Revert to spinlocking for audio sync

This commit is contained in:
wheremyfoodat 2024-02-24 00:24:41 +02:00
parent 426162f709
commit 56f716c1f1
3 changed files with 105 additions and 91 deletions

View file

@ -1,109 +1,110 @@
/*
MIT License
Copyright (c) 2021 PCSX-Redux authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <memory.h>
#include <algorithm>
#include <chrono>
#include <condition_variable>
#include <mutex>
#include <stdexcept>
#include <array>
#include <atomic>
#include <cstddef>
#include <cstring>
#include <new>
#include <span>
#include <type_traits>
#include <vector>
namespace Common {
template <typename T, size_t BS = 1024>
/// SPSC ring buffer
/// @tparam T Element type
/// @tparam capacity Number of slots in ring buffer
template <typename T, std::size_t capacity>
class RingBuffer {
/// A "slot" is made of a single `T`.
static constexpr std::size_t slot_size = sizeof(T);
// T must be safely memcpy-able and have a trivial default constructor.
static_assert(std::is_trivial_v<T>);
// Ensure capacity is sensible.
static_assert(capacity < std::numeric_limits<std::size_t>::max() / 2);
static_assert((capacity & (capacity - 1)) == 0, "capacity must be a power of two");
// Ensure lock-free.
static_assert(std::atomic_size_t::is_always_lock_free);
public:
static constexpr size_t BUFFER_SIZE = BS;
size_t available() {
std::unique_lock<std::mutex> l(m_mu);
return availableLocked();
}
size_t buffered() {
std::unique_lock<std::mutex> l(m_mu);
return bufferedLocked();
/// Pushes slots into the ring buffer
/// @param new_slots Pointer to the slots to push
/// @param slot_count Number of slots to push
/// @returns The number of slots actually pushed
std::size_t push(const void* new_slots, std::size_t slot_count) {
const std::size_t write_index = m_write_index.load();
const std::size_t slots_free = capacity + m_read_index.load() - write_index;
const std::size_t push_count = std::min(slot_count, slots_free);
const std::size_t pos = write_index % capacity;
const std::size_t first_copy = std::min(capacity - pos, push_count);
const std::size_t second_copy = push_count - first_copy;
const char* in = static_cast<const char*>(new_slots);
std::memcpy(m_data.data() + pos, in, first_copy * slot_size);
in += first_copy * slot_size;
std::memcpy(m_data.data(), in, second_copy * slot_size);
m_write_index.store(write_index + push_count);
return push_count;
}
bool push(const T* data, size_t N) {
if (N > BUFFER_SIZE) {
throw std::runtime_error("Trying to enqueue too much data");
}
std::unique_lock<std::mutex> l(m_mu);
using namespace std::chrono_literals;
bool safe = m_cv.wait_for(l, 5ms, [this, N]() -> bool { return N < availableLocked(); });
if (safe) enqueueSafe(data, N);
return safe;
}
size_t pop(T* data, size_t N) {
std::unique_lock<std::mutex> l(m_mu);
N = std::min(N, bufferedLocked());
dequeueSafe(data, N);
std::size_t push(std::span<const T> input) { return push(input.data(), input.size()); }
return N;
/// Pops slots from the ring buffer
/// @param output Where to store the popped slots
/// @param max_slots Maximum number of slots to pop
/// @returns The number of slots actually popped
std::size_t pop(void* output, std::size_t max_slots = ~std::size_t(0)) {
const std::size_t read_index = m_read_index.load();
const std::size_t slots_filled = m_write_index.load() - read_index;
const std::size_t pop_count = std::min(slots_filled, max_slots);
const std::size_t pos = read_index % capacity;
const std::size_t first_copy = std::min(capacity - pos, pop_count);
const std::size_t second_copy = pop_count - first_copy;
char* out = static_cast<char*>(output);
std::memcpy(out, m_data.data() + pos, first_copy * slot_size);
out += first_copy * slot_size;
std::memcpy(out, m_data.data(), second_copy * slot_size);
m_read_index.store(read_index + pop_count);
return pop_count;
}
std::vector<T> pop(std::size_t max_slots = ~std::size_t(0)) {
std::vector<T> out(std::min(max_slots, capacity));
const std::size_t count = Pop(out.data(), out.size());
out.resize(count);
return out;
}
/// @returns Number of slots used
[[nodiscard]] std::size_t size() const { return m_write_index.load() - m_read_index.load(); }
/// @returns Maximum size of ring buffer
[[nodiscard]] constexpr std::size_t Capacity() const { return capacity; }
private:
size_t availableLocked() const { return BUFFER_SIZE - m_size; }
size_t bufferedLocked() const { return m_size; }
void enqueueSafe(const T* data, size_t N) {
size_t end = m_end;
const size_t subLen = BUFFER_SIZE - end;
if (N > subLen) {
enqueueSafe(data, subLen);
enqueueSafe(data + subLen, N - subLen);
} else {
memcpy(m_buffer + end, data, N * sizeof(T));
end += N;
if (end == BUFFER_SIZE) end = 0;
m_end = end;
m_size += N;
}
}
void dequeueSafe(T* data, size_t N) {
size_t begin = m_begin;
const size_t subLen = BUFFER_SIZE - begin;
if (N > subLen) {
dequeueSafe(data, subLen);
dequeueSafe(data + subLen, N - subLen);
} else {
memcpy(data, m_buffer + begin, N * sizeof(T));
begin += N;
if (begin == BUFFER_SIZE) begin = 0;
m_begin = begin;
m_size -= N;
m_cv.notify_one();
}
}
// It is important to align the below variables for performance reasons:
// Having them on the same cache-line would result in false-sharing between them.
// TODO: Remove this ifdef whenever clang and GCC support
// std::hardware_destructive_interference_size.
#ifdef __cpp_lib_hardware_interference_size
alignas(std::hardware_destructive_interference_size) std::atomic_size_t m_read_index{0};
alignas(std::hardware_destructive_interference_size) std::atomic_size_t m_write_index{0};
#else
alignas(128) std::atomic_size_t m_read_index{0};
alignas(128) std::atomic_size_t m_write_index{0};
#endif
size_t m_begin = 0, m_end = 0, m_size = 0;
T m_buffer[BUFFER_SIZE];
std::mutex m_mu;
std::condition_variable m_cv;
std::array<T, capacity> m_data;
};
} // namespace Common

View file

@ -92,6 +92,14 @@ void MiniAudioDevice::init(Samples& samples, bool safe) {
auto self = reinterpret_cast<MiniAudioDevice*>(device->pUserData);
s16* output = reinterpret_cast<ma_int16*>(out);
// Wait until there's enough samples to pop
while (self->samples->size() < frameCount * channelCount) {
// If audio output is disabled from the emulator thread, make sure that this callback will return and not hang
if (!self->running) {
return;
}
}
self->samples->pop(output, frameCount * channelCount);
};

View file

@ -128,6 +128,11 @@ void TeakraDSP::setAudioEnabled(bool enable) {
// Push our samples at the end of an audio frame
if (audioFrameIndex >= audioFrame.size()) {
audioFrameIndex -= audioFrame.size();
// Wait until we've actually got room to do so
while (sampleBuffer.size() + 2 > sampleBuffer.Capacity()) {
}
sampleBuffer.push(audioFrame.data(), audioFrame.size());
}
});