mirror of
https://github.com/wheremyfoodat/Panda3DS.git
synced 2025-05-26 00:19:12 +12:00
Optimize audio output a bit
This commit is contained in:
parent
53746e0511
commit
921250bcd2
4 changed files with 113 additions and 124 deletions
|
@ -1,4 +1,6 @@
|
||||||
#pragma once
|
#pragma once
|
||||||
|
#include <array>
|
||||||
|
|
||||||
#include "audio/dsp_core.hpp"
|
#include "audio/dsp_core.hpp"
|
||||||
#include "memory.hpp"
|
#include "memory.hpp"
|
||||||
#include "swap.hpp"
|
#include "swap.hpp"
|
||||||
|
@ -10,6 +12,11 @@ namespace Audio {
|
||||||
u32 pipeBaseAddr;
|
u32 pipeBaseAddr;
|
||||||
bool running; // Is the DSP running?
|
bool running; // Is the DSP running?
|
||||||
bool loaded; // Have we finished loading a binary with LoadComponent?
|
bool loaded; // Have we finished loading a binary with LoadComponent?
|
||||||
|
bool signalledData;
|
||||||
|
bool signalledSemaphore;
|
||||||
|
|
||||||
|
uint audioFrameIndex = 0; // Index in our audio frame
|
||||||
|
std::array<s16, 160 * 2> audioFrame;
|
||||||
|
|
||||||
// Get a pointer to a data memory address
|
// Get a pointer to a data memory address
|
||||||
u8* getDataPointer(u32 address) { return getDspMemory() + Memory::DSP_DATA_MEMORY_OFFSET + address; }
|
u8* getDataPointer(u32 address) { return getDspMemory() + Memory::DSP_DATA_MEMORY_OFFSET + address; }
|
||||||
|
@ -62,10 +69,6 @@ namespace Audio {
|
||||||
std::memcpy(statusAddress + 6, &status.writePointer, sizeof(u16));
|
std::memcpy(statusAddress + 6, &status.writePointer, sizeof(u16));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool signalledData;
|
|
||||||
bool signalledSemaphore;
|
|
||||||
|
|
||||||
// Run 1 slice of DSP instructions
|
// Run 1 slice of DSP instructions
|
||||||
void runSlice() {
|
void runSlice() {
|
||||||
if (running) {
|
if (running) {
|
||||||
|
|
|
@ -1,117 +1,110 @@
|
||||||
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
|
/*
|
||||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2021 PCSX-Redux authors
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
||||||
|
|
||||||
|
*/
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
|
#include <memory.h>
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <array>
|
#include <chrono>
|
||||||
#include <atomic>
|
#include <condition_variable>
|
||||||
#include <cstddef>
|
#include <mutex>
|
||||||
#include <cstring>
|
#include <stdexcept>
|
||||||
#include <new>
|
|
||||||
#include <span>
|
|
||||||
#include <type_traits>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
namespace Common {
|
namespace Common {
|
||||||
|
|
||||||
/// SPSC ring buffer
|
template <typename T, size_t BS = 1024>
|
||||||
/// @tparam T Element type
|
class RingBuffer {
|
||||||
/// @tparam capacity Number of slots in ring buffer
|
|
||||||
template <typename T, std::size_t capacity>
|
|
||||||
class RingBuffer {
|
|
||||||
/// A "slot" is made of a single `T`.
|
|
||||||
static constexpr std::size_t slot_size = sizeof(T);
|
|
||||||
// T must be safely memcpy-able and have a trivial default constructor.
|
|
||||||
static_assert(std::is_trivial_v<T>);
|
|
||||||
// Ensure capacity is sensible.
|
|
||||||
static_assert(capacity < std::numeric_limits<std::size_t>::max() / 2);
|
|
||||||
static_assert((capacity & (capacity - 1)) == 0, "capacity must be a power of two");
|
|
||||||
// Ensure lock-free.
|
|
||||||
static_assert(std::atomic_size_t::is_always_lock_free);
|
|
||||||
|
|
||||||
public:
|
public:
|
||||||
/// Pushes slots into the ring buffer
|
static constexpr size_t BUFFER_SIZE = BS;
|
||||||
/// @param new_slots Pointer to the slots to push
|
size_t available() {
|
||||||
/// @param slot_count Number of slots to push
|
std::unique_lock<std::mutex> l(m_mu);
|
||||||
/// @returns The number of slots actually pushed
|
return availableLocked();
|
||||||
std::size_t push(const void* new_slots, std::size_t slot_count) {
|
}
|
||||||
const std::size_t write_index = m_write_index.load();
|
size_t buffered() {
|
||||||
const std::size_t slots_free = capacity + m_read_index.load() - write_index;
|
std::unique_lock<std::mutex> l(m_mu);
|
||||||
const std::size_t push_count = std::min(slot_count, slots_free);
|
return bufferedLocked();
|
||||||
|
}
|
||||||
|
|
||||||
const std::size_t pos = write_index % capacity;
|
bool push(const T* data, size_t N) {
|
||||||
const std::size_t first_copy = std::min(capacity - pos, push_count);
|
if (N > BUFFER_SIZE) {
|
||||||
const std::size_t second_copy = push_count - first_copy;
|
throw std::runtime_error("Trying to enqueue too much data");
|
||||||
|
}
|
||||||
|
std::unique_lock<std::mutex> l(m_mu);
|
||||||
|
using namespace std::chrono_literals;
|
||||||
|
bool safe = m_cv.wait_for(l, 20ms, [this, N]() -> bool { return N < availableLocked(); });
|
||||||
|
if (safe) enqueueSafe(data, N);
|
||||||
|
return safe;
|
||||||
|
}
|
||||||
|
size_t pop(T* data, size_t N) {
|
||||||
|
std::unique_lock<std::mutex> l(m_mu);
|
||||||
|
N = std::min(N, bufferedLocked());
|
||||||
|
dequeueSafe(data, N);
|
||||||
|
|
||||||
const char* in = static_cast<const char*>(new_slots);
|
return N;
|
||||||
std::memcpy(m_data.data() + pos, in, first_copy * slot_size);
|
}
|
||||||
in += first_copy * slot_size;
|
|
||||||
std::memcpy(m_data.data(), in, second_copy * slot_size);
|
|
||||||
|
|
||||||
m_write_index.store(write_index + push_count);
|
private:
|
||||||
|
size_t availableLocked() const { return BUFFER_SIZE - m_size; }
|
||||||
|
size_t bufferedLocked() const { return m_size; }
|
||||||
|
void enqueueSafe(const T* data, size_t N) {
|
||||||
|
size_t end = m_end;
|
||||||
|
const size_t subLen = BUFFER_SIZE - end;
|
||||||
|
if (N > subLen) {
|
||||||
|
enqueueSafe(data, subLen);
|
||||||
|
enqueueSafe(data + subLen, N - subLen);
|
||||||
|
} else {
|
||||||
|
memcpy(m_buffer + end, data, N * sizeof(T));
|
||||||
|
end += N;
|
||||||
|
if (end == BUFFER_SIZE) end = 0;
|
||||||
|
m_end = end;
|
||||||
|
m_size += N;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void dequeueSafe(T* data, size_t N) {
|
||||||
|
size_t begin = m_begin;
|
||||||
|
const size_t subLen = BUFFER_SIZE - begin;
|
||||||
|
if (N > subLen) {
|
||||||
|
dequeueSafe(data, subLen);
|
||||||
|
dequeueSafe(data + subLen, N - subLen);
|
||||||
|
} else {
|
||||||
|
memcpy(data, m_buffer + begin, N * sizeof(T));
|
||||||
|
begin += N;
|
||||||
|
if (begin == BUFFER_SIZE) begin = 0;
|
||||||
|
m_begin = begin;
|
||||||
|
m_size -= N;
|
||||||
|
m_cv.notify_one();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return push_count;
|
size_t m_begin = 0, m_end = 0, m_size = 0;
|
||||||
}
|
T m_buffer[BUFFER_SIZE];
|
||||||
|
|
||||||
std::size_t push(std::span<const T> input) {
|
std::mutex m_mu;
|
||||||
return push(input.data(), input.size());
|
std::condition_variable m_cv;
|
||||||
}
|
};
|
||||||
|
} // namespace Common
|
||||||
/// Pops slots from the ring buffer
|
|
||||||
/// @param output Where to store the popped slots
|
|
||||||
/// @param max_slots Maximum number of slots to pop
|
|
||||||
/// @returns The number of slots actually popped
|
|
||||||
std::size_t pop(void* output, std::size_t max_slots = ~std::size_t(0)) {
|
|
||||||
const std::size_t read_index = m_read_index.load();
|
|
||||||
const std::size_t slots_filled = m_write_index.load() - read_index;
|
|
||||||
const std::size_t pop_count = std::min(slots_filled, max_slots);
|
|
||||||
|
|
||||||
const std::size_t pos = read_index % capacity;
|
|
||||||
const std::size_t first_copy = std::min(capacity - pos, pop_count);
|
|
||||||
const std::size_t second_copy = pop_count - first_copy;
|
|
||||||
|
|
||||||
char* out = static_cast<char*>(output);
|
|
||||||
std::memcpy(out, m_data.data() + pos, first_copy * slot_size);
|
|
||||||
out += first_copy * slot_size;
|
|
||||||
std::memcpy(out, m_data.data(), second_copy * slot_size);
|
|
||||||
|
|
||||||
m_read_index.store(read_index + pop_count);
|
|
||||||
|
|
||||||
return pop_count;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<T> pop(std::size_t max_slots = ~std::size_t(0)) {
|
|
||||||
std::vector<T> out(std::min(max_slots, capacity));
|
|
||||||
const std::size_t count = Pop(out.data(), out.size());
|
|
||||||
out.resize(count);
|
|
||||||
return out;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// @returns Number of slots used
|
|
||||||
[[nodiscard]] std::size_t size() const {
|
|
||||||
return m_write_index.load() - m_read_index.load();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// @returns Maximum size of ring buffer
|
|
||||||
[[nodiscard]] constexpr std::size_t Capacity() const {
|
|
||||||
return capacity;
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
// It is important to align the below variables for performance reasons:
|
|
||||||
// Having them on the same cache-line would result in false-sharing between them.
|
|
||||||
// TODO: Remove this ifdef whenever clang and GCC support
|
|
||||||
// std::hardware_destructive_interference_size.
|
|
||||||
#ifdef __cpp_lib_hardware_interference_size
|
|
||||||
alignas(std::hardware_destructive_interference_size) std::atomic_size_t m_read_index{0};
|
|
||||||
alignas(std::hardware_destructive_interference_size) std::atomic_size_t m_write_index{0};
|
|
||||||
#else
|
|
||||||
alignas(128) std::atomic_size_t m_read_index{0};
|
|
||||||
alignas(128) std::atomic_size_t m_write_index{0};
|
|
||||||
#endif
|
|
||||||
|
|
||||||
std::array<T, capacity> m_data;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace Common
|
|
|
@ -92,15 +92,6 @@ void MiniAudioDevice::init(Samples& samples, bool safe) {
|
||||||
auto self = reinterpret_cast<MiniAudioDevice*>(device->pUserData);
|
auto self = reinterpret_cast<MiniAudioDevice*>(device->pUserData);
|
||||||
s16* output = reinterpret_cast<ma_int16*>(out);
|
s16* output = reinterpret_cast<ma_int16*>(out);
|
||||||
|
|
||||||
// Wait until there's enough samples to pop
|
|
||||||
while (self->samples->size() < frameCount * channelCount) {
|
|
||||||
printf("Waiting\n");
|
|
||||||
// If audio output is disabled from the emulator thread, make sure that this callback will return and not hang
|
|
||||||
if (!self->running) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
self->samples->pop(output, frameCount * channelCount);
|
self->samples->pop(output, frameCount * channelCount);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
|
@ -6,10 +6,6 @@
|
||||||
#include "services/dsp.hpp"
|
#include "services/dsp.hpp"
|
||||||
|
|
||||||
using namespace Audio;
|
using namespace Audio;
|
||||||
static constexpr u32 sampleRate = 32768;
|
|
||||||
static constexpr u32 duration = 30;
|
|
||||||
static s16 samples[sampleRate * duration * 2];
|
|
||||||
static uint sampleIndex = 0;
|
|
||||||
|
|
||||||
struct Dsp1 {
|
struct Dsp1 {
|
||||||
// All sizes are in bytes unless otherwise specified
|
// All sizes are in bytes unless otherwise specified
|
||||||
|
@ -115,6 +111,8 @@ void TeakraDSP::reset() {
|
||||||
running = false;
|
running = false;
|
||||||
loaded = false;
|
loaded = false;
|
||||||
signalledData = signalledSemaphore = false;
|
signalledData = signalledSemaphore = false;
|
||||||
|
|
||||||
|
audioFrameIndex = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void TeakraDSP::setAudioEnabled(bool enable) {
|
void TeakraDSP::setAudioEnabled(bool enable) {
|
||||||
|
@ -124,10 +122,14 @@ void TeakraDSP::setAudioEnabled(bool enable) {
|
||||||
// Set the appropriate audio callback for Teakra
|
// Set the appropriate audio callback for Teakra
|
||||||
if (audioEnabled) {
|
if (audioEnabled) {
|
||||||
teakra.SetAudioCallback([=](std::array<s16, 2> sample) {
|
teakra.SetAudioCallback([=](std::array<s16, 2> sample) {
|
||||||
// Wait until we can push our samples
|
audioFrame[audioFrameIndex++] = sample[0];
|
||||||
while (sampleBuffer.size() + 2 > sampleBuffer.Capacity()) {
|
audioFrame[audioFrameIndex++] = sample[1];
|
||||||
|
|
||||||
|
// Push our samples at the end of an audio frame
|
||||||
|
if (audioFrameIndex >= audioFrame.size()) {
|
||||||
|
audioFrameIndex -= audioFrame.size();
|
||||||
|
sampleBuffer.push(audioFrame.data(), audioFrame.size());
|
||||||
}
|
}
|
||||||
sampleBuffer.push(sample.data(), 2);
|
|
||||||
});
|
});
|
||||||
} else {
|
} else {
|
||||||
teakra.SetAudioCallback([=](std::array<s16, 2> sample) { /* Do nothing */ });
|
teakra.SetAudioCallback([=](std::array<s16, 2> sample) { /* Do nothing */ });
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue