Add in-place swapchain recreation

Lots of todos, this should probably just be its own self-contained
object to allow the emulator to render "headlessly" regardless of a
swapchain existing or not.
This commit is contained in:
Wunkolo 2023-07-23 21:44:09 -07:00
parent 34b87e50bd
commit e2e49b7291
2 changed files with 221 additions and 192 deletions

View file

@ -4,6 +4,8 @@
class GPU;
class RendererVK final : public Renderer {
SDL_Window* targetWindow;
// The order of these `Unique*` members is important, they will be destroyed in RAII order
vk::UniqueInstance instance = {};
vk::UniqueDebugUtilsMessengerEXT debugMessenger = {};
@ -12,6 +14,8 @@ class RendererVK final : public Renderer {
vk::PhysicalDevice physicalDevice = {};
vk::UniqueDevice device = {};
vk::Queue presentQueue = {};
u32 presentQueueFamily = ~0u;
vk::Queue graphicsQueue = {};
@ -21,18 +25,13 @@ class RendererVK final : public Renderer {
vk::Queue transferQueue = {};
u32 transferQueueFamily = ~0u;
vk::UniqueDevice device = {};
vk::UniqueCommandPool commandPool = {};
vk::UniqueSwapchainKHR swapchain = {};
u32 swapchainImageCount = ~0u;
std::vector<vk::Image> swapchainImages = {};
std::vector<vk::UniqueImageView> swapchainImageViews = {};
// Global synchronization primitives
vk::UniqueCommandPool commandPool = {};
// Per-swapchain-image data
// Each vector is `swapchainImageCount` in size
std::vector<vk::UniqueCommandBuffer> presentCommandBuffers = {};
@ -40,6 +39,9 @@ class RendererVK final : public Renderer {
std::vector<vk::UniqueSemaphore> renderFinishedSemaphore = {};
std::vector<vk::UniqueFence> frameFinishedFences = {};
// Recreate the swapchain, possibly re-using the old one in the case of a resize
vk::Result recreateSwapchain(vk::SurfaceKHR surface, vk::Extent2D swapchainExtent);
u64 currentFrame = 0;
public:
RendererVK(GPU& gpu, const std::array<u32, regNum>& internalRegs);

View file

@ -1,8 +1,8 @@
#include "renderer_vk/renderer_vk.hpp"
#include <limits>
#include <span>
#include <unordered_set>
#include <limits>
#include "SDL_vulkan.h"
#include "helpers.hpp"
@ -23,6 +23,183 @@ static s32 findQueueFamily(
return -1;
}
vk::Result RendererVK::recreateSwapchain(vk::SurfaceKHR surface, vk::Extent2D swapchainExtent) {
static constexpr u32 screenTextureWidth = 400; // Top screen is 400 pixels wide, bottom is 320
static constexpr u32 screenTextureHeight = 2 * 240; // Both screens are 240 pixels tall
static constexpr vk::ImageUsageFlags swapchainUsageFlagsRequired =
(vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc | vk::ImageUsageFlagBits::eTransferDst);
// Extent + Image count + Usage + Surface Transform
vk::ImageUsageFlags swapchainImageUsage;
vk::SurfaceTransformFlagBitsKHR swapchainSurfaceTransform;
if (const auto getResult = physicalDevice.getSurfaceCapabilitiesKHR(surface); getResult.result == vk::Result::eSuccess) {
const vk::SurfaceCapabilitiesKHR& surfaceCapabilities = getResult.value;
// In the case if width == height == -1, we define the extent ourselves but must fit within the limits
if (surfaceCapabilities.currentExtent.width == -1 || surfaceCapabilities.currentExtent.height == -1) {
swapchainExtent.width = std::max(swapchainExtent.width, surfaceCapabilities.minImageExtent.width);
swapchainExtent.height = std::max(swapchainExtent.height, surfaceCapabilities.minImageExtent.height);
swapchainExtent.width = std::min(swapchainExtent.width, surfaceCapabilities.maxImageExtent.width);
swapchainExtent.height = std::min(swapchainExtent.height, surfaceCapabilities.maxImageExtent.height);
}
swapchainImageCount = surfaceCapabilities.minImageCount + 1;
if ((surfaceCapabilities.maxImageCount > 0) && (swapchainImageCount > surfaceCapabilities.maxImageCount)) {
swapchainImageCount = surfaceCapabilities.maxImageCount;
}
swapchainImageUsage = surfaceCapabilities.supportedUsageFlags & swapchainUsageFlagsRequired;
if ((swapchainImageUsage & swapchainUsageFlagsRequired) != swapchainUsageFlagsRequired) {
Helpers::panic(
"Unsupported swapchain image usage. Could not acquire %s\n", vk::to_string(swapchainImageUsage ^ swapchainUsageFlagsRequired).c_str()
);
}
if (surfaceCapabilities.supportedTransforms & vk::SurfaceTransformFlagBitsKHR::eIdentity) {
swapchainSurfaceTransform = vk::SurfaceTransformFlagBitsKHR::eIdentity;
} else {
swapchainSurfaceTransform = surfaceCapabilities.currentTransform;
}
} else {
Helpers::panic("Error getting surface capabilities: %s\n", vk::to_string(getResult.result).c_str());
}
// Preset Mode
// Fifo support is required by all vulkan implementations, waits for vsync
vk::PresentModeKHR swapchainPresentMode = vk::PresentModeKHR::eFifo;
if (auto getResult = physicalDevice.getSurfacePresentModesKHR(surface); getResult.result == vk::Result::eSuccess) {
std::vector<vk::PresentModeKHR>& presentModes = getResult.value;
// Use mailbox if available, lowest-latency vsync-enabled mode
if (std::find(presentModes.begin(), presentModes.end(), vk::PresentModeKHR::eMailbox) != presentModes.end()) {
swapchainPresentMode = vk::PresentModeKHR::eMailbox;
}
} else {
Helpers::panic("Error enumerating surface present modes: %s\n", vk::to_string(getResult.result).c_str());
}
// Surface format
vk::SurfaceFormatKHR swapchainSurfaceFormat;
if (auto getResult = physicalDevice.getSurfaceFormatsKHR(surface); getResult.result == vk::Result::eSuccess) {
std::vector<vk::SurfaceFormatKHR>& surfaceFormats = getResult.value;
// A singular undefined surface format means we can use any format we want
if ((surfaceFormats.size() == 1) && surfaceFormats[0].format == vk::Format::eUndefined) {
// Assume R8G8B8A8-SRGB by default
swapchainSurfaceFormat = {vk::Format::eR8G8B8A8Unorm, vk::ColorSpaceKHR::eSrgbNonlinear};
} else {
// Find the next-best R8G8B8A8-SRGB format
std::vector<vk::SurfaceFormatKHR>::iterator partitionEnd = surfaceFormats.end();
const auto preferR8G8B8A8 = [](const vk::SurfaceFormatKHR& surfaceFormat) -> bool {
return surfaceFormat.format == vk::Format::eR8G8B8A8Snorm;
};
partitionEnd = std::stable_partition(surfaceFormats.begin(), partitionEnd, preferR8G8B8A8);
const auto preferSrgbNonLinear = [](const vk::SurfaceFormatKHR& surfaceFormat) -> bool {
return surfaceFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear;
};
partitionEnd = std::stable_partition(surfaceFormats.begin(), partitionEnd, preferSrgbNonLinear);
swapchainSurfaceFormat = surfaceFormats.front();
}
} else {
Helpers::panic("Error enumerating surface formats: %s\n", vk::to_string(getResult.result).c_str());
}
vk::SwapchainCreateInfoKHR swapchainInfo = {};
swapchainInfo.surface = surface;
swapchainInfo.minImageCount = swapchainImageCount;
swapchainInfo.imageFormat = swapchainSurfaceFormat.format;
swapchainInfo.imageColorSpace = swapchainSurfaceFormat.colorSpace;
swapchainInfo.imageExtent = swapchainExtent;
swapchainInfo.imageArrayLayers = 1;
swapchainInfo.imageUsage = swapchainImageUsage;
swapchainInfo.imageSharingMode = vk::SharingMode::eExclusive;
swapchainInfo.preTransform = swapchainSurfaceTransform;
swapchainInfo.compositeAlpha = vk::CompositeAlphaFlagBitsKHR::eOpaque;
swapchainInfo.presentMode = swapchainPresentMode;
swapchainInfo.clipped = true;
swapchainInfo.oldSwapchain = swapchain.get();
if (auto createResult = device->createSwapchainKHRUnique(swapchainInfo); createResult.result == vk::Result::eSuccess) {
swapchain = std::move(createResult.value);
} else {
Helpers::panic("Error creating swapchain: %s\n", vk::to_string(createResult.result).c_str());
}
// Get swapchain images
if (auto getResult = device->getSwapchainImagesKHR(swapchain.get()); getResult.result == vk::Result::eSuccess) {
swapchainImages = getResult.value;
swapchainImageViews.resize(swapchainImages.size());
// Create image-views
for (usize i = 0; i < swapchainImages.size(); i++) {
vk::ImageViewCreateInfo viewInfo = {};
viewInfo.image = swapchainImages[i];
viewInfo.viewType = vk::ImageViewType::e2D;
viewInfo.format = swapchainSurfaceFormat.format;
viewInfo.components = vk::ComponentMapping();
viewInfo.subresourceRange = vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1);
if (auto createResult = device->createImageViewUnique(viewInfo); createResult.result == vk::Result::eSuccess) {
swapchainImageViews[i] = std::move(createResult.value);
} else {
Helpers::panic("Error creating swapchain image-view: #%zu %s\n", i, vk::to_string(getResult.result).c_str());
}
}
} else {
Helpers::panic("Error creating acquiring swapchain images: %s\n", vk::to_string(getResult.result).c_str());
}
// Swapchain Command buffer(s)
vk::CommandBufferAllocateInfo commandBuffersInfo = {};
commandBuffersInfo.commandPool = commandPool.get();
commandBuffersInfo.level = vk::CommandBufferLevel::ePrimary;
commandBuffersInfo.commandBufferCount = swapchainImageCount;
if (auto allocateResult = device->allocateCommandBuffersUnique(commandBuffersInfo); allocateResult.result == vk::Result::eSuccess) {
presentCommandBuffers = std::move(allocateResult.value);
} else {
Helpers::panic("Error allocating command buffer: %s\n", vk::to_string(allocateResult.result).c_str());
}
// Swapchain synchronization primitives
vk::FenceCreateInfo fenceInfo = {};
fenceInfo.flags = vk::FenceCreateFlagBits::eSignaled;
vk::SemaphoreCreateInfo semaphoreInfo = {};
swapImageFreeSemaphore.resize(swapchainImageCount);
renderFinishedSemaphore.resize(swapchainImageCount);
frameFinishedFences.resize(swapchainImageCount);
for (usize i = 0; i < swapchainImageCount; i++) {
if (auto createResult = device->createSemaphoreUnique(semaphoreInfo); createResult.result == vk::Result::eSuccess) {
swapImageFreeSemaphore[i] = std::move(createResult.value);
} else {
Helpers::panic("Error creating 'present-ready' semaphore: %s\n", vk::to_string(createResult.result).c_str());
}
if (auto createResult = device->createSemaphoreUnique(semaphoreInfo); createResult.result == vk::Result::eSuccess) {
renderFinishedSemaphore[i] = std::move(createResult.value);
} else {
Helpers::panic("Error creating 'post-render' semaphore: %s\n", vk::to_string(createResult.result).c_str());
}
if (auto createResult = device->createFenceUnique(fenceInfo); createResult.result == vk::Result::eSuccess) {
frameFinishedFences[i] = std::move(createResult.value);
} else {
Helpers::panic("Error creating 'present-ready' semaphore: %s\n", vk::to_string(createResult.result).c_str());
}
}
return vk::Result::eSuccess;
}
RendererVK::RendererVK(GPU& gpu, const std::array<u32, regNum>& internalRegs) : Renderer(gpu, internalRegs) {}
RendererVK::~RendererVK() {}
@ -31,7 +208,8 @@ void RendererVK::reset() {}
void RendererVK::display() {
// Block, on the CPU, to ensure that this swapchain-frame is ready for more work
if (auto waitResult = device->waitForFences({frameFinishedFences[currentFrame].get()}, true, std::numeric_limits<u64>::max()); waitResult != vk::Result::eSuccess) {
if (auto waitResult = device->waitForFences({frameFinishedFences[currentFrame].get()}, true, std::numeric_limits<u64>::max());
waitResult != vk::Result::eSuccess) {
Helpers::panic("Error waiting on swapchain fence: %s\n", vk::to_string(waitResult).c_str());
}
@ -45,7 +223,19 @@ void RendererVK::display() {
case vk::Result::eSuboptimalKHR:
case vk::Result::eErrorOutOfDateKHR: {
// Surface resized
// Todo: Recreate swapchain and get a valid image index
vk::Extent2D swapchainExtent;
{
int windowWidth, windowHeight;
// Block until we have a valid surface-area to present to
// Usually this is because the window has been minimized
// Todo: We should still be rendering even without a valid swapchain
do {
SDL_Vulkan_GetDrawableSize(targetWindow, &windowWidth, &windowHeight);
} while (!windowWidth || !windowHeight);
swapchainExtent.width = windowWidth;
swapchainExtent.height = windowHeight;
}
recreateSwapchain(surface.get(), swapchainExtent);
break;
}
default: {
@ -64,7 +254,7 @@ void RendererVK::display() {
}
{
static const std::array<float, 4> presentScopeColor = {{1.0f, currentFrame / 2.0f, 1.0f, 1.0f}};
static const std::array<float, 4> presentScopeColor = {{1.0f, 0.0f, 1.0f, 1.0f}};
Vulkan::DebugLabelScope debugScope(presentCommandBuffer.get(), presentScopeColor, "Present");
@ -111,7 +301,8 @@ void RendererVK::display() {
device->resetFences({frameFinishedFences[currentFrame].get()});
if (const vk::Result submitResult = graphicsQueue.submit({submitInfo}, frameFinishedFences[currentFrame].get()); submitResult != vk::Result::eSuccess) {
if (const vk::Result submitResult = graphicsQueue.submit({submitInfo}, frameFinishedFences[currentFrame].get());
submitResult != vk::Result::eSuccess) {
Helpers::panic("Error submitting to graphics queue: %s\n", vk::to_string(submitResult).c_str());
}
@ -126,7 +317,14 @@ void RendererVK::display() {
case vk::Result::eSuboptimalKHR:
case vk::Result::eErrorOutOfDateKHR: {
// Surface resized
// Todo: Recreate swapchain and get a valid image index
vk::Extent2D swapchainExtent;
{
int windowWidth, windowHeight;
SDL_Vulkan_GetDrawableSize(targetWindow, &windowWidth, &windowHeight);
swapchainExtent.width = windowWidth;
swapchainExtent.height = windowHeight;
}
recreateSwapchain(surface.get(), swapchainExtent);
break;
}
default: {
@ -139,6 +337,7 @@ void RendererVK::display() {
}
void RendererVK::initGraphicsContext(SDL_Window* window) {
targetWindow = window;
// Resolve all instance function pointers
static vk::DynamicLoader dl;
VULKAN_HPP_DEFAULT_DISPATCHER.init(dl.getProcAddress<PFN_vkGetInstanceProcAddr>("vkGetInstanceProcAddr"));
@ -317,146 +516,6 @@ void RendererVK::initGraphicsContext(SDL_Window* window) {
computeQueue = device->getQueue(computeQueueFamily, 0);
transferQueue = device->getQueue(transferQueueFamily, 0);
// Create swapchain
static constexpr u32 screenTextureWidth = 400; // Top screen is 400 pixels wide, bottom is 320
static constexpr u32 screenTextureHeight = 2 * 240; // Both screens are 240 pixels tall
static constexpr vk::ImageUsageFlags swapchainUsageFlagsRequired =
(vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc | vk::ImageUsageFlagBits::eTransferDst);
vk::Extent2D swapchainExtent;
{
int windowWidth, windowHeight;
SDL_Vulkan_GetDrawableSize(window, &windowWidth, &windowHeight);
swapchainExtent.width = windowWidth;
swapchainExtent.height = windowHeight;
}
// Extent + Image count + Usage + Surface Transform
vk::ImageUsageFlags swapchainImageUsage;
vk::SurfaceTransformFlagBitsKHR swapchainSurfaceTransform;
if (const auto getResult = physicalDevice.getSurfaceCapabilitiesKHR(surface.get()); getResult.result == vk::Result::eSuccess) {
const vk::SurfaceCapabilitiesKHR& surfaceCapabilities = getResult.value;
// In the case if width == height == -1, we define the extent ourselves but must fit within the limits
if (surfaceCapabilities.currentExtent.width == -1 || surfaceCapabilities.currentExtent.height == -1) {
swapchainExtent.width = std::max(swapchainExtent.width, surfaceCapabilities.minImageExtent.width);
swapchainExtent.height = std::max(swapchainExtent.height, surfaceCapabilities.minImageExtent.height);
swapchainExtent.width = std::min(swapchainExtent.width, surfaceCapabilities.maxImageExtent.width);
swapchainExtent.height = std::min(swapchainExtent.height, surfaceCapabilities.maxImageExtent.height);
}
swapchainImageCount = surfaceCapabilities.minImageCount + 1;
if ((surfaceCapabilities.maxImageCount > 0) && (swapchainImageCount > surfaceCapabilities.maxImageCount)) {
swapchainImageCount = surfaceCapabilities.maxImageCount;
}
swapchainImageUsage = surfaceCapabilities.supportedUsageFlags & swapchainUsageFlagsRequired;
if ((swapchainImageUsage & swapchainUsageFlagsRequired) != swapchainUsageFlagsRequired) {
Helpers::panic(
"Unsupported swapchain image usage. Could not acquire %s\n", vk::to_string(swapchainImageUsage ^ swapchainUsageFlagsRequired).c_str()
);
}
if (surfaceCapabilities.supportedTransforms & vk::SurfaceTransformFlagBitsKHR::eIdentity) {
swapchainSurfaceTransform = vk::SurfaceTransformFlagBitsKHR::eIdentity;
} else {
swapchainSurfaceTransform = surfaceCapabilities.currentTransform;
}
} else {
Helpers::panic("Error getting surface capabilities: %s\n", vk::to_string(getResult.result).c_str());
}
// Preset Mode
// Fifo support is required by all vulkan implementations, waits for vsync
vk::PresentModeKHR swapchainPresentMode = vk::PresentModeKHR::eFifo;
if (auto getResult = physicalDevice.getSurfacePresentModesKHR(surface.get()); getResult.result == vk::Result::eSuccess) {
std::vector<vk::PresentModeKHR>& presentModes = getResult.value;
// Use mailbox if available, lowest-latency vsync-enabled mode
if (std::find(presentModes.begin(), presentModes.end(), vk::PresentModeKHR::eMailbox) != presentModes.end()) {
swapchainPresentMode = vk::PresentModeKHR::eMailbox;
}
} else {
Helpers::panic("Error enumerating surface present modes: %s\n", vk::to_string(getResult.result).c_str());
}
// Surface format
vk::SurfaceFormatKHR swapchainSurfaceFormat;
if (auto getResult = physicalDevice.getSurfaceFormatsKHR(surface.get()); getResult.result == vk::Result::eSuccess) {
std::vector<vk::SurfaceFormatKHR>& surfaceFormats = getResult.value;
// A singular undefined surface format means we can use any format we want
if ((surfaceFormats.size() == 1) && surfaceFormats[0].format == vk::Format::eUndefined) {
// Assume R8G8B8A8-SRGB by default
swapchainSurfaceFormat = {vk::Format::eR8G8B8A8Unorm, vk::ColorSpaceKHR::eSrgbNonlinear};
} else {
// Find the next-best R8G8B8A8-SRGB format
std::vector<vk::SurfaceFormatKHR>::iterator partitionEnd = surfaceFormats.end();
const auto preferR8G8B8A8 = [](const vk::SurfaceFormatKHR& surfaceFormat) -> bool {
return surfaceFormat.format == vk::Format::eR8G8B8A8Snorm;
};
partitionEnd = std::stable_partition(surfaceFormats.begin(), partitionEnd, preferR8G8B8A8);
const auto preferSrgbNonLinear = [](const vk::SurfaceFormatKHR& surfaceFormat) -> bool {
return surfaceFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear;
};
partitionEnd = std::stable_partition(surfaceFormats.begin(), partitionEnd, preferSrgbNonLinear);
swapchainSurfaceFormat = surfaceFormats.front();
}
} else {
Helpers::panic("Error enumerating surface formats: %s\n", vk::to_string(getResult.result).c_str());
}
vk::SwapchainCreateInfoKHR swapchainInfo = {};
swapchainInfo.surface = surface.get();
swapchainInfo.minImageCount = swapchainImageCount;
swapchainInfo.imageFormat = swapchainSurfaceFormat.format;
swapchainInfo.imageColorSpace = swapchainSurfaceFormat.colorSpace;
swapchainInfo.imageExtent = swapchainExtent;
swapchainInfo.imageArrayLayers = 1;
swapchainInfo.imageUsage = swapchainImageUsage;
swapchainInfo.imageSharingMode = vk::SharingMode::eExclusive;
swapchainInfo.preTransform = swapchainSurfaceTransform;
swapchainInfo.compositeAlpha = vk::CompositeAlphaFlagBitsKHR::eOpaque;
swapchainInfo.presentMode = swapchainPresentMode;
swapchainInfo.clipped = true;
swapchainInfo.oldSwapchain = nullptr; // Todo
if (auto createResult = device->createSwapchainKHRUnique(swapchainInfo); createResult.result == vk::Result::eSuccess) {
swapchain = std::move(createResult.value);
} else {
Helpers::panic("Error creating swapchain: %s\n", vk::to_string(createResult.result).c_str());
}
// Get swapchain images
if (auto getResult = device->getSwapchainImagesKHR(swapchain.get()); getResult.result == vk::Result::eSuccess) {
swapchainImages = getResult.value;
swapchainImageViews.resize(swapchainImages.size());
// Create image-views
for (usize i = 0; i < swapchainImages.size(); i++) {
vk::ImageViewCreateInfo viewInfo = {};
viewInfo.image = swapchainImages[i];
viewInfo.viewType = vk::ImageViewType::e2D;
viewInfo.format = swapchainSurfaceFormat.format;
viewInfo.components = vk::ComponentMapping();
viewInfo.subresourceRange = vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1);
if (auto createResult = device->createImageViewUnique(viewInfo); createResult.result == vk::Result::eSuccess) {
swapchainImageViews[i] = std::move(createResult.value);
} else {
Helpers::panic("Error creating swapchain image-view: #%zu %s\n", i, vk::to_string(getResult.result).c_str());
}
}
} else {
Helpers::panic("Error creating acquiring swapchain images: %s\n", vk::to_string(getResult.result).c_str());
}
// Command pool
vk::CommandPoolCreateInfo commandPoolInfo = {};
commandPoolInfo.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer;
@ -467,47 +526,15 @@ void RendererVK::initGraphicsContext(SDL_Window* window) {
Helpers::panic("Error creating command pool: %s\n", vk::to_string(createResult.result).c_str());
}
// Swapchain Command buffer(s)
vk::CommandBufferAllocateInfo commandBuffersInfo = {};
commandBuffersInfo.commandPool = commandPool.get();
commandBuffersInfo.level = vk::CommandBufferLevel::ePrimary;
commandBuffersInfo.commandBufferCount = swapchainImageCount;
if (auto allocateResult = device->allocateCommandBuffersUnique(commandBuffersInfo); allocateResult.result == vk::Result::eSuccess) {
presentCommandBuffers = std::move(allocateResult.value);
} else {
Helpers::panic("Error allocating command buffer: %s\n", vk::to_string(allocateResult.result).c_str());
}
// Swapchain synchronization primitives
vk::FenceCreateInfo fenceInfo = {};
fenceInfo.flags = vk::FenceCreateFlagBits::eSignaled;
vk::SemaphoreCreateInfo semaphoreInfo = {};
swapImageFreeSemaphore.resize(swapchainImageCount);
renderFinishedSemaphore.resize(swapchainImageCount);
frameFinishedFences.resize(swapchainImageCount);
for (usize i = 0; i < swapchainImageCount; i++) {
if (auto createResult = device->createSemaphoreUnique(semaphoreInfo); createResult.result == vk::Result::eSuccess) {
swapImageFreeSemaphore[i] = std::move(createResult.value);
} else {
Helpers::panic("Error creating 'present-ready' semaphore: %s\n", vk::to_string(createResult.result).c_str());
}
if (auto createResult = device->createSemaphoreUnique(semaphoreInfo); createResult.result == vk::Result::eSuccess) {
renderFinishedSemaphore[i] = std::move(createResult.value);
} else {
Helpers::panic("Error creating 'post-render' semaphore: %s\n", vk::to_string(createResult.result).c_str());
}
if (auto createResult = device->createFenceUnique(fenceInfo); createResult.result == vk::Result::eSuccess) {
frameFinishedFences[i] = std::move(createResult.value);
} else {
Helpers::panic("Error creating 'present-ready' semaphore: %s\n", vk::to_string(createResult.result).c_str());
}
// Create swapchain
vk::Extent2D swapchainExtent;
{
int windowWidth, windowHeight;
SDL_Vulkan_GetDrawableSize(window, &windowWidth, &windowHeight);
swapchainExtent.width = windowWidth;
swapchainExtent.height = windowHeight;
}
recreateSwapchain(surface.get(), swapchainExtent);
}
void RendererVK::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {}