Merge pull request #50 from nadiaholmquist/feature/basic-controller-input

Add basic controller input using the SDL2 GameController API
This commit is contained in:
wheremyfoodat 2023-06-28 02:56:24 +03:00 committed by GitHub
commit 6dde41f7c3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 338 additions and 228 deletions

View file

@ -1,80 +1,101 @@
#pragma once
#include <filesystem>
#include <fstream>
#include <SDL.h>
#include <glad/gl.h>
#include <filesystem>
#include <fstream>
#include "PICA/gpu.hpp"
#include "cpu.hpp"
#include "crypto/aes_engine.hpp"
#include "io_file.hpp"
#include "memory.hpp"
#include "opengl.hpp"
#include "PICA/gpu.hpp"
enum class ROMType {
None, ELF, NCSD
};
enum class ROMType { None, ELF, NCSD };
class Emulator {
CPU cpu;
GPU gpu;
Memory memory;
Kernel kernel;
Crypto::AESEngine aesEngine;
CPU cpu;
GPU gpu;
Memory memory;
Kernel kernel;
Crypto::AESEngine aesEngine;
SDL_Window* window;
SDL_GLContext glContext;
SDL_Window* window;
SDL_GLContext glContext;
SDL_GameController* gameController;
int gameControllerID;
static constexpr u32 width = 400;
static constexpr u32 height = 240 * 2; // * 2 because 2 screens
ROMType romType = ROMType::None;
bool running = true;
// Variables to keep track of whether the user is controlling the 3DS analog stick with their keyboard
// This is done so when a gamepad is connected, we won't automatically override the 3DS analog stick settings with the gamepad's state
// And so the user can still use the keyboard to control the analog
bool keyboardAnalogX = false;
bool keyboardAnalogY = false;
// Keep the handle for the ROM here to reload when necessary and to prevent deleting it
// This is currently only used for ELFs, NCSDs use the IOFile API instead
std::ifstream loadedELF;
NCSD loadedNCSD;
static constexpr u32 width = 400;
static constexpr u32 height = 240 * 2; // * 2 because 2 screens
ROMType romType = ROMType::None;
bool running = true;
public:
Emulator() : kernel(cpu, memory, gpu), cpu(memory, kernel), gpu(memory), memory(cpu.getTicksRef()) {
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS) < 0) {
Helpers::panic("Failed to initialize SDL2");
}
// Keep the handle for the ROM here to reload when necessary and to prevent deleting it
// This is currently only used for ELFs, NCSDs use the IOFile API instead
std::ifstream loadedELF;
NCSD loadedNCSD;
// Request OpenGL 4.1 Core (Max available on MacOS)
// MacOS gets mad if we don't explicitly demand a core profile
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 1);
window = SDL_CreateWindow("Alber", SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, width, height, SDL_WINDOW_OPENGL);
public:
Emulator() : kernel(cpu, memory, gpu), cpu(memory, kernel), gpu(memory), memory(cpu.getTicksRef()) {
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS) < 0) {
Helpers::panic("Failed to initialize SDL2");
}
if (window == nullptr) {
Helpers::panic("Window creation failed: %s", SDL_GetError());
}
// Make SDL use consistent positional button mapping
SDL_SetHint(SDL_HINT_GAMECONTROLLER_USE_BUTTON_LABELS, "0");
if (SDL_Init(SDL_INIT_GAMECONTROLLER) < 0) {
Helpers::warn("Failed to initialize SDL2 GameController: %s", SDL_GetError());
}
glContext = SDL_GL_CreateContext(window);
// Request OpenGL 4.1 Core (Max available on MacOS)
// MacOS gets mad if we don't explicitly demand a core profile
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 1);
window = SDL_CreateWindow("Alber", SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, width, height, SDL_WINDOW_OPENGL);
if (glContext == nullptr) {
Helpers::panic("OpenGL context creation failed: %s", SDL_GetError());
}
if (window == nullptr) {
Helpers::panic("Window creation failed: %s", SDL_GetError());
}
if(!gladLoadGL(reinterpret_cast<GLADloadfunc>(SDL_GL_GetProcAddress))) {
Helpers::panic("OpenGL init failed: %s", SDL_GetError());
}
glContext = SDL_GL_CreateContext(window);
if (glContext == nullptr) {
Helpers::panic("OpenGL context creation failed: %s", SDL_GetError());
}
reset();
}
if (!gladLoadGL(reinterpret_cast<GLADloadfunc>(SDL_GL_GetProcAddress))) {
Helpers::panic("OpenGL init failed: %s", SDL_GetError());
}
void step();
void render();
void reset();
void run();
void runFrame();
if (SDL_WasInit(SDL_INIT_GAMECONTROLLER)) {
gameController = SDL_GameControllerOpen(0);
bool loadROM(const std::filesystem::path& path);
bool loadNCSD(const std::filesystem::path& path);
bool loadELF(const std::filesystem::path& path);
bool loadELF(std::ifstream& file);
void initGraphicsContext() { gpu.initGraphicsContext(); }
};
if (gameController != nullptr) {
SDL_Joystick* stick = SDL_GameControllerGetJoystick(gameController);
gameControllerID = SDL_JoystickInstanceID(stick);
}
}
reset();
}
void step();
void render();
void reset();
void run();
void runFrame();
bool loadROM(const std::filesystem::path& path);
bool loadNCSD(const std::filesystem::path& path);
bool loadELF(const std::filesystem::path& path);
bool loadELF(std::ifstream& file);
void initGraphicsContext() { gpu.initGraphicsContext(); }
};

View file

@ -1,6 +1,7 @@
#pragma once
#include <array>
#include <optional>
#include "helpers.hpp"
#include "kernel_types.hpp"
#include "logger.hpp"
@ -22,12 +23,12 @@ namespace HID::Keys {
X = 1 << 10,
Y = 1 << 11,
GPIO0Inv = 1 << 12, // Inverted value of GPIO bit 0
GPIO14Inv = 1 << 13, // Inverted value of GPIO bit 14
GPIO0Inv = 1 << 12, // Inverted value of GPIO bit 0
GPIO14Inv = 1 << 13, // Inverted value of GPIO bit 14
CirclePadRight = 1 << 28, // X >= 41
CirclePadLeft = 1 << 29, // X <= -41
CirclePadUp = 1 << 30, // Y >= 41
CirclePadRight = 1 << 28, // X >= 41
CirclePadLeft = 1 << 29, // X <= -41
CirclePadUp = 1 << 30, // Y >= 41
CirclePadDown = 1u << 31 // Y <= -41
};
}
@ -39,18 +40,18 @@ class HIDService {
Handle handle = KernelHandles::HID;
Memory& mem;
Kernel& kernel;
u8* sharedMem = nullptr; // Pointer to HID shared memory
u8* sharedMem = nullptr; // Pointer to HID shared memory
uint nextPadIndex;
uint nextTouchscreenIndex;
uint nextAccelerometerIndex;
uint nextGyroIndex;
u32 newButtons; // The button state currently being edited
u32 oldButtons; // The previous pad state
u32 newButtons; // The button state currently being edited
u32 oldButtons; // The previous pad state
s16 circlePadX, circlePadY; // Circlepad state
s16 touchScreenX, touchScreenY; // Touchscreen state
s16 circlePadX, circlePadY; // Circlepad state
s16 touchScreenX, touchScreenY; // Touchscreen state
bool accelerometerEnabled;
bool eventsInitialized;
@ -79,7 +80,7 @@ class HIDService {
*(T*)&sharedMem[offset] = value;
}
public:
public:
HIDService(Memory& mem, Kernel& kernel) : mem(mem), kernel(kernel) {}
void reset();
void handleSyncRequest(u32 messagePointer);
@ -87,15 +88,18 @@ public:
void pressKey(u32 mask) { newButtons |= mask; }
void releaseKey(u32 mask) { newButtons &= ~mask; }
s16 getCirclepadX() { return circlePadX; }
s16 getCirclepadY() { return circlePadY; }
void setCirclepadX(s16 x) {
circlePadX = x;
// Turn bits 28 and 29 off in the new button state, which indicate whether the circlepad is steering left or right
// Then, set them according to the new value of x
newButtons &= ~0x3000'0000;
if (x >= 41) // Pressing right
if (x >= 41) // Pressing right
newButtons |= 1 << 28;
else if (x <= -41) // Pressing left
else if (x <= -41) // Pressing left
newButtons |= 1 << 29;
}
@ -105,9 +109,9 @@ public:
// Turn bits 30 and 31 off in the new button state, which indicate whether the circlepad is steering up or down
// Then, set them according to the new value of y
newButtons &= ~0xC000'0000;
if (y >= 41) // Pressing up
if (y >= 41) // Pressing up
newButtons |= 1 << 30;
else if (y <= -41) // Pressing down
else if (y <= -41) // Pressing down
newButtons |= 1 << 31;
}
@ -115,7 +119,7 @@ public:
void setSharedMem(u8* ptr) {
sharedMem = ptr;
if (ptr != nullptr) { // Zero-fill shared memory in case the process tries to read stale service data or vice versa
if (ptr != nullptr) { // Zero-fill shared memory in case the process tries to read stale service data or vice versa
std::memset(ptr, 0, 0x2b0);
}
}
@ -129,4 +133,4 @@ public:
void releaseTouchScreen() {
touchScreenPressed = false;
}
};
};

View file

@ -90,9 +90,11 @@ class ServiceManager {
// Input function wrappers
void pressKey(u32 key) { hid.pressKey(key); }
void releaseKey(u32 key) { hid.releaseKey(key); }
void setCirclepadX(u16 x) { hid.setCirclepadX(x); }
void setCirclepadY(u16 y) { hid.setCirclepadY(y); }
s16 getCirclepadX() { return hid.getCirclepadX(); }
s16 getCirclepadY() { return hid.getCirclepadY(); }
void setCirclepadX(s16 x) { hid.setCirclepadX(x); }
void setCirclepadY(s16 y) { hid.setCirclepadY(y); }
void updateInputs(u64 currentTimestamp) { hid.updateInputs(currentTimestamp); }
void setTouchScreenPress(u16 x, u16 y) { hid.setTouchScreenPress(x, y); }
void releaseTouchScreen() { hid.releaseTouchScreen(); }
};
};

View file

@ -1,203 +1,286 @@
#include "emulator.hpp"
void Emulator::reset() {
cpu.reset();
gpu.reset();
memory.reset();
// Kernel must be reset last because it depends on CPU/Memory state
kernel.reset();
cpu.reset();
gpu.reset();
memory.reset();
// Kernel must be reset last because it depends on CPU/Memory state
kernel.reset();
// Reloading r13 and r15 needs to happen after everything has been reset
// Otherwise resetting the kernel or cpu might nuke them
cpu.setReg(13, VirtualAddrs::StackTop); // Set initial SP
if (romType == ROMType::ELF) { // Reload ELF if we're using one
loadELF(loadedELF);
}
// Reloading r13 and r15 needs to happen after everything has been reset
// Otherwise resetting the kernel or cpu might nuke them
cpu.setReg(13, VirtualAddrs::StackTop); // Set initial SP
if (romType == ROMType::ELF) { // Reload ELF if we're using one
loadELF(loadedELF);
}
}
void Emulator::step() {}
void Emulator::render() {
}
void Emulator::render() {}
void Emulator::run() {
while (running) {
gpu.getGraphicsContext(); // Give the GPU a rendering context
runFrame(); // Run 1 frame of instructions
gpu.display(); // Display graphics
while (running) {
gpu.getGraphicsContext(); // Give the GPU a rendering context
runFrame(); // Run 1 frame of instructions
gpu.display(); // Display graphics
ServiceManager& srv = kernel.getServiceManager();
ServiceManager& srv = kernel.getServiceManager();
// Send VBlank interrupts
srv.sendGPUInterrupt(GPUInterrupt::VBlank0);
srv.sendGPUInterrupt(GPUInterrupt::VBlank1);
// Send VBlank interrupts
srv.sendGPUInterrupt(GPUInterrupt::VBlank0);
srv.sendGPUInterrupt(GPUInterrupt::VBlank1);
SDL_Event event;
while (SDL_PollEvent(&event)) {
namespace Keys = HID::Keys;
SDL_Event event;
while (SDL_PollEvent(&event)) {
namespace Keys = HID::Keys;
switch (event.type) {
case SDL_QUIT:
printf("Bye :(\n");
running = false;
return;
case SDL_KEYDOWN:
switch (event.key.keysym.sym) {
case SDLK_l: srv.pressKey(Keys::A); break;
case SDLK_k: srv.pressKey(Keys::B); break;
case SDLK_o: srv.pressKey(Keys::X); break;
case SDLK_i: srv.pressKey(Keys::Y); break;
switch (event.type) {
case SDL_QUIT:
printf("Bye :(\n");
running = false;
return;
case SDLK_q: srv.pressKey(Keys::L); break;
case SDLK_p: srv.pressKey(Keys::R); break;
case SDL_KEYDOWN:
switch (event.key.keysym.sym) {
case SDLK_l: srv.pressKey(Keys::A); break;
case SDLK_k: srv.pressKey(Keys::B); break;
case SDLK_o: srv.pressKey(Keys::X); break;
case SDLK_i: srv.pressKey(Keys::Y); break;
case SDLK_RIGHT: srv.pressKey(Keys::Right); break;
case SDLK_LEFT: srv.pressKey(Keys::Left); break;
case SDLK_UP: srv.pressKey(Keys::Up); break;
case SDLK_DOWN: srv.pressKey(Keys::Down); break;
case SDLK_q: srv.pressKey(Keys::L); break;
case SDLK_p: srv.pressKey(Keys::R); break;
case SDLK_w: srv.setCirclepadY(0x9C); break;
case SDLK_a: srv.setCirclepadX(-0x9C); break;
case SDLK_s: srv.setCirclepadY(-0x9C); break;
case SDLK_d: srv.setCirclepadX(0x9C); break;
case SDLK_RIGHT: srv.pressKey(Keys::Right); break;
case SDLK_LEFT: srv.pressKey(Keys::Left); break;
case SDLK_UP: srv.pressKey(Keys::Up); break;
case SDLK_DOWN: srv.pressKey(Keys::Down); break;
case SDLK_RETURN: srv.pressKey(Keys::Start); break;
case SDLK_BACKSPACE: srv.pressKey(Keys::Select); break;
}
break;
case SDL_KEYUP:
switch (event.key.keysym.sym) {
case SDLK_l: srv.releaseKey(Keys::A); break;
case SDLK_k: srv.releaseKey(Keys::B); break;
case SDLK_o: srv.releaseKey(Keys::X); break;
case SDLK_i: srv.releaseKey(Keys::Y); break;
case SDLK_w:
srv.setCirclepadY(0x9C);
keyboardAnalogY = true;
break;
case SDLK_q: srv.releaseKey(Keys::L); break;
case SDLK_p: srv.releaseKey(Keys::R); break;
case SDLK_a:
srv.setCirclepadX(-0x9C);
keyboardAnalogX = true;
break;
case SDLK_RIGHT: srv.releaseKey(Keys::Right); break;
case SDLK_LEFT: srv.releaseKey(Keys::Left); break;
case SDLK_UP: srv.releaseKey(Keys::Up); break;
case SDLK_DOWN: srv.releaseKey(Keys::Down); break;
case SDLK_s:
srv.setCirclepadY(-0x9C);
keyboardAnalogY = true;
break;
// Err this is probably not ideal
case SDLK_w: srv.setCirclepadY(0); break;
case SDLK_a: srv.setCirclepadX(0); break;
case SDLK_s: srv.setCirclepadY(0); break;
case SDLK_d: srv.setCirclepadX(0); break;
case SDLK_d:
srv.setCirclepadX(0x9C);
keyboardAnalogX = true;
break;
case SDLK_RETURN: srv.releaseKey(Keys::Start); break;
case SDLK_BACKSPACE: srv.releaseKey(Keys::Select); break;
}
break;
case SDLK_RETURN: srv.pressKey(Keys::Start); break;
case SDLK_BACKSPACE: srv.pressKey(Keys::Select); break;
}
break;
case SDL_MOUSEBUTTONDOWN: {
if (event.button.button == SDL_BUTTON_LEFT) {
const s32 x = event.button.x;
const s32 y = event.button.y;
case SDL_KEYUP:
switch (event.key.keysym.sym) {
case SDLK_l: srv.releaseKey(Keys::A); break;
case SDLK_k: srv.releaseKey(Keys::B); break;
case SDLK_o: srv.releaseKey(Keys::X); break;
case SDLK_i: srv.releaseKey(Keys::Y); break;
// Check if touch falls in the touch screen area
if (y >= 240 && y <= 480 && x >= 40 && x < 40 + 320) {
// Convert to 3DS coordinates
u16 x_converted = static_cast<u16>(x) - 40;
u16 y_converted = static_cast<u16>(y) - 240;
case SDLK_q: srv.releaseKey(Keys::L); break;
case SDLK_p: srv.releaseKey(Keys::R); break;
srv.setTouchScreenPress(x_converted, y_converted);
}
else {
srv.releaseTouchScreen();
}
}
break;
}
case SDLK_RIGHT: srv.releaseKey(Keys::Right); break;
case SDLK_LEFT: srv.releaseKey(Keys::Left); break;
case SDLK_UP: srv.releaseKey(Keys::Up); break;
case SDLK_DOWN: srv.releaseKey(Keys::Down); break;
case SDL_MOUSEBUTTONUP:
if (event.button.button == SDL_BUTTON_LEFT) {
srv.releaseTouchScreen();
}
break;
}
}
// Err this is probably not ideal
case SDLK_w:
case SDLK_s:
srv.setCirclepadY(0);
keyboardAnalogY = false;
break;
// Update inputs in the HID module
srv.updateInputs(cpu.getTicks());
SDL_GL_SwapWindow(window);
}
case SDLK_a:
case SDLK_d:
srv.setCirclepadX(0);
keyboardAnalogX = false;
break;
case SDLK_RETURN: srv.releaseKey(Keys::Start); break;
case SDLK_BACKSPACE: srv.releaseKey(Keys::Select); break;
}
break;
case SDL_MOUSEBUTTONDOWN: {
if (event.button.button == SDL_BUTTON_LEFT) {
const s32 x = event.button.x;
const s32 y = event.button.y;
// Check if touch falls in the touch screen area
if (y >= 240 && y <= 480 && x >= 40 && x < 40 + 320) {
// Convert to 3DS coordinates
u16 x_converted = static_cast<u16>(x) - 40;
u16 y_converted = static_cast<u16>(y) - 240;
srv.setTouchScreenPress(x_converted, y_converted);
} else {
srv.releaseTouchScreen();
}
}
break;
}
case SDL_MOUSEBUTTONUP:
if (event.button.button == SDL_BUTTON_LEFT) {
srv.releaseTouchScreen();
}
break;
case SDL_CONTROLLERDEVICEADDED:
if (gameController == nullptr) {
gameController = SDL_GameControllerOpen(event.cdevice.which);
gameControllerID = event.cdevice.which;
}
break;
case SDL_CONTROLLERDEVICEREMOVED:
if (event.cdevice.which == gameControllerID) {
SDL_GameControllerClose(gameController);
gameController = nullptr;
gameControllerID = 0;
}
break;
case SDL_CONTROLLERBUTTONUP:
case SDL_CONTROLLERBUTTONDOWN: {
u32 key = 0;
switch (event.cbutton.button) {
case SDL_CONTROLLER_BUTTON_A: key = Keys::B; break;
case SDL_CONTROLLER_BUTTON_B: key = Keys::A; break;
case SDL_CONTROLLER_BUTTON_X: key = Keys::Y; break;
case SDL_CONTROLLER_BUTTON_Y: key = Keys::X; break;
case SDL_CONTROLLER_BUTTON_LEFTSHOULDER: key = Keys::L; break;
case SDL_CONTROLLER_BUTTON_RIGHTSHOULDER: key = Keys::R; break;
case SDL_CONTROLLER_BUTTON_DPAD_LEFT: key = Keys::Left; break;
case SDL_CONTROLLER_BUTTON_DPAD_RIGHT: key = Keys::Right; break;
case SDL_CONTROLLER_BUTTON_DPAD_UP: key = Keys::Up; break;
case SDL_CONTROLLER_BUTTON_DPAD_DOWN: key = Keys::Down; break;
case SDL_CONTROLLER_BUTTON_BACK: key = Keys::Select; break;
case SDL_CONTROLLER_BUTTON_START: key = Keys::Start; break;
}
if (key != 0) {
if (event.cbutton.state == SDL_PRESSED) {
srv.pressKey(key);
} else {
srv.releaseKey(key);
}
}
}
}
}
if (gameController != nullptr) {
const s16 stickX = SDL_GameControllerGetAxis(gameController, SDL_CONTROLLER_AXIS_LEFTX);
const s16 stickY = SDL_GameControllerGetAxis(gameController, SDL_CONTROLLER_AXIS_LEFTY);
constexpr s16 deadzone = 3276;
constexpr s16 maxValue = 0x9C;
constexpr s16 div = 0x8000 / maxValue;
// Avoid overriding the keyboard's circlepad input
if (abs(stickX) < deadzone && !keyboardAnalogX) {
srv.setCirclepadX(0);
} else {
srv.setCirclepadX(stickX / div);
}
if (abs(stickY) < deadzone && !keyboardAnalogY) {
srv.setCirclepadY(0);
} else {
srv.setCirclepadY(-(stickY / div));
}
}
// Update inputs in the HID module
srv.updateInputs(cpu.getTicks());
SDL_GL_SwapWindow(window);
}
}
void Emulator::runFrame() {
cpu.runFrame();
}
void Emulator::runFrame() { cpu.runFrame(); }
bool Emulator::loadROM(const std::filesystem::path& path) {
// Get path for saving files (AppData on Windows, /home/user/.local/share/ApplcationName on Linux, etc)
// Inside that path, we be use a game-specific folder as well. Eg if we were loading a ROM called PenguinDemo.3ds, the savedata would be in
// %APPDATA%/Alber/PenguinDemo/SaveData on Windows, and so on. We do this because games save data in their own filesystem on the cart
char* appData = SDL_GetPrefPath(nullptr, "Alber");
const std::filesystem::path appDataPath = std::filesystem::path(appData);
const std::filesystem::path dataPath = appDataPath / path.filename().stem();
// Get path for saving files (AppData on Windows, /home/user/.local/share/ApplcationName on Linux, etc)
// Inside that path, we be use a game-specific folder as well. Eg if we were loading a ROM called PenguinDemo.3ds, the savedata would be in
// %APPDATA%/Alber/PenguinDemo/SaveData on Windows, and so on. We do this because games save data in their own filesystem on the cart
char* appData = SDL_GetPrefPath(nullptr, "Alber");
const std::filesystem::path appDataPath = std::filesystem::path(appData);
const std::filesystem::path dataPath = appDataPath / path.filename().stem();
const std::filesystem::path aesKeysPath = appDataPath / "sysdata" / "aes_keys.txt";
IOFile::setAppDataDir(dataPath);
IOFile::setAppDataDir(dataPath);
SDL_free(appData);
// Open the text file containing our AES keys if it exists. We use the std::filesystem::exists overload that takes an error code param to
// avoid the call throwing exceptions
std::error_code ec;
if (std::filesystem::exists(aesKeysPath, ec) && !ec) {
aesEngine.loadKeys(aesKeysPath);
}
// Open the text file containing our AES keys if it exists. We use the std::filesystem::exists overload that takes an error code param to
// avoid the call throwing exceptions
std::error_code ec;
if (std::filesystem::exists(aesKeysPath, ec) && !ec) {
aesEngine.loadKeys(aesKeysPath);
}
kernel.initializeFS();
auto extension = path.extension();
if (extension == ".elf" || extension == ".axf")
return loadELF(path);
else if (extension == ".3ds")
return loadNCSD(path);
else {
printf("Unknown file type\n");
return false;
}
kernel.initializeFS();
auto extension = path.extension();
if (extension == ".elf" || extension == ".axf")
return loadELF(path);
else if (extension == ".3ds")
return loadNCSD(path);
else {
printf("Unknown file type\n");
return false;
}
}
bool Emulator::loadNCSD(const std::filesystem::path& path) {
romType = ROMType::NCSD;
std::optional<NCSD> opt = memory.loadNCSD(aesEngine, path);
romType = ROMType::NCSD;
std::optional<NCSD> opt = memory.loadNCSD(aesEngine, path);
if (!opt.has_value()) {
return false;
}
if (!opt.has_value()) {
return false;
}
loadedNCSD = opt.value();
cpu.setReg(15, loadedNCSD.entrypoint);
loadedNCSD = opt.value();
cpu.setReg(15, loadedNCSD.entrypoint);
if (loadedNCSD.entrypoint & 1) {
Helpers::panic("Misaligned NCSD entrypoint; should this start the CPU in Thumb mode?");
}
if (loadedNCSD.entrypoint & 1) {
Helpers::panic("Misaligned NCSD entrypoint; should this start the CPU in Thumb mode?");
}
return true;
return true;
}
bool Emulator::loadELF(const std::filesystem::path& path) {
loadedELF.open(path, std::ios_base::binary); // Open ROM in binary mode
romType = ROMType::ELF;
loadedELF.open(path, std::ios_base::binary); // Open ROM in binary mode
romType = ROMType::ELF;
return loadELF(loadedELF);
return loadELF(loadedELF);
}
bool Emulator::loadELF(std::ifstream& file) {
// Rewind ifstream
loadedELF.clear();
loadedELF.seekg(0);
// Rewind ifstream
loadedELF.clear();
loadedELF.seekg(0);
std::optional<u32> entrypoint = memory.loadELF(loadedELF);
if (!entrypoint.has_value())
return false;
std::optional<u32> entrypoint = memory.loadELF(loadedELF);
if (!entrypoint.has_value()) {
return false;
}
cpu.setReg(15, entrypoint.value()); // Set initial PC
if (entrypoint.value() & 1) {
Helpers::panic("Misaligned ELF entrypoint. TODO: Check if ELFs can boot in thumb mode");
}
return true;
}
cpu.setReg(15, entrypoint.value()); // Set initial PC
if (entrypoint.value() & 1) {
Helpers::panic("Misaligned ELF entrypoint. TODO: Check if ELFs can boot in thumb mode");
}
return true;
}