#include "renderer_mtl/mtl_texture.hpp" #include "colour.hpp" #include using namespace Helpers; namespace Metal { void Texture::allocate() { MTL::TextureDescriptor* descriptor = MTL::TextureDescriptor::alloc()->init(); descriptor->setTextureType(MTL::TextureType2D); descriptor->setPixelFormat(MTL::PixelFormatRGBA8Unorm); descriptor->setWidth(size.u()); descriptor->setHeight(size.v()); descriptor->setUsage(MTL::TextureUsageShaderRead); descriptor->setStorageMode(MTL::StorageModeShared); // TODO: use private + staging buffers? texture = device->newTexture(descriptor); setNewConfig(config); } // Set the texture's configuration, which includes min/mag filters, wrapping S/T modes, and so on void Texture::setNewConfig(u32 cfg) { config = cfg; // TODO: implement this } void Texture::free() { valid = false; if (texture) { texture->release(); } } u64 Texture::sizeInBytes() { u64 pixelCount = u64(size.x()) * u64(size.y()); switch (format) { case PICA::TextureFmt::RGBA8: // 4 bytes per pixel return pixelCount * 4; case PICA::TextureFmt::RGB8: // 3 bytes per pixel return pixelCount * 3; case PICA::TextureFmt::RGBA5551: // 2 bytes per pixel case PICA::TextureFmt::RGB565: case PICA::TextureFmt::RGBA4: case PICA::TextureFmt::RG8: case PICA::TextureFmt::IA8: return pixelCount * 2; case PICA::TextureFmt::A8: // 1 byte per pixel case PICA::TextureFmt::I8: case PICA::TextureFmt::IA4: return pixelCount; case PICA::TextureFmt::I4: // 4 bits per pixel case PICA::TextureFmt::A4: return pixelCount / 2; case PICA::TextureFmt::ETC1: // Compressed formats case PICA::TextureFmt::ETC1A4: { // Number of 4x4 tiles const u64 tileCount = pixelCount / 16; // Tiles are 8 bytes each on ETC1 and 16 bytes each on ETC1A4 const u64 tileSize = format == PICA::TextureFmt::ETC1 ? 8 : 16; return tileCount * tileSize; } default: Helpers::panic("[PICA] Attempted to get size of invalid texture type"); } } // u and v are the UVs of the relevant texel // Texture data is stored interleaved in Morton order, ie in a Z - order curve as shown here // https://en.wikipedia.org/wiki/Z-order_curve // Textures are split into 8x8 tiles.This function returns the in - tile offset depending on the u & v of the texel // The in - tile offset is the sum of 2 offsets, one depending on the value of u % 8 and the other on the value of y % 8 // As documented in this picture https ://en.wikipedia.org/wiki/File:Moser%E2%80%93de_Bruijn_addition.svg u32 Texture::mortonInterleave(u32 u, u32 v) { static constexpr u32 xOffsets[] = { 0, 1, 4, 5, 16, 17, 20, 21 }; static constexpr u32 yOffsets[] = { 0, 2, 8, 10, 32, 34, 40, 42 }; return xOffsets[u & 7] + yOffsets[v & 7]; } // Get the byte offset of texel (u, v) in the texture u32 Texture::getSwizzledOffset(u32 u, u32 v, u32 width, u32 bytesPerPixel) { u32 offset = ((u & ~7) * 8) + ((v & ~7) * width); // Offset of the 8x8 tile the texel belongs to offset += mortonInterleave(u, v); // Add the in-tile offset of the texel return offset * bytesPerPixel; } // Same as the above code except we need to divide by 2 because 4 bits is smaller than a byte u32 Texture::getSwizzledOffset_4bpp(u32 u, u32 v, u32 width) { u32 offset = ((u & ~7) * 8) + ((v & ~7) * width); // Offset of the 8x8 tile the texel belongs to offset += mortonInterleave(u, v); // Add the in-tile offset of the texel return offset / 2; } // Get the texel at position (u, v) // fmt: format of the texture // data: texture data of the texture u32 Texture::decodeTexel(u32 u, u32 v, PICA::TextureFmt fmt, std::span data) { switch (fmt) { case PICA::TextureFmt::RGBA4: { u32 offset = getSwizzledOffset(u, v, size.u(), 2); u16 texel = u16(data[offset]) | (u16(data[offset + 1]) << 8); u8 alpha = Colour::convert4To8Bit(getBits<0, 4, u8>(texel)); u8 b = Colour::convert4To8Bit(getBits<4, 4, u8>(texel)); u8 g = Colour::convert4To8Bit(getBits<8, 4, u8>(texel)); u8 r = Colour::convert4To8Bit(getBits<12, 4, u8>(texel)); return (alpha << 24) | (b << 16) | (g << 8) | r; } case PICA::TextureFmt::RGBA5551: { const u32 offset = getSwizzledOffset(u, v, size.u(), 2); const u16 texel = u16(data[offset]) | (u16(data[offset + 1]) << 8); u8 alpha = getBit<0>(texel) ? 0xff : 0; u8 b = Colour::convert5To8Bit(getBits<1, 5, u8>(texel)); u8 g = Colour::convert5To8Bit(getBits<6, 5, u8>(texel)); u8 r = Colour::convert5To8Bit(getBits<11, 5, u8>(texel)); return (alpha << 24) | (b << 16) | (g << 8) | r; } case PICA::TextureFmt::RGB565: { const u32 offset = getSwizzledOffset(u, v, size.u(), 2); const u16 texel = u16(data[offset]) | (u16(data[offset + 1]) << 8); const u8 b = Colour::convert5To8Bit(getBits<0, 5, u8>(texel)); const u8 g = Colour::convert6To8Bit(getBits<5, 6, u8>(texel)); const u8 r = Colour::convert5To8Bit(getBits<11, 5, u8>(texel)); return (0xff << 24) | (b << 16) | (g << 8) | r; } case PICA::TextureFmt::RG8: { u32 offset = getSwizzledOffset(u, v, size.u(), 2); constexpr u8 b = 0; const u8 g = data[offset]; const u8 r = data[offset + 1]; return (0xff << 24) | (b << 16) | (g << 8) | r; } case PICA::TextureFmt::RGB8: { const u32 offset = getSwizzledOffset(u, v, size.u(), 3); const u8 b = data[offset]; const u8 g = data[offset + 1]; const u8 r = data[offset + 2]; return (0xff << 24) | (b << 16) | (g << 8) | r; } case PICA::TextureFmt::RGBA8: { const u32 offset = getSwizzledOffset(u, v, size.u(), 4); const u8 alpha = data[offset]; const u8 b = data[offset + 1]; const u8 g = data[offset + 2]; const u8 r = data[offset + 3]; return (alpha << 24) | (b << 16) | (g << 8) | r; } case PICA::TextureFmt::IA4: { const u32 offset = getSwizzledOffset(u, v, size.u(), 1); const u8 texel = data[offset]; const u8 alpha = Colour::convert4To8Bit(texel & 0xf); const u8 intensity = Colour::convert4To8Bit(texel >> 4); // Intensity formats just copy the intensity value to every colour channel return (alpha << 24) | (intensity << 16) | (intensity << 8) | intensity; } case PICA::TextureFmt::A4: { const u32 offset = getSwizzledOffset_4bpp(u, v, size.u()); // For odd U coordinates, grab the top 4 bits, and the low 4 bits for even coordinates u8 alpha = data[offset] >> ((u % 2) ? 4 : 0); alpha = Colour::convert4To8Bit(getBits<0, 4>(alpha)); // A8 sets RGB to 0 return (alpha << 24) | (0 << 16) | (0 << 8) | 0; } case PICA::TextureFmt::A8: { u32 offset = getSwizzledOffset(u, v, size.u(), 1); const u8 alpha = data[offset]; // A8 sets RGB to 0 return (alpha << 24) | (0 << 16) | (0 << 8) | 0; } case PICA::TextureFmt::I4: { u32 offset = getSwizzledOffset_4bpp(u, v, size.u()); // For odd U coordinates, grab the top 4 bits, and the low 4 bits for even coordinates u8 intensity = data[offset] >> ((u % 2) ? 4 : 0); intensity = Colour::convert4To8Bit(getBits<0, 4>(intensity)); // Intensity formats just copy the intensity value to every colour channel return (0xff << 24) | (intensity << 16) | (intensity << 8) | intensity; } case PICA::TextureFmt::I8: { u32 offset = getSwizzledOffset(u, v, size.u(), 1); const u8 intensity = data[offset]; // Intensity formats just copy the intensity value to every colour channel return (0xff << 24) | (intensity << 16) | (intensity << 8) | intensity; } case PICA::TextureFmt::IA8: { u32 offset = getSwizzledOffset(u, v, size.u(), 2); // Same as I8 except each pixel gets its own alpha value too const u8 alpha = data[offset]; const u8 intensity = data[offset + 1]; return (alpha << 24) | (intensity << 16) | (intensity << 8) | intensity; } case PICA::TextureFmt::ETC1: return getTexelETC(false, u, v, size.u(), data); case PICA::TextureFmt::ETC1A4: return getTexelETC(true, u, v, size.u(), data); default: Helpers::panic("[Texture::DecodeTexel] Unimplemented format = %d", static_cast(fmt)); } } void Texture::decodeTexture(std::span data) { std::vector decoded; decoded.reserve(u64(size.u()) * u64(size.v())); // Decode texels line by line for (u32 v = 0; v < size.v(); v++) { for (u32 u = 0; u < size.u(); u++) { u32 colour = decodeTexel(u, v, format, data); decoded.push_back(colour); } } // TODO: is this correct? u32 bytesPerRow = 4 * size.u();//sizeInBytes() / size.v(); texture->replaceRegion(MTL::Region(0, 0, size.u(), size.v()), 0, 0, decoded.data(), bytesPerRow, 0); } } // namespace Metal