#include "loader/ncsd.hpp" #include #include #include "memory.hpp" bool Memory::mapCXI(NCSD& ncsd, NCCH& cxi) { printf("Text address = %08X, size = %08X\n", cxi.text.address, cxi.text.size); printf("Rodata address = %08X, size = %08X\n", cxi.rodata.address, cxi.rodata.size); printf("Data address = %08X, size = %08X\n", cxi.data.address, cxi.data.size); // Map code file to memory auto& code = cxi.codeFile; u32 bssSize = (cxi.bssSize + 0xfff) & ~0xfff; // Round BSS size up to a page boundary // Total memory to allocate for loading u32 totalSize = (cxi.text.pageCount + cxi.rodata.pageCount + cxi.data.pageCount) * pageSize + bssSize; code.resize(code.size() + bssSize, 0); // Pad the .code file with zeroes for the BSS segment if (code.size() < totalSize) { Helpers::panic("Total code size as reported by the exheader is larger than the .code file"); return false; } const auto opt = findPaddr(totalSize); if (!opt.has_value()) { Helpers::panic("Failed to find paddr to map CXI file's code to"); return false; } const auto paddr = opt.value(); std::memcpy(&fcram[paddr], &code[0], totalSize); // Copy the 3 segments + BSS to FCRAM // Map the ROM on the kernel side u32 textOffset = 0; u32 textAddr = cxi.text.address; u32 textSize = cxi.text.pageCount * pageSize; u32 rodataOffset = textOffset + textSize; u32 rodataAddr = cxi.rodata.address; u32 rodataSize = cxi.rodata.pageCount * pageSize; u32 dataOffset = rodataOffset + rodataSize; u32 dataAddr = cxi.data.address; u32 dataSize = cxi.data.pageCount * pageSize + bssSize; // We're merging the data and BSS segments, as BSS is just pre-initted .data allocateMemory(textAddr, paddr + textOffset, textSize, true, true, false, true); // Text is R-X allocateMemory(rodataAddr, paddr + rodataOffset, rodataSize, true, true, false, false); // Rodata is R-- allocateMemory(dataAddr, paddr + dataOffset, dataSize, true, true, true, false); // Data+BSS is RW- ncsd.entrypoint = textAddr; // Back the IOFile for accessing the ROM, as well as the ROM's CXI partition, in the memory class. CXIFile = ncsd.file; loadedCXI = cxi; } std::optional Memory::loadNCSD(Crypto::AESEngine& aesEngine, const std::filesystem::path& path) { NCSD ncsd; if (!ncsd.file.open(path, "rb")) return std::nullopt; u8 magic[4]; // Must be "NCSD" ncsd.file.seek(0x100); auto [success, bytes] = ncsd.file.readBytes(magic, 4); if (!success || bytes != 4) { printf("Failed to read NCSD magic\n"); return std::nullopt; } if (magic[0] != 'N' || magic[1] != 'C' || magic[2] != 'S' || magic[3] != 'D') { printf("NCSD with wrong magic value\n"); return std::nullopt; } std::tie(success, bytes) = ncsd.file.readBytes(&ncsd.size, 4); if (!success || bytes != 4) { printf("Failed to read NCSD size\n"); return std::nullopt; } ncsd.size *= NCSD::mediaUnit; // Convert size to bytes // Read partition data ncsd.file.seek(0x120); // 2 u32s per partition (offset and length), 8 partitions total constexpr size_t partitionDataSize = 8 * 2; // Size of partition in u32s u32 partitionData[8 * 2]; std::tie(success, bytes) = ncsd.file.read(partitionData, partitionDataSize, sizeof(u32)); if (!success || bytes != partitionDataSize) { printf("Failed to read NCSD partition data\n"); return std::nullopt; } for (int i = 0; i < 8; i++) { auto& partition = ncsd.partitions[i]; NCCH& ncch = partition.ncch; partition.offset = u64(partitionData[i * 2]) * NCSD::mediaUnit; partition.length = u64(partitionData[i * 2 + 1]) * NCSD::mediaUnit; ncch.partitionIndex = i; ncch.fileOffset = partition.offset; if (partition.length != 0) { // Initialize the NCCH of each partition NCCH::FSInfo ncchFsInfo; ncchFsInfo.offset = partition.offset; ncchFsInfo.size = partition.length; if (!ncch.loadFromHeader(aesEngine, ncsd.file, ncchFsInfo)) { printf("Invalid NCCH partition\n"); return std::nullopt; } } } auto& cxi = ncsd.partitions[0].ncch; if (!cxi.hasExtendedHeader() || !cxi.hasCode()) { printf("NCSD with an invalid CXI in partition 0?\n"); return std::nullopt; } if (!mapCXI(ncsd, cxi)) { printf("Failed to map CXI\n"); return std::nullopt; } return ncsd; } // We are lazy so we take CXI files, easily "convert" them to NCSD internally, then use our existing NCSD infrastructure // This is easy because NCSD is just CXI + some more NCCH partitions, which we can make empty when converting to NCSD std::optional Memory::loadCXI(Crypto::AESEngine& aesEngine, const std::filesystem::path& path) { NCSD ncsd; if (!ncsd.file.open(path, "rb")) { return std::nullopt; } // Make partitions 1 through 8 of the converted NCSD empty // Partition 0 (CXI partition of an NCSD) is the only one we care about for (int i = 1; i < 8; i++) { auto& partition = ncsd.partitions[i]; NCCH& ncch = partition.ncch; partition.offset = 0ull; partition.length = 0ull; ncch.partitionIndex = i; ncch.fileOffset = partition.offset; } auto& cxiPartition = ncsd.partitions[0]; auto& cxi = cxiPartition.ncch; std::optional size = ncsd.file.size(); if (!size.has_value()) { return std::nullopt; } cxiPartition.offset = 0ull; cxiPartition.length = size.value(); NCCH::FSInfo cxiInfo{.offset = cxiPartition.offset, .size = cxiPartition.length, .hashRegionSize = 0, .encryptionInfo = std::nullopt}; if (!cxi.loadFromHeader(aesEngine, ncsd.file, cxiInfo)) { printf("Invalid CXI partition\n"); return std::nullopt; } if (!cxi.hasExtendedHeader() || !cxi.hasCode()) { printf("CXI does not have exheader or code file?\n"); return std::nullopt; } if (!mapCXI(ncsd, cxi)) { printf("Failed to map CXI\n"); return std::nullopt; } return ncsd; }