#include "services/gsp_gpu.hpp" // Commands used with SendSyncRequest targetted to the GSP::GPU service namespace ServiceCommands { enum : u32 { SetAxiConfigQoSMode = 0x00100040, AcquireRight = 0x00160042, RegisterInterruptRelayQueue = 0x00130042, WriteHwRegs = 0x00010082, WriteHwRegsWithMask = 0x00020084, FlushDataCache = 0x00080082, SetLCDForceBlack = 0x000B0040, TriggerCmdReqQueue = 0x000C0000, SetInternalPriorities = 0x001E0080, StoreDataCache = 0x001F0082 }; } // Commands written to shared memory and processed by TriggerCmdReqQueue namespace GXCommands { enum : u32 { TriggerDMARequest = 0, ProcessCommandList = 1, MemoryFill = 2, TriggerDisplayTransfer = 3, FlushCacheRegions = 5 }; } namespace Result { enum : u32 { Success = 0, SuccessRegisterIRQ = 0x2A07 // TODO: Is this a reference to the Ricoh 2A07 used in PAL NES systems? }; } void GPUService::reset() { privilegedProcess = 0xFFFFFFFF; // Set the privileged process to an invalid handle sharedMem = nullptr; } void GPUService::handleSyncRequest(u32 messagePointer) { const u32 command = mem.read32(messagePointer); switch (command) { case ServiceCommands::AcquireRight: acquireRight(messagePointer); break; case ServiceCommands::FlushDataCache: flushDataCache(messagePointer); break; case ServiceCommands::RegisterInterruptRelayQueue: registerInterruptRelayQueue(messagePointer); break; case ServiceCommands::SetAxiConfigQoSMode: setAxiConfigQoSMode(messagePointer); break; case ServiceCommands::SetInternalPriorities: setInternalPriorities(messagePointer); break; case ServiceCommands::SetLCDForceBlack: setLCDForceBlack(messagePointer); break; case ServiceCommands::StoreDataCache: storeDataCache(messagePointer); break; case ServiceCommands::TriggerCmdReqQueue: [[likely]] triggerCmdReqQueue(messagePointer); break; case ServiceCommands::WriteHwRegs: writeHwRegs(messagePointer); break; case ServiceCommands::WriteHwRegsWithMask: writeHwRegsWithMask(messagePointer); break; ; default: Helpers::panic("GPU service requested. Command: %08X\n", command); } } void GPUService::acquireRight(u32 messagePointer) { const u32 flag = mem.read32(messagePointer + 4); const u32 pid = mem.read32(messagePointer + 12); log("GSP::GPU::AcquireRight (flag = %X, pid = %X)\n", flag, pid); if (flag != 0) { Helpers::panic("GSP::GPU::acquireRight with flag != 0 needs to perform additional initialization"); } if (pid == KernelHandles::CurrentProcess) { privilegedProcess = currentPID; } else { privilegedProcess = pid; } mem.write32(messagePointer + 4, Result::Success); } // TODO: What is the flags field meant to be? // What is the "GSP module thread index" meant to be? // How does the shared memory handle thing work? void GPUService::registerInterruptRelayQueue(u32 messagePointer) { // Detect if this function is called a 2nd time because we'll likely need to impl threads properly for the GSP static bool beenHere = false; if (beenHere) Helpers::panic("RegisterInterruptRelayQueue called a second time. Need to implement GSP threads properly"); beenHere = true; const u32 flags = mem.read32(messagePointer + 4); const u32 eventHandle = mem.read32(messagePointer + 12); log("GSP::GPU::RegisterInterruptRelayQueue (flags = %X, event handle = %X)\n", flags, eventHandle); mem.write32(messagePointer + 4, Result::SuccessRegisterIRQ); mem.write32(messagePointer + 8, 0); // TODO: GSP module thread index mem.write32(messagePointer + 12, 0); // Translation descriptor mem.write32(messagePointer + 16, KernelHandles::GSPSharedMemHandle); } void GPUService::requestInterrupt(GPUInterrupt type) { if (sharedMem == nullptr) [[unlikely]] { // Shared memory hasn't been set up yet return; } u8 index = sharedMem[0]; // The interrupt block is normally located at sharedMem + processGSPIndex*0x40 u8& interruptCount = sharedMem[1]; u8 flagIndex = (index + interruptCount) % 0x34; interruptCount++; sharedMem[0xC + flagIndex] = static_cast(type); } void GPUService::writeHwRegs(u32 messagePointer) { u32 ioAddr = mem.read32(messagePointer + 4); // GPU address based at 0x1EB00000, word aligned const u32 size = mem.read32(messagePointer + 8); // Size in bytes u32 dataPointer = mem.read32(messagePointer + 16); log("GSP::GPU::writeHwRegs (GPU address = %08X, size = %X, data address = %08X)\n", ioAddr, size, dataPointer); // Check for alignment if ((size & 3) || (ioAddr & 3) || (dataPointer & 3)) { Helpers::panic("GSP::GPU::writeHwRegs misalignment"); } if (size > 0x80) { Helpers::panic("GSP::GPU::writeHwRegs size too big"); } if (ioAddr >= 0x420000) { Helpers::panic("GSP::GPU::writeHwRegs offset too big"); } ioAddr += 0x1EB00000; for (u32 i = 0; i < size; i += 4) { const u32 value = mem.read32(dataPointer); gpu.writeReg(ioAddr, value); dataPointer += 4; ioAddr += 4; } mem.write32(messagePointer + 4, Result::Success); } // Update sequential GPU registers using an array of data and mask values using this formula // GPU register = (register & ~mask) | (data & mask). void GPUService::writeHwRegsWithMask(u32 messagePointer) { u32 ioAddr = mem.read32(messagePointer + 4); // GPU address based at 0x1EB00000, word aligned const u32 size = mem.read32(messagePointer + 8); // Size in bytes u32 dataPointer = mem.read32(messagePointer + 16); // Data pointer u32 maskPointer = mem.read32(messagePointer + 24); // Mask pointer log("GSP::GPU::writeHwRegsWithMask (GPU address = %08X, size = %X, data address = %08X, mask address = %08X)\n", ioAddr, size, dataPointer, maskPointer); // Check for alignment if ((size & 3) || (ioAddr & 3) || (dataPointer & 3) || (maskPointer & 3)) { Helpers::panic("GSP::GPU::writeHwRegs misalignment"); } if (size > 0x80) { Helpers::panic("GSP::GPU::writeHwRegs size too big"); } if (ioAddr >= 0x420000) { Helpers::panic("GSP::GPU::writeHwRegs offset too big"); } ioAddr += 0x1EB00000; for (u32 i = 0; i < size; i += 4) { const u32 current = gpu.readReg(ioAddr); const u32 data = mem.read32(dataPointer); const u32 mask = mem.read32(maskPointer); u32 newValue = (current & ~mask) | (data & mask); gpu.writeReg(ioAddr, newValue); maskPointer += 4; dataPointer += 4; ioAddr += 4; } mem.write32(messagePointer + 4, Result::Success); } void GPUService::flushDataCache(u32 messagePointer) { u32 address = mem.read32(messagePointer + 4); u32 size = mem.read32(messagePointer + 8); u32 processHandle = handle = mem.read32(messagePointer + 16); log("GSP::GPU::FlushDataCache(address = %08X, size = %X, process = %X\n", address, size, processHandle); mem.write32(messagePointer + 4, Result::Success); } void GPUService::storeDataCache(u32 messagePointer) { u32 address = mem.read32(messagePointer + 4); u32 size = mem.read32(messagePointer + 8); u32 processHandle = handle = mem.read32(messagePointer + 16); log("GSP::GPU::StoreDataCache(address = %08X, size = %X, process = %X\n", address, size, processHandle); mem.write32(messagePointer + 4, Result::Success); } void GPUService::setLCDForceBlack(u32 messagePointer) { u32 flag = mem.read32(messagePointer + 4); log("GSP::GPU::SetLCDForceBlank(flag = %d)\n", flag); if (flag != 0) { printf("Filled both LCDs with black\n"); } mem.write32(messagePointer + 4, Result::Success); } void GPUService::triggerCmdReqQueue(u32 messagePointer) { processCommandBuffer(); mem.write32(messagePointer + 4, Result::Success); } // Seems to be completely undocumented, probably not very important or useful void GPUService::setAxiConfigQoSMode(u32 messagePointer) { log("GSP::GPU::SetAxiConfigQoSMode\n"); mem.write32(messagePointer + 4, Result::Success); } // Seems to also be completely undocumented void GPUService::setInternalPriorities(u32 messagePointer) { log("GSP::GPU::SetInternalPriorities\n"); mem.write32(messagePointer + 4, Result::Success); } void GPUService::processCommandBuffer() { if (sharedMem == nullptr) [[unlikely]] { // Shared memory hasn't been set up yet return; } constexpr int threadCount = 1; // TODO: More than 1 thread can have GSP commands at a time for (int t = 0; t < threadCount; t++) { u8* cmdBuffer = &sharedMem[0x800 + t * 0x200]; u8& commandsLeft = cmdBuffer[1]; // Commands start at byte 0x20 of the command buffer, each being 0x20 bytes long u32* cmd = reinterpret_cast(&cmdBuffer[0x20]); log("Processing %d GPU commands\n", commandsLeft); while (commandsLeft != 0) { u32 cmdID = cmd[0] & 0xff; switch (cmdID) { case GXCommands::ProcessCommandList: processCommandList(cmd); break; case GXCommands::MemoryFill: memoryFill(cmd); break; case GXCommands::TriggerDisplayTransfer: triggerDisplayTransfer(cmd); break; case GXCommands::TriggerDMARequest: triggerDMARequest(cmd); break; case GXCommands::FlushCacheRegions: flushCacheRegions(cmd); break; default: Helpers::panic("GSP::GPU::ProcessCommands: Unknown cmd ID %d", cmdID); } commandsLeft--; } } } // Fill 2 GPU framebuffers, buf0 and buf1, using a specific word value void GPUService::memoryFill(u32* cmd) { u32 control = cmd[7]; // buf0 parameters u32 start0 = cmd[1]; // Start address for the fill. If 0, don't fill anything u32 value0 = cmd[2]; // Value to fill the framebuffer with u32 end0 = cmd[3]; // End address for the fill u32 control0 = control & 0xffff; // buf1 parameters u32 start1 = cmd[4]; u32 value1 = cmd[5]; u32 end1 = cmd[6]; u32 control1 = control >> 16; if (start0 != 0) { gpu.clearBuffer(start0, end0, value0, control0); } if (start1 != 0) { gpu.clearBuffer(start1, end1, value1, control1); } } void GPUService::triggerDisplayTransfer(u32* cmd) { log("GSP::GPU::TriggerDisplayTransfer (Stubbed)\n"); requestInterrupt(GPUInterrupt::PPF); // Send "Display transfer finished" interrupt } void GPUService::triggerDMARequest(u32* cmd) { u32 source = cmd[1]; u32 dest = cmd[2]; u32 size = cmd[3]; bool flush = cmd[7] == 1; log("GSP::GPU::TriggerDMARequest (source = %08X, dest = %08X, size = %08X)\n", source, dest, size); gpu.fireDMA(dest, source, size); requestInterrupt(GPUInterrupt::DMA); } void GPUService::flushCacheRegions(u32* cmd) { log("GSP::GPU::FlushCacheRegions (Stubbed)\n"); } // Actually send command list (aka display list) to GPU void GPUService::processCommandList(u32* cmd) { u32 address = cmd[1] & ~7; // Buffer address u32 size = cmd[2] & ~3; // Buffer size in bytes bool updateGas = cmd[3] == 1; // Update gas additive blend results (0 = don't update, 1 = update) bool flushBuffer = cmd[7] == 1; // Flush buffer (0 = don't flush, 1 = flush) u32* bufferStart = static_cast(mem.getReadPointer(address)); if (!bufferStart) Helpers::panic("Couldn't get buffer for command list"); // TODO: This is very memory unsafe. We get a pointer to FCRAM and just keep writing without checking if we're gonna go OoB u32* curr = bufferStart; u32* bufferEnd = bufferStart + (size / sizeof(u32)); // LUT for converting the parameter mask to an actual 32-bit mask // The parameter mask is 4 bits long, each bit corresponding to one byte of the mask // If the bit is 0 then the corresponding mask byte is 0, otherwise the mask byte is 0xff // So for example if the parameter mask is 0b1001, the full mask is 0xff'00'00'ff static constexpr std::array maskLUT = { 0x00000000, 0x000000ff, 0x0000ff00, 0x0000ffff, 0x00ff0000, 0x00ff00ff, 0x00ffff00, 0x00ffffff, 0xff000000, 0xff0000ff, 0xff00ff00, 0xff00ffff, 0xffff0000, 0xffff00ff, 0xffffff00, 0xffffffff, }; while (curr < bufferEnd) { // If the buffer is not aligned to an 8 byte boundary, force align it by moving the pointer up a word // The curr pointer starts out doubleword-aligned and is increased by 4 bytes each time // So to check if it is aligned, we get the number of words it's been incremented by // If that number is an odd value then the buffer is not aligned, otherwise it is if ((curr - bufferStart) % 2 != 0) { curr++; } // The first word of a command is the command parameter and the second one is the header u32 param1 = *curr++; u32 header = *curr++; u32 id = header & 0xffff; u32 paramMaskIndex = (header >> 16) & 0xf; u32 paramCount = (header >> 20) & 0xff; // Number of additional parameters // Bit 31 tells us whether this command is going to write to multiple sequential registers (if the bit is 1) // Or if all written values will go to the same register (If the bit is 0). It's essentially the value that // gets added to the "id" field after each register write bool consecutiveWritingMode = (header >> 31) != 0; u32 mask = maskLUT[paramMaskIndex]; // Actual parameter mask // Increment the ID by 1 after each write if we're in consecutive mode, or 0 otherwise u32 idIncrement = (consecutiveWritingMode) ? 1 : 0; gpu.writeInternalReg(id, param1, mask); for (u32 i = 0; i < paramCount; i++) { id += idIncrement; u32 param = *curr++; gpu.writeInternalReg(id, param, mask); } } log("GPU::GSP::processCommandList. Address: %08X, size in bytes: %08X\n", address, size); requestInterrupt(GPUInterrupt::P3D); // Send an IRQ when command list processing is over }