Panda3DS/include/PICA/pica_frag_config.hpp
wheremyfoodat fa9ce5fc70
GLES: Implement logic ops via fb fetch (#608)
* GLES: Implement logic ops via fb fetch

* Attempt to fix deprecated libglx-mesa0 package

* Update Qt_Build.yml

* GLES: Enable fb fetch instead of requiring it

* GLES: Add support for GL_ARM_shader_framebuffer_fetch

* Fix GL_EXT_shader_framebuffer_fetch behavior
2024-10-14 00:17:24 +03:00

257 lines
No EOL
8.7 KiB
C++

#pragma once
#include <array>
#include <cstring>
#include <type_traits>
#include <unordered_map>
#include "PICA/pica_hash.hpp"
#include "PICA/regs.hpp"
#include "bitfield.hpp"
#include "helpers.hpp"
namespace PICA {
struct OutputConfig {
union {
u32 raw{};
// Merge the enable + compare function into 1 field to avoid duplicate shaders
// enable == off means a CompareFunction of Always
BitField<0, 3, CompareFunction> alphaTestFunction;
BitField<3, 1, u32> depthMapEnable;
BitField<4, 4, LogicOpMode> logicOpMode;
};
};
struct TextureConfig {
u32 texUnitConfig;
u32 texEnvUpdateBuffer;
// There's 6 TEV stages, and each one is configured via 4 word-sized registers
// (+ the constant color register, which we don't include here, otherwise we'd generate too many shaders)
std::array<u32, 4 * 6> tevConfigs;
};
struct FogConfig {
union {
u32 raw{};
BitField<0, 3, FogMode> mode;
BitField<3, 1, u32> flipDepth;
};
};
struct Light {
union {
u16 raw;
BitField<0, 3, u16> num;
BitField<3, 1, u16> directional;
BitField<4, 1, u16> twoSidedDiffuse;
BitField<5, 1, u16> distanceAttenuationEnable;
BitField<6, 1, u16> spotAttenuationEnable;
BitField<7, 1, u16> geometricFactor0;
BitField<8, 1, u16> geometricFactor1;
BitField<9, 1, u16> shadowEnable;
};
};
struct LightingLUTConfig {
union {
u32 raw;
BitField<0, 1, u32> enable;
BitField<1, 1, u32> absInput;
BitField<2, 3, u32> type;
BitField<5, 3, u32> scale;
};
};
struct LightingConfig {
union {
u32 raw{};
BitField<0, 1, u32> enable;
BitField<1, 4, u32> lightNum;
BitField<5, 2, u32> bumpMode;
BitField<7, 2, u32> bumpSelector;
BitField<9, 1, u32> bumpRenorm;
BitField<10, 1, u32> clampHighlights;
BitField<11, 4, u32> config;
BitField<15, 1, u32> enablePrimaryAlpha;
BitField<16, 1, u32> enableSecondaryAlpha;
BitField<17, 1, u32> enableShadow;
BitField<18, 1, u32> shadowPrimary;
BitField<19, 1, u32> shadowSecondary;
BitField<20, 1, u32> shadowInvert;
BitField<21, 1, u32> shadowAlpha;
BitField<22, 2, u32> shadowSelector;
};
std::array<LightingLUTConfig, 7> luts{};
std::array<Light, 8> lights{};
LightingConfig(const std::array<u32, 0x300>& regs) {
// Ignore lighting registers if it's disabled
if ((regs[InternalRegs::LightingEnable] & 1) == 0) {
return;
}
const u32 config0 = regs[InternalRegs::LightConfig0];
const u32 config1 = regs[InternalRegs::LightConfig1];
const u32 totalLightCount = Helpers::getBits<0, 3>(regs[InternalRegs::LightNumber]) + 1;
enable = 1;
lightNum = totalLightCount;
enableShadow = Helpers::getBit<0>(config0);
if (enableShadow) [[unlikely]] {
shadowPrimary = Helpers::getBit<16>(config0);
shadowSecondary = Helpers::getBit<17>(config0);
shadowInvert = Helpers::getBit<18>(config0);
shadowAlpha = Helpers::getBit<19>(config0);
shadowSelector = Helpers::getBits<24, 2>(config0);
}
enablePrimaryAlpha = Helpers::getBit<2>(config0);
enableSecondaryAlpha = Helpers::getBit<3>(config0);
config = Helpers::getBits<4, 4>(config0);
bumpSelector = Helpers::getBits<22, 2>(config0);
clampHighlights = Helpers::getBit<27>(config0);
bumpMode = Helpers::getBits<28, 2>(config0);
bumpRenorm = Helpers::getBit<30>(config0) ^ 1; // 0 = enable so flip it with xor
for (int i = 0; i < totalLightCount; i++) {
auto& light = lights[i];
light.num = (regs[InternalRegs::LightPermutation] >> (i * 4)) & 0x7;
const u32 lightConfig = regs[InternalRegs::Light0Config + 0x10 * light.num];
light.directional = Helpers::getBit<0>(lightConfig);
light.twoSidedDiffuse = Helpers::getBit<1>(lightConfig);
light.geometricFactor0 = Helpers::getBit<2>(lightConfig);
light.geometricFactor1 = Helpers::getBit<3>(lightConfig);
light.shadowEnable = ((config1 >> light.num) & 1) ^ 1; // This also does 0 = enabled
light.spotAttenuationEnable = ((config1 >> (8 + light.num)) & 1) ^ 1; // Same here
light.distanceAttenuationEnable = ((config1 >> (24 + light.num)) & 1) ^ 1; // Of course same here
}
LightingLUTConfig& d0 = luts[Lights::LUT_D0];
LightingLUTConfig& d1 = luts[Lights::LUT_D1];
LightingLUTConfig& sp = luts[spotlightLutIndex];
LightingLUTConfig& fr = luts[Lights::LUT_FR];
LightingLUTConfig& rb = luts[Lights::LUT_RB];
LightingLUTConfig& rg = luts[Lights::LUT_RG];
LightingLUTConfig& rr = luts[Lights::LUT_RR];
d0.enable = Helpers::getBit<16>(config1) == 0;
d1.enable = Helpers::getBit<17>(config1) == 0;
fr.enable = Helpers::getBit<19>(config1) == 0;
rb.enable = Helpers::getBit<20>(config1) == 0;
rg.enable = Helpers::getBit<21>(config1) == 0;
rr.enable = Helpers::getBit<22>(config1) == 0;
sp.enable = 1;
const u32 lutAbs = regs[InternalRegs::LightLUTAbs];
const u32 lutSelect = regs[InternalRegs::LightLUTSelect];
const u32 lutScale = regs[InternalRegs::LightLUTScale];
if (d0.enable) {
d0.absInput = Helpers::getBit<1>(lutAbs) == 0;
d0.type = Helpers::getBits<0, 3>(lutSelect);
d0.scale = Helpers::getBits<0, 3>(lutScale);
}
if (d1.enable) {
d1.absInput = Helpers::getBit<5>(lutAbs) == 0;
d1.type = Helpers::getBits<4, 3>(lutSelect);
d1.scale = Helpers::getBits<4, 3>(lutScale);
}
sp.absInput = Helpers::getBit<9>(lutAbs) == 0;
sp.type = Helpers::getBits<8, 3>(lutSelect);
sp.scale = Helpers::getBits<8, 3>(lutScale);
if (fr.enable) {
fr.absInput = Helpers::getBit<13>(lutAbs) == 0;
fr.type = Helpers::getBits<12, 3>(lutSelect);
fr.scale = Helpers::getBits<12, 3>(lutScale);
}
if (rb.enable) {
rb.absInput = Helpers::getBit<17>(lutAbs) == 0;
rb.type = Helpers::getBits<16, 3>(lutSelect);
rb.scale = Helpers::getBits<16, 3>(lutScale);
}
if (rg.enable) {
rg.absInput = Helpers::getBit<21>(lutAbs) == 0;
rg.type = Helpers::getBits<20, 3>(lutSelect);
rg.scale = Helpers::getBits<20, 3>(lutScale);
}
if (rr.enable) {
rr.absInput = Helpers::getBit<25>(lutAbs) == 0;
rr.type = Helpers::getBits<24, 3>(lutSelect);
rr.scale = Helpers::getBits<24, 3>(lutScale);
}
}
};
// Config used for identifying unique fragment pipeline configurations
struct FragmentConfig {
OutputConfig outConfig;
TextureConfig texConfig;
FogConfig fogConfig;
LightingConfig lighting;
bool operator==(const FragmentConfig& config) const {
// Hash function and equality operator required by std::unordered_map
return std::memcmp(this, &config, sizeof(FragmentConfig)) == 0;
}
FragmentConfig(const std::array<u32, 0x300>& regs) : lighting(regs) {
auto alphaTestConfig = regs[InternalRegs::AlphaTestConfig];
auto alphaTestFunction = Helpers::getBits<4, 3>(alphaTestConfig);
outConfig.alphaTestFunction =
(alphaTestConfig & 1) ? static_cast<PICA::CompareFunction>(alphaTestFunction) : PICA::CompareFunction::Always;
outConfig.depthMapEnable = regs[InternalRegs::DepthmapEnable] & 1;
// Shows if blending is enabled. If it is not enabled, then logic ops are enabled instead
const bool blendingEnabled = (regs[InternalRegs::ColourOperation] & (1 << 8)) != 0;
outConfig.logicOpMode = blendingEnabled ? LogicOpMode::Copy : LogicOpMode(Helpers::getBits<0, 4>(regs[InternalRegs::LogicOp]));
texConfig.texUnitConfig = regs[InternalRegs::TexUnitCfg];
texConfig.texEnvUpdateBuffer = regs[InternalRegs::TexEnvUpdateBuffer];
// Set up TEV stages. Annoyingly we can't just memcpy as the TEV registers are arranged like
// {Source, Operand, Combiner, Color, Scale} and we want to skip the color register since it's uploaded via UBO
#define setupTevStage(stage) \
std::memcpy(&texConfig.tevConfigs[stage * 4], &regs[InternalRegs::TexEnv##stage##Source], 3 * sizeof(u32)); \
texConfig.tevConfigs[stage * 4 + 3] = regs[InternalRegs::TexEnv##stage##Source + 4];
setupTevStage(0);
setupTevStage(1);
setupTevStage(2);
setupTevStage(3);
setupTevStage(4);
setupTevStage(5);
#undef setupTevStage
fogConfig.mode = (FogMode)Helpers::getBits<0, 3>(regs[InternalRegs::TexEnvUpdateBuffer]);
if (fogConfig.mode == FogMode::Fog) {
fogConfig.flipDepth = Helpers::getBit<16>(regs[InternalRegs::TexEnvUpdateBuffer]);
}
}
};
static_assert(
std::has_unique_object_representations<OutputConfig>() && std::has_unique_object_representations<TextureConfig>() &&
std::has_unique_object_representations<FogConfig>() && std::has_unique_object_representations<Light>()
);
} // namespace PICA
// Override std::hash for our fragment config class
template <>
struct std::hash<PICA::FragmentConfig> {
std::size_t operator()(const PICA::FragmentConfig& config) const noexcept { return PICAHash::computeHash((const char*)&config, sizeof(config)); }
};