);
|
||||
|
||||
oldDepthScale = -1.0; // Default depth scale to -1.0, which is what games typically use
|
||||
oldDepthOffset = 0.0; // Default depth offset to 0
|
||||
oldDepthmapEnable = false; // Enable w buffering
|
||||
|
||||
oldDepthScale = -1.0; // Default depth scale to -1.0, which is what games typically use
|
||||
oldDepthOffset = 0.0; // Default depth offset to 0
|
||||
oldDepthmapEnable = false; // Enable w buffering
|
||||
|
||||
glUniform1f(depthScaleLoc, oldDepthScale);
|
||||
glUniform1f(depthOffsetLoc, oldDepthOffset);
|
||||
|
@ -605,10 +606,10 @@ void Renderer::reset() {
|
|||
}
|
||||
}
|
||||
|
||||
void Renderer::initGraphicsContext() {
|
||||
void RendererGL::initGraphicsContext() {
|
||||
OpenGL::Shader vert(vertexShader, OpenGL::Vertex);
|
||||
OpenGL::Shader frag(fragmentShader, OpenGL::Fragment);
|
||||
triangleProgram.create({ vert, frag });
|
||||
triangleProgram.create({vert, frag});
|
||||
gl.useProgram(triangleProgram);
|
||||
|
||||
textureEnvSourceLoc = OpenGL::uniformLocation(triangleProgram, "u_textureEnvSource");
|
||||
|
@ -630,10 +631,10 @@ void Renderer::initGraphicsContext() {
|
|||
|
||||
OpenGL::Shader vertDisplay(displayVertexShader, OpenGL::Vertex);
|
||||
OpenGL::Shader fragDisplay(displayFragmentShader, OpenGL::Fragment);
|
||||
displayProgram.create({ vertDisplay, fragDisplay });
|
||||
displayProgram.create({vertDisplay, fragDisplay});
|
||||
|
||||
gl.useProgram(displayProgram);
|
||||
glUniform1i(OpenGL::uniformLocation(displayProgram, "u_texture"), 0); // Init sampler object
|
||||
glUniform1i(OpenGL::uniformLocation(displayProgram, "u_texture"), 0); // Init sampler object
|
||||
|
||||
vbo.createFixedSize(sizeof(Vertex) * vertexBufferSize, GL_STREAM_DRAW);
|
||||
gl.bindVBO(vbo);
|
||||
|
@ -669,10 +670,10 @@ void Renderer::initGraphicsContext() {
|
|||
dummyVAO.create();
|
||||
|
||||
// Create texture and framebuffer for the 3DS screen
|
||||
const u32 screenTextureWidth = 400; // Top screen is 400 pixels wide, bottom is 320
|
||||
const u32 screenTextureHeight = 2 * 240; // Both screens are 240 pixels tall
|
||||
|
||||
glGenTextures(1,&lightLUTTextureArray);
|
||||
const u32 screenTextureWidth = 400; // Top screen is 400 pixels wide, bottom is 320
|
||||
const u32 screenTextureHeight = 2 * 240; // Both screens are 240 pixels tall
|
||||
|
||||
glGenTextures(1, &lightLUTTextureArray);
|
||||
|
||||
auto prevTexture = OpenGL::getTex2D();
|
||||
screenTexture.create(screenTextureWidth, screenTextureHeight, GL_RGBA8);
|
||||
|
@ -684,8 +685,7 @@ void Renderer::initGraphicsContext() {
|
|||
screenFramebuffer.createWithDrawTexture(screenTexture);
|
||||
screenFramebuffer.bind(OpenGL::DrawAndReadFramebuffer);
|
||||
|
||||
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
|
||||
Helpers::panic("Incomplete framebuffer");
|
||||
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) Helpers::panic("Incomplete framebuffer");
|
||||
|
||||
// TODO: This should not clear the framebuffer contents. It should load them from VRAM.
|
||||
GLint oldViewport[4];
|
||||
|
@ -699,20 +699,31 @@ void Renderer::initGraphicsContext() {
|
|||
}
|
||||
|
||||
// Set up the OpenGL blending context to match the emulated PICA
|
||||
void Renderer::setupBlending() {
|
||||
void RendererGL::setupBlending() {
|
||||
const bool blendingEnabled = (regs[PICA::InternalRegs::ColourOperation] & (1 << 8)) != 0;
|
||||
|
||||
|
||||
// Map of PICA blending equations to OpenGL blending equations. The unused blending equations are equivalent to equation 0 (add)
|
||||
static constexpr std::array<GLenum, 8> blendingEquations = {
|
||||
GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX, GL_FUNC_ADD, GL_FUNC_ADD, GL_FUNC_ADD
|
||||
};
|
||||
|
||||
static constexpr std::array<GLenum, 8> blendingEquations = {GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX, GL_FUNC_ADD,
|
||||
GL_FUNC_ADD, GL_FUNC_ADD};
|
||||
|
||||
// Map of PICA blending funcs to OpenGL blending funcs. Func = 15 is undocumented and stubbed to GL_ONE for now
|
||||
static constexpr std::array<GLenum, 16> blendingFuncs = {
|
||||
GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,
|
||||
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA,
|
||||
GL_SRC_ALPHA_SATURATE, GL_ONE
|
||||
};
|
||||
GL_ZERO,
|
||||
GL_ONE,
|
||||
GL_SRC_COLOR,
|
||||
GL_ONE_MINUS_SRC_COLOR,
|
||||
GL_DST_COLOR,
|
||||
GL_ONE_MINUS_DST_COLOR,
|
||||
GL_SRC_ALPHA,
|
||||
GL_ONE_MINUS_SRC_ALPHA,
|
||||
GL_DST_ALPHA,
|
||||
GL_ONE_MINUS_DST_ALPHA,
|
||||
GL_CONSTANT_COLOR,
|
||||
GL_ONE_MINUS_CONSTANT_COLOR,
|
||||
GL_CONSTANT_ALPHA,
|
||||
GL_ONE_MINUS_CONSTANT_ALPHA,
|
||||
GL_SRC_ALPHA_SATURATE,
|
||||
GL_ONE};
|
||||
|
||||
if (!blendingEnabled) {
|
||||
gl.disableBlend();
|
||||
|
@ -743,14 +754,12 @@ void Renderer::setupBlending() {
|
|||
}
|
||||
}
|
||||
|
||||
void Renderer::setupTextureEnvState() {
|
||||
void RendererGL::setupTextureEnvState() {
|
||||
// TODO: Only update uniforms when the TEV config changed. Use an UBO potentially.
|
||||
|
||||
static constexpr std::array<u32, 6> ioBases = {
|
||||
PICA::InternalRegs::TexEnv0Source, PICA::InternalRegs::TexEnv1Source,
|
||||
PICA::InternalRegs::TexEnv2Source, PICA::InternalRegs::TexEnv3Source,
|
||||
PICA::InternalRegs::TexEnv4Source, PICA::InternalRegs::TexEnv5Source
|
||||
};
|
||||
static constexpr std::array<u32, 6> ioBases = {PICA::InternalRegs::TexEnv0Source, PICA::InternalRegs::TexEnv1Source,
|
||||
PICA::InternalRegs::TexEnv2Source, PICA::InternalRegs::TexEnv3Source,
|
||||
PICA::InternalRegs::TexEnv4Source, PICA::InternalRegs::TexEnv5Source};
|
||||
|
||||
u32 textureEnvSourceRegs[6];
|
||||
u32 textureEnvOperandRegs[6];
|
||||
|
@ -775,10 +784,9 @@ void Renderer::setupTextureEnvState() {
|
|||
glUniform1uiv(textureEnvScaleLoc, 6, textureEnvScaleRegs);
|
||||
}
|
||||
|
||||
void Renderer::bindTexturesToSlots() {
|
||||
void RendererGL::bindTexturesToSlots() {
|
||||
static constexpr std::array<u32, 3> ioBases = {
|
||||
PICA::InternalRegs::Tex0BorderColor, PICA::InternalRegs::Tex1BorderColor, PICA::InternalRegs::Tex2BorderColor
|
||||
};
|
||||
PICA::InternalRegs::Tex0BorderColor, PICA::InternalRegs::Tex1BorderColor, PICA::InternalRegs::Tex2BorderColor};
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
if ((regs[PICA::InternalRegs::TexUnitCfg] & (1 << i)) == 0) {
|
||||
|
@ -805,13 +813,13 @@ void Renderer::bindTexturesToSlots() {
|
|||
glActiveTexture(GL_TEXTURE0);
|
||||
}
|
||||
|
||||
void Renderer::updateLightingLUT() {
|
||||
void RendererGL::updateLightingLUT() {
|
||||
gpu.lightingLUTDirty = false;
|
||||
std::array<u16, GPU::LightingLutSize> u16_lightinglut;
|
||||
|
||||
std::array<u16, GPU::LightingLutSize> u16_lightinglut;
|
||||
|
||||
for (int i = 0; i < gpu.lightingLUT.size(); i++) {
|
||||
uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
|
||||
u16_lightinglut[i] = value * 65535 / 4095;
|
||||
uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
|
||||
u16_lightinglut[i] = value * 65535 / 4095;
|
||||
}
|
||||
|
||||
glActiveTexture(GL_TEXTURE0 + 3);
|
||||
|
@ -824,11 +832,9 @@ void Renderer::updateLightingLUT() {
|
|||
glActiveTexture(GL_TEXTURE0);
|
||||
}
|
||||
|
||||
void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> vertices) {
|
||||
void RendererGL::drawVertices(PICA::PrimType primType, std::span<const Vertex> vertices) {
|
||||
// The fourth type is meant to be "Geometry primitive". TODO: Find out what that is
|
||||
static constexpr std::array<OpenGL::Primitives, 4> primTypes = {
|
||||
OpenGL::Triangle, OpenGL::TriangleStrip, OpenGL::TriangleFan, OpenGL::Triangle
|
||||
};
|
||||
static constexpr std::array<OpenGL::Primitives, 4> primTypes = {OpenGL::Triangle, OpenGL::TriangleStrip, OpenGL::TriangleFan, OpenGL::Triangle};
|
||||
const auto primitiveTopology = primTypes[static_cast<usize>(primType)];
|
||||
|
||||
gl.disableScissor();
|
||||
|
@ -836,7 +842,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
|
|||
gl.bindVAO(vao);
|
||||
gl.useProgram(triangleProgram);
|
||||
|
||||
OpenGL::enableClipPlane(0); // Clipping plane 0 is always enabled
|
||||
OpenGL::enableClipPlane(0); // Clipping plane 0 is always enabled
|
||||
if (regs[PICA::InternalRegs::ClipEnable] & 1) {
|
||||
OpenGL::enableClipPlane(1);
|
||||
}
|
||||
|
@ -852,9 +858,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
|
|||
const int colourMask = getBits<8, 4>(depthControl);
|
||||
gl.setColourMask(colourMask & 1, colourMask & 2, colourMask & 4, colourMask & 8);
|
||||
|
||||
static constexpr std::array<GLenum, 8> depthModes = {
|
||||
GL_NEVER, GL_ALWAYS, GL_EQUAL, GL_NOTEQUAL, GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL
|
||||
};
|
||||
static constexpr std::array<GLenum, 8> depthModes = {GL_NEVER, GL_ALWAYS, GL_EQUAL, GL_NOTEQUAL, GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL};
|
||||
|
||||
const float depthScale = f24::fromRaw(regs[PICA::InternalRegs::DepthScale] & 0xffffff).toFloat32();
|
||||
const float depthOffset = f24::fromRaw(regs[PICA::InternalRegs::DepthOffset] & 0xffffff).toFloat32();
|
||||
|
@ -865,7 +869,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
|
|||
oldDepthScale = depthScale;
|
||||
glUniform1f(depthScaleLoc, depthScale);
|
||||
}
|
||||
|
||||
|
||||
if (oldDepthOffset != depthOffset) {
|
||||
oldDepthOffset = depthOffset;
|
||||
glUniform1f(depthOffsetLoc, depthOffset);
|
||||
|
@ -917,7 +921,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
|
|||
constexpr u32 topScreenBuffer = 0x1f000000;
|
||||
constexpr u32 bottomScreenBuffer = 0x1f05dc00;
|
||||
|
||||
void Renderer::display() {
|
||||
void RendererGL::display() {
|
||||
gl.disableScissor();
|
||||
|
||||
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
||||
|
@ -925,7 +929,7 @@ void Renderer::display() {
|
|||
glBlitFramebuffer(0, 0, 400, 480, 0, 0, 400, 480, GL_COLOR_BUFFER_BIT, GL_LINEAR);
|
||||
}
|
||||
|
||||
void Renderer::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
|
||||
void RendererGL::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
|
||||
return;
|
||||
log("GPU: Clear buffer\nStart: %08X End: %08X\nValue: %08X Control: %08X\n", startAddress, endAddress, value, control);
|
||||
|
||||
|
@ -947,9 +951,9 @@ void Renderer::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 cont
|
|||
OpenGL::clearColor();
|
||||
}
|
||||
|
||||
OpenGL::Framebuffer Renderer::getColourFBO() {
|
||||
//We construct a colour buffer object and see if our cache has any matching colour buffers in it
|
||||
// If not, we allocate a texture & FBO for our framebuffer and store it in the cache
|
||||
OpenGL::Framebuffer RendererGL::getColourFBO() {
|
||||
// We construct a colour buffer object and see if our cache has any matching colour buffers in it
|
||||
// If not, we allocate a texture & FBO for our framebuffer and store it in the cache
|
||||
ColourBuffer sampleBuffer(colourBufferLoc, colourBufferFormat, fbSize.x(), fbSize.y());
|
||||
auto buffer = colourBufferCache.find(sampleBuffer);
|
||||
|
||||
|
@ -960,7 +964,7 @@ OpenGL::Framebuffer Renderer::getColourFBO() {
|
|||
}
|
||||
}
|
||||
|
||||
void Renderer::bindDepthBuffer() {
|
||||
void RendererGL::bindDepthBuffer() {
|
||||
// Similar logic as the getColourFBO function
|
||||
DepthBuffer sampleBuffer(depthBufferLoc, depthBufferFormat, fbSize.x(), fbSize.y());
|
||||
auto buffer = depthBufferCache.find(sampleBuffer);
|
||||
|
@ -979,14 +983,14 @@ void Renderer::bindDepthBuffer() {
|
|||
glFramebufferTexture2D(GL_FRAMEBUFFER, attachment, GL_TEXTURE_2D, tex, 0);
|
||||
}
|
||||
|
||||
OpenGL::Texture Renderer::getTexture(Texture& tex) {
|
||||
OpenGL::Texture RendererGL::getTexture(Texture& tex) {
|
||||
// Similar logic as the getColourFBO/bindDepthBuffer functions
|
||||
auto buffer = textureCache.find(tex);
|
||||
|
||||
if (buffer.has_value()) {
|
||||
return buffer.value().get().texture;
|
||||
} else {
|
||||
const void* textureData = gpu.getPointerPhys<void*>(tex.location); // Get pointer to the texture data in 3DS memory
|
||||
const void* textureData = gpu.getPointerPhys<void*>(tex.location); // Get pointer to the texture data in 3DS memory
|
||||
Texture& newTex = textureCache.add(tex);
|
||||
newTex.decodeTexture(textureData);
|
||||
|
||||
|
@ -994,7 +998,7 @@ OpenGL::Texture Renderer::getTexture(Texture& tex) {
|
|||
}
|
||||
}
|
||||
|
||||
void Renderer::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
|
||||
void RendererGL::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
|
||||
const u32 inputWidth = inputSize & 0xffff;
|
||||
const u32 inputGap = inputSize >> 16;
|
||||
|
||||
|
@ -1022,12 +1026,12 @@ void Renderer::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32
|
|||
// Hack: Detect whether we are writing to the top or bottom screen by checking output gap and drawing to the proper part of the output texture
|
||||
// We consider output gap == 320 to mean bottom, and anything else to mean top
|
||||
if (outputGap == 320) {
|
||||
OpenGL::setViewport(40, 0, 320, 240); // Bottom screen viewport
|
||||
OpenGL::setViewport(40, 0, 320, 240); // Bottom screen viewport
|
||||
} else {
|
||||
OpenGL::setViewport(0, 240, 400, 240); // Top screen viewport
|
||||
OpenGL::setViewport(0, 240, 400, 240); // Top screen viewport
|
||||
}
|
||||
|
||||
OpenGL::draw(OpenGL::TriangleStrip, 4); // Actually draw our 3DS screen
|
||||
OpenGL::draw(OpenGL::TriangleStrip, 4); // Actually draw our 3DS screen
|
||||
}
|
||||
|
||||
void Renderer::screenshot(const std::string& name) {
|
||||
|
@ -1035,8 +1039,35 @@ void Renderer::screenshot(const std::string& name) {
|
|||
constexpr uint height = 2 * 240;
|
||||
|
||||
std::vector<uint8_t> pixels, flippedPixels;
|
||||
pixels.resize(width * height * 4);
|
||||
flippedPixels.resize(pixels.size());;
|
||||
pixels.resize(width * height * 4);
|
||||
flippedPixels.resize(pixels.size());
|
||||
;
|
||||
|
||||
OpenGL::bindScreenFramebuffer();
|
||||
glReadPixels(0, 0, width, height, GL_BGRA, GL_UNSIGNED_BYTE, pixels.data());
|
||||
|
||||
// Flip the image vertically
|
||||
for (int y = 0; y < height; y++) {
|
||||
memcpy(&flippedPixels[y * width * 4], &pixels[(height - y - 1) * width * 4], width * 4);
|
||||
// Swap R and B channels
|
||||
for (int x = 0; x < width; x++) {
|
||||
std::swap(flippedPixels[y * width * 4 + x * 4 + 0], flippedPixels[y * width * 4 + x * 4 + 2]);
|
||||
// Set alpha to 0xFF
|
||||
flippedPixels[y * width * 4 + x * 4 + 3] = 0xFF;
|
||||
}
|
||||
}
|
||||
|
||||
stbi_write_png(name.c_str(), width, height, 4, flippedPixels.data(), 0);
|
||||
}
|
||||
|
||||
void Renderer::screenshot(const std::string& name) {
|
||||
constexpr uint width = 400;
|
||||
constexpr uint height = 2 * 240;
|
||||
|
||||
std::vector<uint8_t> pixels, flippedPixels;
|
||||
pixels.resize(width * height * 4);
|
||||
flippedPixels.resize(pixels.size());
|
||||
;
|
||||
|
||||
OpenGL::bindScreenFramebuffer();
|
||||
glReadPixels(0, 0, width, height, GL_BGRA, GL_UNSIGNED_BYTE, pixels.data());
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue