[Shader JIT] Add prologue & some more compilation stuffs

This commit is contained in:
wheremyfoodat 2023-06-08 22:22:28 +03:00
parent 415e276ef9
commit 77cba3110d
5 changed files with 116 additions and 7 deletions

View file

@ -15,10 +15,10 @@ class ShaderJIT {
#ifdef PANDA3DS_SHADER_JIT_SUPPORTED
using Hash = PICAShader::Hash;
using ShaderCache = std::unordered_map<Hash, std::unique_ptr<ShaderEmitter>>;
ShaderEmitter::Callback activeShaderCallback;
ShaderEmitter::PrologueCallback prologueCallback;
ShaderEmitter::InstructionCallback entrypointCallback;
ShaderCache cache;
void compileShader(PICAShader& shaderUnit);
#endif
public:
@ -26,8 +26,12 @@ public:
// Call this before starting to process a batch of vertices
// This will read the PICA config (uploaded shader and shader operand descriptors) and search if we've already compiled this shader
// If yes, it sets it as the active shader. if not, then it compiles it, adds it to the cache, and sets it as active,
// The caller must make sure the entrypoint has been properly set beforehand
void prepare(PICAShader& shaderUnit);
void reset();
void run(PICAShader& shaderUnit) {
prologueCallback(shaderUnit, entrypointCallback);
}
static constexpr bool isAvailable() { return true; }
#else
@ -42,6 +46,4 @@ public:
void reset() {}
static constexpr bool isAvailable() { return false; }
#endif
auto getCallback() { return activeShaderCallback; }
};

View file

@ -7,17 +7,51 @@
#include "xbyak/xbyak.h"
#include "x64_regs.hpp"
#include <vector>
class ShaderEmitter : public Xbyak::CodeGenerator {
static constexpr size_t executableMemorySize = PICAShader::maxInstructionCount * 96; // How much executable memory to alloc for each shader
// Allocate some extra space as padding for security purposes in the extremely unlikely occasion we manage to overflow the above size
static constexpr size_t allocSize = executableMemorySize + 0x1000;
// An array of labels (incl pointers) to each compiled (to x64) PICA instruction
std::array<Xbyak::Label, PICAShader::maxInstructionCount> instructionLabels;
// A vector of PCs that can potentially return based on the state of the PICA callstack.
// Filled before compiling a shader by scanning the code for call instructions
std::vector<u32> returnPCs;
u32 recompilerPC; // PC the recompiler is currently recompiling @
// Compile all instructions from [current recompiler PC, end)
void compileUntil(const PICAShader& shaderUnit, u32 endPC);
// Compile instruction "instr"
void compileInstruction(const PICAShader& shaderUnit);
bool isCall(u32 instruction) {
const u32 opcode = instruction >> 26;
return (opcode == ShaderOpcodes::CALL) || (opcode == ShaderOpcodes::CALLC) || (opcode == ShaderOpcodes::CALLU);
}
// Scan the shader code for call instructions to fill up the returnPCs vector before starting compilation
void scanForCalls(const PICAShader& shader);
public:
using Callback = void(*)(const PICAShader& shaderUnit);
using InstructionCallback = void(*)(PICAShader& shaderUnit); // Callback type used for instructions
// Callback type used for the JIT prologue. This is what the caller will call
using PrologueCallback = void(*)(PICAShader& shaderUnit, InstructionCallback cb);
PrologueCallback prologueCb;
// Initialize our emitter with "allocSize" bytes of RWX memory
ShaderEmitter() : Xbyak::CodeGenerator(allocSize) {}
void compile(const PICAShader& shaderUnit);
// PC must be a valid entrypoint here. It doesn't have that much overhead in this case, so we use std::array<>::at() to assert it does
InstructionCallback getInstructionCallback(u32 pc) {
return reinterpret_cast<InstructionCallback>(instructionLabels.at(pc).getAddress());
}
PrologueCallback getPrologueCallback() {
return prologueCb;
}
};
#endif // x64 recompiler check

View file

@ -17,9 +17,15 @@ void ShaderJIT::prepare(PICAShader& shaderUnit) {
if (it == cache.end()) { // Block has not been compiled yet
auto emitter = std::make_unique<ShaderEmitter>();
emitter->compile(shaderUnit);
// Get pointer to callbacks
entrypointCallback = emitter->getInstructionCallback(shaderUnit.entrypoint);
prologueCallback = emitter->getPrologueCallback();
cache.emplace_hint(it, hash, std::move(emitter));
} else { // Block has been compiled and found, use it
auto emitter = it->second.get();
entrypointCallback = emitter->getInstructionCallback(shaderUnit.entrypoint);
prologueCallback = emitter->getPrologueCallback();
}
}
#endif // PANDA3DS_SHADER_JIT_SUPPORTED

View file

@ -4,8 +4,70 @@
using namespace Xbyak;
using namespace Xbyak::util;
void ShaderEmitter::compile(const PICAShader& shaderUnit) {
// Register that points to PICA state
static constexpr Reg64 statePointer = rbp;
void ShaderEmitter::compile(const PICAShader& shaderUnit) {
// Emit prologue first
align(16);
prologueCb = getCurr<PrologueCallback>();
// We assume arg1 contains the pointer to the PICA state and arg2 a pointer to the code for the entrypoint
push(statePointer); // Back up state pointer to stack. This also aligns rsp to 16 bytes for calls
mov(statePointer, (uintptr_t)&shaderUnit); // Set state pointer to the proper pointer
// If we add integer register allocations they should be pushed here, and the rsp should be properly fixed up
// However most of the PICA is floating point so yeah
// Allocate shadow stack on Windows
if constexpr (isWindows()) {
sub(rsp, 32);
}
// Tail call to shader code entrypoint
jmp(arg2);
align(16);
// Scan the shader code for call instructions and add them to the list of possible return PCs. We need to do this because the PICA callstack works
// Pretty weirdly
scanForCalls(shaderUnit);
// Compile every instruction in the shader
// This sounds horrible but the PICA instruction memory is tiny, and most of the time it's padded wtih nops that compile to nothing
recompilerPC = 0;
compileUntil(shaderUnit, PICAShader::maxInstructionCount);
}
void ShaderEmitter::scanForCalls(const PICAShader& shaderUnit) {
returnPCs.clear();
for (u32 i = 0; i < PICAShader::maxInstructionCount; i++) {
const u32 instruction = shaderUnit.loadedShader[i];
if (isCall(instruction)) {
const u32 num = instruction & 0xff; // Num of instructions to execute
const u32 dest = (instruction >> 10) & 0xfff; // Starting subroutine address
const u32 returnPC = num + dest; // Add them to get the return PC
returnPCs.push_back(returnPC);
}
}
}
void ShaderEmitter::compileUntil(const PICAShader& shaderUnit, u32 end) {
while (recompilerPC < end) {
compileInstruction(shaderUnit);
}
}
void ShaderEmitter::compileInstruction(const PICAShader& shaderUnit) {
// Write current location to label for this instruction
L(instructionLabels[recompilerPC]);
// Fetch instruction and inc PC
const u32 instruction = shaderUnit.loadedShader[recompilerPC++];
const u32 opcode = instruction >> 26;
switch (opcode) {
default:
Helpers::panic("ShaderJIT: Unimplemented PICA opcode %X", opcode);
}
}
#endif

View file

@ -203,7 +203,12 @@ void GPU::drawArrays() {
std::memcpy(&shaderUnit.vs.inputs[mapping], &currentAttributes[j], sizeof(vec4f));
}
shaderUnit.vs.run();
if constexpr (useShaderJIT) {
shaderJIT.run(shaderUnit.vs);
} else {
shaderUnit.vs.run();
}
std::memcpy(&vertices[i].position, &shaderUnit.vs.outputs[0], sizeof(vec4f));
std::memcpy(&vertices[i].colour, &shaderUnit.vs.outputs[1], sizeof(vec4f));
std::memcpy(&vertices[i].UVs, &shaderUnit.vs.outputs[2], 2 * sizeof(f24));