revert formatting

This commit is contained in:
Samuliak 2024-07-02 19:19:37 +02:00
parent 124622cf18
commit 863edac152
7 changed files with 338 additions and 331 deletions

View file

@ -5,19 +5,19 @@ using HandleType = u32;
namespace KernelHandles {
enum : u32 {
Max = 0xFFFF7FFF, // Max handle the kernel can automagically allocate
Max = 0xFFFF7FFF, // Max handle the kernel can automagically allocate
// Hardcoded handles
CurrentThread = 0xFFFF8000, // Used by the original kernel
CurrentProcess = 0xFFFF8001, // Used by the original kernel
AC, // Something network related
ACT, // Handles NNID accounts
AM, // Application manager
APT, // App Title something service?
BOSS, // Streetpass stuff?
CAM, // Camera service
CECD, // More Streetpass stuff?
CFG_U, // CFG service (Console & region info)
CurrentThread = 0xFFFF8000, // Used by the original kernel
CurrentProcess = 0xFFFF8001, // Used by the original kernel
AC, // Something network related
ACT, // Handles NNID accounts
AM, // Application manager
APT, // App Title something service?
BOSS, // Streetpass stuff?
CAM, // Camera service
CECD, // More Streetpass stuff?
CFG_U, // CFG service (Console & region info)
CFG_I,
CFG_S, // Used by most system apps in lieu of cfg:u
CSND, // Plays audio directly from PCM samples
@ -50,10 +50,10 @@ namespace KernelHandles {
MinServiceHandle = AC,
MaxServiceHandle = Y2R,
GSPSharedMemHandle = MaxServiceHandle + 1, // HandleType for the GSP shared memory
GSPSharedMemHandle = MaxServiceHandle + 1, // Handle for the GSP shared memory
FontSharedMemHandle,
CSNDSharedMemHandle,
APTCaptureSharedMemHandle, // Shared memory for display capture info,
APTCaptureSharedMemHandle, // Shared memory for display capture info,
HIDSharedMemHandle,
MinSharedMemHandle = GSPSharedMemHandle,
@ -61,10 +61,14 @@ namespace KernelHandles {
};
// Returns whether "handle" belongs to one of the OS services
static constexpr bool isServiceHandle(HandleType handle) { return handle >= MinServiceHandle && handle <= MaxServiceHandle; }
static constexpr bool isServiceHandle(HandleType handle) {
return handle >= MinServiceHandle && handle <= MaxServiceHandle;
}
// Returns whether "handle" belongs to one of the OS services' shared memory areas
static constexpr bool isSharedMemHandle(HandleType handle) { return handle >= MinSharedMemHandle && handle <= MaxSharedMemHandle; }
static constexpr bool isSharedMemHandle(HandleType handle) {
return handle >= MinSharedMemHandle && handle <= MaxSharedMemHandle;
}
// Returns the name of a handle as a string based on the given handle
static const char* getServiceName(HandleType handle) {
@ -106,4 +110,4 @@ namespace KernelHandles {
default: return "Unknown";
}
}
} // namespace KernelHandles
}

View file

@ -45,12 +45,12 @@ class Kernel {
HandleType currentProcess;
HandleType mainThread;
int currentThreadIndex;
HandleType srvHandle; // HandleType for the special service manager port "srv:"
HandleType errorPortHandle; // HandleType for the err:f port used for displaying errors
HandleType srvHandle; // Handle for the special service manager port "srv:"
HandleType errorPortHandle; // Handle for the err:f port used for displaying errors
u32 arbiterCount;
u32 threadCount; // How many threads in our thread pool have been used as of now (Up to 32)
u32 aliveThreadCount; // How many of these threads are actually alive?
u32 threadCount; // How many threads in our thread pool have been used as of now (Up to 32)
u32 aliveThreadCount; // How many of these threads are actually alive?
ServiceManager serviceManager;
// Top 8 bits are the major version, bottom 8 are the minor version
@ -66,7 +66,7 @@ class Kernel {
HandleType makeThread(u32 entrypoint, u32 initialSP, u32 priority, ProcessorID id, u32 arg, ThreadStatus status = ThreadStatus::Dormant);
HandleType makeMemoryBlock(u32 addr, u32 size, u32 myPermission, u32 otherPermission);
public:
public:
// Needs to be public to be accessible to the APT/HID services
HandleType makeEvent(ResetType resetType, Event::CallbackType callback = Event::CallbackType::None);
// Needs to be public to be accessible to the APT/DSP services
@ -88,7 +88,7 @@ class Kernel {
}
}
private:
private:
void signalArbiter(u32 waitingAddress, s32 threadCount);
void sleepThread(s64 ns);
void sleepThreadOnArbiter(u32 waitingAddress);
@ -194,7 +194,7 @@ class Kernel {
void closeDirectory(u32 messagePointer, HandleType directory);
void readDirectory(u32 messagePointer, HandleType directory);
public:
public:
Kernel(CPU& cpu, Memory& mem, GPU& gpu, const EmulatorConfig& config);
void initializeFS() { return serviceManager.initializeFS(); }
void setVersion(u8 major, u8 minor);

View file

@ -1,102 +1,99 @@
#pragma once
#include <array>
#include <cstring>
#include "fs/archive_base.hpp"
#include "handles.hpp"
#include "helpers.hpp"
#include "result/result.hpp"
enum class KernelObjectType : u8 {
AddressArbiter,
Archive,
Directory,
File,
MemoryBlock,
Process,
ResourceLimit,
Session,
Dummy,
AddressArbiter, Archive, Directory, File, MemoryBlock, Process, ResourceLimit, Session, Dummy,
// Bundle waitable objects together in the enum to let the compiler optimize certain checks better
Event,
Mutex,
Port,
Semaphore,
Timer,
Thread
Event, Mutex, Port, Semaphore, Timer, Thread
};
enum class ResourceLimitCategory : int { Application = 0, SystemApplet = 1, LibraryApplet = 2, Misc = 3 };
enum class ResourceLimitCategory : int {
Application = 0,
SystemApplet = 1,
LibraryApplet = 2,
Misc = 3
};
// Reset types (for use with events and timers)
enum class ResetType {
OneShot = 0, // When the primitive is signaled, it will wake up exactly one thread and will clear itself automatically.
Sticky = 1, // When the primitive is signaled, it will wake up all threads and it won't clear itself automatically.
Pulse = 2, // Only meaningful for timers: same as ONESHOT but it will periodically signal the timer instead of just once.
OneShot = 0, // When the primitive is signaled, it will wake up exactly one thread and will clear itself automatically.
Sticky = 1, // When the primitive is signaled, it will wake up all threads and it won't clear itself automatically.
Pulse = 2, // Only meaningful for timers: same as ONESHOT but it will periodically signal the timer instead of just once.
};
enum class ArbitrationType { Signal = 0, WaitIfLess = 1, DecrementAndWaitIfLess = 2, WaitIfLessTimeout = 3, DecrementAndWaitIfLessTimeout = 4 };
enum class ArbitrationType {
Signal = 0,
WaitIfLess = 1,
DecrementAndWaitIfLess = 2,
WaitIfLessTimeout = 3,
DecrementAndWaitIfLessTimeout = 4
};
enum class ProcessorID : s32 {
AllCPUs = -1,
Default = -2,
AllCPUs = -1,
Default = -2,
AppCore = 0,
Syscore = 1,
New3DSExtra1 = 2,
New3DSExtra2 = 3
AppCore = 0,
Syscore = 1,
New3DSExtra1 = 2,
New3DSExtra2 = 3
};
struct AddressArbiter {};
struct ResourceLimits {
HandleType handle;
HandleType handle;
s32 currentCommit = 0;
s32 currentCommit = 0;
};
struct Process {
// Resource limits for this process
ResourceLimits limits;
// Process ID
u32 id;
// Resource limits for this process
ResourceLimits limits;
// Process ID
u32 id;
Process(u32 id) : id(id) {}
Process(u32 id) : id(id) {}
};
struct Event {
// Some events (for now, only the DSP semaphore events) need to execute a callback when signalled
// This enum stores what kind of callback they should execute
enum class CallbackType : u32 {
None,
DSPSemaphore,
};
// Some events (for now, only the DSP semaphore events) need to execute a callback when signalled
// This enum stores what kind of callback they should execute
enum class CallbackType : u32 {
None,
DSPSemaphore,
};
u64 waitlist; // A bitfield where each bit symbolizes if the thread with thread with the corresponding index is waiting on the event
ResetType resetType = ResetType::OneShot;
CallbackType callback = CallbackType::None;
bool fired = false;
u64 waitlist; // A bitfield where each bit symbolizes if the thread with thread with the corresponding index is waiting on the event
ResetType resetType = ResetType::OneShot;
CallbackType callback = CallbackType::None;
bool fired = false;
Event(ResetType resetType) : resetType(resetType), waitlist(0) {}
Event(ResetType resetType, CallbackType cb) : resetType(resetType), waitlist(0), callback(cb) {}
Event(ResetType resetType) : resetType(resetType), waitlist(0) {}
Event(ResetType resetType, CallbackType cb) : resetType(resetType), waitlist(0), callback(cb) {}
};
struct Port {
static constexpr u32 maxNameLen = 11;
static constexpr u32 maxNameLen = 11;
char name[maxNameLen + 1] = {};
bool isPublic = false; // Setting name=NULL creates a private port not accessible from svcConnectToPort.
char name[maxNameLen + 1] = {};
bool isPublic = false; // Setting name=NULL creates a private port not accessible from svcConnectToPort.
Port(const char* name) {
// If the name is empty (ie the first char is the null terminator) then the port is private
isPublic = name[0] != '\0';
std::strncpy(this->name, name, maxNameLen);
}
Port(const char* name) {
// If the name is empty (ie the first char is the null terminator) then the port is private
isPublic = name[0] != '\0';
std::strncpy(this->name, name, maxNameLen);
}
};
struct Session {
HandleType portHandle; // The port this session is subscribed to
Session(HandleType portHandle) : portHandle(portHandle) {}
HandleType portHandle; // The port this session is subscribed to
Session(HandleType portHandle) : portHandle(portHandle) {}
};
enum class ThreadStatus {
@ -145,102 +142,101 @@ struct Thread {
};
static const char* kernelObjectTypeToString(KernelObjectType t) {
switch (t) {
case KernelObjectType::AddressArbiter: return "address arbiter";
case KernelObjectType::Archive: return "archive";
case KernelObjectType::Directory: return "directory";
case KernelObjectType::Event: return "event";
case KernelObjectType::File: return "file";
case KernelObjectType::MemoryBlock: return "memory block";
case KernelObjectType::Port: return "port";
case KernelObjectType::Process: return "process";
case KernelObjectType::ResourceLimit: return "resource limit";
case KernelObjectType::Session: return "session";
case KernelObjectType::Mutex: return "mutex";
case KernelObjectType::Semaphore: return "semaphore";
case KernelObjectType::Thread: return "thread";
case KernelObjectType::Dummy: return "dummy";
default: return "unknown";
}
switch (t) {
case KernelObjectType::AddressArbiter: return "address arbiter";
case KernelObjectType::Archive: return "archive";
case KernelObjectType::Directory: return "directory";
case KernelObjectType::Event: return "event";
case KernelObjectType::File: return "file";
case KernelObjectType::MemoryBlock: return "memory block";
case KernelObjectType::Port: return "port";
case KernelObjectType::Process: return "process";
case KernelObjectType::ResourceLimit: return "resource limit";
case KernelObjectType::Session: return "session";
case KernelObjectType::Mutex: return "mutex";
case KernelObjectType::Semaphore: return "semaphore";
case KernelObjectType::Thread: return "thread";
case KernelObjectType::Dummy: return "dummy";
default: return "unknown";
}
}
struct Mutex {
u64 waitlist; // Refer to the getWaitlist function below for documentation
HandleType ownerThread = 0; // Index of the thread that holds the mutex if it's locked
HandleType handle; // HandleType of the mutex itself
u32 lockCount; // Number of times this mutex has been locked by its daddy. 0 = not locked
bool locked;
u64 waitlist; // Refer to the getWaitlist function below for documentation
HandleType ownerThread = 0; // Index of the thread that holds the mutex if it's locked
HandleType handle; // HandleType of the mutex itself
u32 lockCount; // Number of times this mutex has been locked by its daddy. 0 = not locked
bool locked;
Mutex(bool lock, HandleType handle) : locked(lock), waitlist(0), lockCount(lock ? 1 : 0), handle(handle) {}
Mutex(bool lock, HandleType handle) : locked(lock), waitlist(0), lockCount(lock ? 1 : 0), handle(handle) {}
};
struct Semaphore {
u64 waitlist; // Refer to the getWaitlist function below for documentation
s32 availableCount;
s32 maximumCount;
u64 waitlist; // Refer to the getWaitlist function below for documentation
s32 availableCount;
s32 maximumCount;
Semaphore(s32 initialCount, s32 maximumCount) : availableCount(initialCount), maximumCount(maximumCount), waitlist(0) {}
Semaphore(s32 initialCount, s32 maximumCount) : availableCount(initialCount), maximumCount(maximumCount), waitlist(0) {}
};
struct Timer {
u64 waitlist; // Refer to the getWaitlist function below for documentation
ResetType resetType = ResetType::OneShot;
u64 waitlist; // Refer to the getWaitlist function below for documentation
ResetType resetType = ResetType::OneShot;
u64 fireTick; // CPU tick the timer will be fired
u64 interval; // Number of ns until the timer fires for the second and future times
bool fired; // Has this timer been signalled?
bool running; // Is this timer running or stopped?
u64 fireTick; // CPU tick the timer will be fired
u64 interval; // Number of ns until the timer fires for the second and future times
bool fired; // Has this timer been signalled?
bool running; // Is this timer running or stopped?
Timer(ResetType type) : resetType(type), fireTick(0), interval(0), waitlist(0), fired(false), running(false) {}
Timer(ResetType type) : resetType(type), fireTick(0), interval(0), waitlist(0), fired(false), running(false) {}
};
struct MemoryBlock {
u32 addr = 0;
u32 size = 0;
u32 myPermission = 0;
u32 otherPermission = 0;
bool mapped = false;
u32 addr = 0;
u32 size = 0;
u32 myPermission = 0;
u32 otherPermission = 0;
bool mapped = false;
MemoryBlock(u32 addr, u32 size, u32 myPerm, u32 otherPerm)
: addr(addr), size(size), myPermission(myPerm), otherPermission(otherPerm), mapped(false) {}
MemoryBlock(u32 addr, u32 size, u32 myPerm, u32 otherPerm) : addr(addr), size(size), myPermission(myPerm), otherPermission(otherPerm), mapped(false) {}
};
// Generic kernel object class
struct KernelObject {
HandleType handle = 0; // A u32 the OS will use to identify objects
void* data = nullptr;
KernelObjectType type;
HandleType handle = 0; // A u32 the OS will use to identify objects
void* data = nullptr;
KernelObjectType type;
KernelObject(HandleType handle, KernelObjectType type) : handle(handle), type(type) {}
KernelObject(HandleType handle, KernelObjectType type) : handle(handle), type(type) {}
// Our destructor does not free the data in order to avoid it being freed when our std::vector is expanded
// Thus, the kernel needs to delete it when appropriate
~KernelObject() {}
// Our destructor does not free the data in order to avoid it being freed when our std::vector is expanded
// Thus, the kernel needs to delete it when appropriate
~KernelObject() {}
template <typename T>
T* getData() {
return static_cast<T*>(data);
}
template <typename T>
T* getData() {
return static_cast<T*>(data);
}
const char* getTypeName() const { return kernelObjectTypeToString(type); }
const char* getTypeName() const { return kernelObjectTypeToString(type); }
// Retrieves a reference to the waitlist for a specified object
// We return a reference because this function is only called in the kernel threading internals
// We want the kernel to be able to easily manage waitlists, by reading/parsing them or setting/clearing bits.
// As we mention in the definition of the "Event" struct, the format for wailists is very simple and made to be efficient.
// Each bit corresponds to a thread index and denotes whether the corresponding thread is waiting on this object
// For example if bit 0 of the wait list is set, then the thread with index 0 is waiting on our object
u64& getWaitlist() {
// This code is actually kinda trash but eh good enough
switch (type) {
case KernelObjectType::Event: return getData<Event>()->waitlist;
case KernelObjectType::Mutex: return getData<Mutex>()->waitlist;
case KernelObjectType::Semaphore: return getData<Mutex>()->waitlist;
case KernelObjectType::Thread: return getData<Thread>()->threadsWaitingForTermination;
case KernelObjectType::Timer: return getData<Timer>()->waitlist;
// Retrieves a reference to the waitlist for a specified object
// We return a reference because this function is only called in the kernel threading internals
// We want the kernel to be able to easily manage waitlists, by reading/parsing them or setting/clearing bits.
// As we mention in the definition of the "Event" struct, the format for wailists is very simple and made to be efficient.
// Each bit corresponds to a thread index and denotes whether the corresponding thread is waiting on this object
// For example if bit 0 of the wait list is set, then the thread with index 0 is waiting on our object
u64& getWaitlist() {
// This code is actually kinda trash but eh good enough
switch (type) {
case KernelObjectType::Event: return getData<Event>()->waitlist;
case KernelObjectType::Mutex: return getData<Mutex>()->waitlist;
case KernelObjectType::Semaphore: return getData<Mutex>()->waitlist;
case KernelObjectType::Thread: return getData<Thread>()->threadsWaitingForTermination;
case KernelObjectType::Timer: return getData<Timer>()->waitlist;
// This should be unreachable once we fully implement sync objects
default: [[unlikely]] Helpers::panic("Called GetWaitList on kernel object without a waitlist (Type: %s)", getTypeName());
}
}
// This should be unreachable once we fully implement sync objects
default: [[unlikely]] Helpers::panic("Called GetWaitList on kernel object without a waitlist (Type: %s)", getTypeName());
}
}
};