Panda3DS/include/PICA/shader.hpp
wheremyfoodat 49a94a13c5
Moar shader decompiler (#559)
* Renderer: Add prepareForDraw callback

* Add fmt submodule and port shader decompiler instructions to it

* Add shader acceleration setting

* Hook up vertex shaders to shader cache

* Shader decompiler: Fix redundant compilations

* Shader Decompiler: Fix vertex attribute upload

* Shader compiler: Simplify generated code for reading and faster compilation

* Further simplify shader decompiler output

* Shader decompiler: More smallen-ing

* Shader decompiler: Get PICA uniforms uploaded to the GPU

* Shader decompiler: Readd clipping

* Shader decompiler: Actually `break` on control flow instructions

* Shader decompiler: More control flow handling

* Shader decompiler: Fix desitnation mask

* Shader Decomp: Remove pair member capture in lambda (unsupported on NDK)

* Disgusting changes to handle the fact that hw shader shaders are 2x as big

* Shader decompiler: Implement proper output semantic mapping

* Moar instructions

* Shader decompiler: Add FLR/SLT/SLTI/SGE/SGEI

* Shader decompiler: Add register indexing

* Shader decompiler: Optimize mova with both x and y masked

* Shader decompiler: Add DPH/DPHI

* Fix shader caching being broken

* PICA decompiler: Cache VS uniforms

* Simply vertex cache code

* Simplify vertex cache code

* Shader decompiler: Add loops

* Shader decompiler: Implement safe multiplication

* Shader decompiler: Implement LG2/EX2

* Shader decompiler: More control flow

* Shader decompiler: Fix JMPU condition

* Shader decompiler: Convert main function to void

* PICA: Start implementing GPU vertex fetch

* More hw VAO work

* More hw VAO work

* More GPU vertex fetch code

* Add GL Stream Buffer from Duckstation

* GL: Actually upload data to stream buffers

* GPU: Cleanup immediate mode handling

* Get first renders working with accelerated draws

* Shader decompiler: Fix control flow analysis bugs

* HW shaders: Accelerate indexed draws

* Shader decompiler: Add support for compilation errors

* GLSL decompiler: Fall back for LITP

* Add Renderdoc scope classes

* Fix control flow analysis bug

* HW shaders: Fix attribute fetch

* Rewriting hw vertex fetch

* Stream buffer: Fix copy-paste mistake

* HW shaders: Fix indexed rendering

* HW shaders: Add padding attributes

* HW shaders: Avoid redundant glVertexAttrib4f calls

* HW shaders: Fix loops

* HW shaders: Make generated shaders slightly smaller

* Fix libretro build

* HW shaders: Fix android

* Remove redundant ubershader checks

* Set accelerate shader default to true

* Shader decompiler: Don't declare VS input attributes as an array

* Change ubuntu-latest to Ubuntu 24.04 because Microsoft screwed up their CI again

* fix merge conflict bug
2024-10-19 16:53:51 +03:00

325 lines
No EOL
10 KiB
C++

#pragma once
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <cstring>
#include "PICA/float_types.hpp"
#include "PICA/pica_hash.hpp"
#include "helpers.hpp"
enum class ShaderType {
Vertex,
Geometry,
};
namespace ShaderOpcodes {
enum : u32 {
ADD = 0x00,
DP3 = 0x01,
DP4 = 0x02,
DPH = 0x03,
DST = 0x04,
EX2 = 0x05,
LG2 = 0x06,
LITP = 0x07,
MUL = 0x08,
SGE = 0x09,
SLT = 0x0A,
FLR = 0x0B,
MAX = 0x0C,
MIN = 0x0D,
RCP = 0x0E,
RSQ = 0x0F,
MOVA = 0x12,
MOV = 0x13,
DPHI = 0x18,
DSTI = 0x19,
SGEI = 0x1A,
SLTI = 0x1B,
BREAK = 0x20,
NOP = 0x21,
END = 0x22,
BREAKC = 0x23,
CALL = 0x24,
CALLC = 0x25,
CALLU = 0x26,
IFU = 0x27,
IFC = 0x28,
LOOP = 0x29,
EMIT = 0x2A,
SETEMIT = 0x2B,
JMPC = 0x2C,
JMPU = 0x2D,
CMP1 = 0x2E, // Both of these instructions are CMP
CMP2 = 0x2F,
MAD = 0x38 // Everything between 0x38-0x3F is a MAD but fuck it
};
}
namespace PICA::ShaderGen {
class ShaderDecompiler;
};
// Note: All PICA f24 vec4 registers must have the alignas(16) specifier to make them easier to access in SSE/NEON code in the JIT
class PICAShader {
using f24 = Floats::f24;
using vec4f = std::array<f24, 4>;
struct Loop {
u32 startingPC; // PC at the start of the loop
u32 endingPC; // PC at the end of the loop
u32 iterations; // How many iterations of the loop to run
u32 increment; // How much to increment the loop counter after each iteration
};
// Info for ifc/ifu stack
struct ConditionalInfo {
u32 endingPC; // PC at the end of the if block (= DST)
u32 newPC; // PC after the if block is done executing (= DST + NUM)
};
struct CallInfo {
u32 endingPC; // PC at the end of the function
u32 returnPC; // PC to return to after the function ends
};
int bufferIndex; // Index of the next instruction to overwrite for shader uploads
int opDescriptorIndex; // Index of the next operand descriptor we'll overwrite
u32 floatUniformIndex = 0; // Which float uniform are we writing to? ([0, 95] range)
u32 floatUniformWordCount = 0; // How many words have we buffered for the current uniform transfer?
bool f32UniformTransfer = false; // Are we transferring an f32 uniform or an f24 uniform?
std::array<u32, 4> floatUniformBuffer; // Buffer for temporarily caching float uniform data
public:
// These are placed close to the temp registers and co because it helps the JIT generate better code
u32 entrypoint = 0; // Initial shader PC
// We want these registers in this order & with this alignment for uploading them directly to a UBO
// When emulating shaders on the GPU. Plus this alignment for float uniforms is necessary for doing SIMD in the shader->CPU recompilers.
alignas(16) std::array<vec4f, 96> floatUniforms;
alignas(16) std::array<std::array<u8, 4>, 4> intUniforms;
u32 boolUniform;
alignas(16) std::array<vec4f, 16> fixedAttributes; // Fixed vertex attributes
alignas(16) std::array<vec4f, 16> inputs; // Attributes passed to the shader
alignas(16) std::array<vec4f, 16> outputs;
alignas(16) vec4f dummy = vec4f({f24::zero(), f24::zero(), f24::zero(), f24::zero()}); // Dummy register used by the JIT
// We use a hashmap for matching 3DS shaders to their equivalent compiled code in our shader cache in the shader JIT
// We choose our hash type to be a 64-bit integer by default, as the collision chance is very tiny and generating it is decently optimal
// Ideally we want to be able to support multiple different types of hash depending on compilation settings, but let's get this working first
using Hash = PICAHash::HashType;
protected:
std::array<u32, 128> operandDescriptors;
alignas(16) std::array<vec4f, 16> tempRegisters; // General purpose registers the shader can use for temp values
std::array<s32, 2> addrRegister; // Address register
bool cmpRegister[2]; // Comparison registers where the result of CMP is stored in
u32 loopCounter;
u32 pc = 0; // Program counter: Index of the next instruction we're going to execute
u32 loopIndex = 0; // The index of our loop stack (0 = empty, 4 = full)
u32 ifIndex = 0; // The index of our IF stack
u32 callIndex = 0; // The index of our CALL stack
std::array<Loop, 4> loopInfo;
std::array<ConditionalInfo, 8> conditionalInfo;
std::array<CallInfo, 4> callInfo;
ShaderType type;
Hash lastCodeHash = 0; // Last hash computed for the shader code (Used for the JIT caching mechanism)
Hash lastOpdescHash = 0; // Last hash computed for the operand descriptors (Also used for the JIT)
public:
bool uniformsDirty = false;
protected:
bool codeHashDirty = false;
bool opdescHashDirty = false;
// Add these as friend classes for the JIT so it has access to all important state
friend class ShaderJIT;
friend class ShaderEmitter;
friend class PICA::ShaderGen::ShaderDecompiler;
vec4f getSource(u32 source);
vec4f& getDest(u32 dest);
private:
// Interpreter functions for the various shader functions
void add(u32 instruction);
void call(u32 instruction);
void callc(u32 instruction);
void callu(u32 instruction);
void cmp(u32 instruction);
void dp3(u32 instruction);
void dp4(u32 instruction);
void dphi(u32 instruction);
void ex2(u32 instruction);
void flr(u32 instruction);
void ifc(u32 instruction);
void ifu(u32 instruction);
void jmpc(u32 instruction);
void jmpu(u32 instruction);
void lg2(u32 instruction);
void litp(u32 instruction);
void loop(u32 instruction);
void mad(u32 instruction);
void madi(u32 instruction);
void max(u32 instruction);
void min(u32 instruction);
void mov(u32 instruction);
void mova(u32 instruction);
void mul(u32 instruction);
void rcp(u32 instruction);
void rsq(u32 instruction);
void sge(u32 instruction);
void sgei(u32 instruction);
void slt(u32 instruction);
void slti(u32 instruction);
// src1, src2 and src3 have different negation & component swizzle bits in the operand descriptor
// https://problemkaputt.github.io/gbatek.htm#3dsgpushaderinstructionsetopcodesummary in the
// "Shader Operand Descriptors" section
template <int sourceIndex>
vec4f swizzle(vec4f& source, u32 opDescriptor) {
vec4f ret;
u32 compSwizzle;
bool negate;
using namespace Helpers;
if constexpr (sourceIndex == 1) { // SRC1
negate = (getBit<4>(opDescriptor)) != 0;
compSwizzle = getBits<5, 8>(opDescriptor);
} else if constexpr (sourceIndex == 2) { // SRC2
negate = (getBit<13>(opDescriptor)) != 0;
compSwizzle = getBits<14, 8>(opDescriptor);
} else if constexpr (sourceIndex == 3) { // SRC3
negate = (getBit<22>(opDescriptor)) != 0;
compSwizzle = getBits<23, 8>(opDescriptor);
}
// Iterate through every component of the swizzled vector in reverse order
// And get which source component's index to match it with
for (int comp = 0; comp < 4; comp++) {
int index = compSwizzle & 3; // Get index for this component
compSwizzle >>= 2; // Move to next component index
ret[3 - comp] = source[index];
}
// Negate result if the negate bit is set
if (negate) {
ret[0] = -ret[0];
ret[1] = -ret[1];
ret[2] = -ret[2];
ret[3] = -ret[3];
}
return ret;
}
template <int sourceIndex>
vec4f getSourceSwizzled(u32 source, u32 opDescriptor) {
vec4f srcVector = getSource(source);
srcVector = swizzle<sourceIndex>(srcVector, opDescriptor);
return srcVector;
}
u8 getIndexedSource(u32 source, u32 index);
bool isCondTrue(u32 instruction);
public:
static constexpr size_t maxInstructionCount = 4096;
std::array<u32, maxInstructionCount> loadedShader; // Currently loaded & active shader
PICAShader(ShaderType type) : type(type) {}
void setBufferIndex(u32 index) { bufferIndex = index & 0xfff; }
void setOpDescriptorIndex(u32 index) { opDescriptorIndex = index & 0x7f; }
void uploadWord(u32 word) {
if (bufferIndex >= 4095) {
Helpers::panic("o no, shader upload overflew");
}
loadedShader[bufferIndex++] = word;
bufferIndex &= 0xfff;
codeHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
}
void uploadDescriptor(u32 word) {
operandDescriptors[opDescriptorIndex++] = word;
opDescriptorIndex &= 0x7f;
opdescHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
}
void setFloatUniformIndex(u32 word) {
floatUniformIndex = word & 0xff;
floatUniformWordCount = 0;
f32UniformTransfer = (word & 0x80000000) != 0;
}
void uploadFloatUniform(u32 word) {
floatUniformBuffer[floatUniformWordCount++] = word;
if ((f32UniformTransfer && floatUniformWordCount >= 4) || (!f32UniformTransfer && floatUniformWordCount >= 3)) {
floatUniformWordCount = 0;
// Check if the program tries to upload to a non-existent uniform, and empty the queue without writing in that case
if (floatUniformIndex >= 96) [[unlikely]] {
return;
}
vec4f& uniform = floatUniforms[floatUniformIndex++];
if (f32UniformTransfer) {
uniform[0] = f24::fromFloat32(*(float*)&floatUniformBuffer[3]);
uniform[1] = f24::fromFloat32(*(float*)&floatUniformBuffer[2]);
uniform[2] = f24::fromFloat32(*(float*)&floatUniformBuffer[1]);
uniform[3] = f24::fromFloat32(*(float*)&floatUniformBuffer[0]);
} else {
uniform[0] = f24::fromRaw(floatUniformBuffer[2] & 0xffffff);
uniform[1] = f24::fromRaw(((floatUniformBuffer[1] & 0xffff) << 8) | (floatUniformBuffer[2] >> 24));
uniform[2] = f24::fromRaw(((floatUniformBuffer[0] & 0xff) << 16) | (floatUniformBuffer[1] >> 16));
uniform[3] = f24::fromRaw(floatUniformBuffer[0] >> 8);
}
uniformsDirty = true;
}
}
void uploadIntUniform(int index, u32 word) {
using namespace Helpers;
auto& u = intUniforms[index];
u[0] = word & 0xff;
u[1] = getBits<8, 8>(word);
u[2] = getBits<16, 8>(word);
u[3] = getBits<24, 8>(word);
uniformsDirty = true;
}
void uploadBoolUniform(u32 value) {
boolUniform = value;
uniformsDirty = true;
}
void run();
void reset();
Hash getCodeHash();
Hash getOpdescHash();
// Returns how big the PICA uniforms are combined. Used for hw accelerated shaders where we upload the uniforms to our GPU.
static constexpr usize totalUniformSize() { return sizeof(floatUniforms) + sizeof(intUniforms) + sizeof(boolUniform); }
void* getUniformPointer() { return static_cast<void*>(&floatUniforms); }
};
static_assert(
offsetof(PICAShader, intUniforms) == offsetof(PICAShader, floatUniforms) + 96 * sizeof(float) * 4 &&
offsetof(PICAShader, boolUniform) == offsetof(PICAShader, intUniforms) + 4 * sizeof(u8) * 4
);