mirror of
https://github.com/wheremyfoodat/Panda3DS.git
synced 2025-07-14 19:27:08 +12:00
* Fix typo (#680) Co-authored-by: Noumi <139501014+noumidev@users.noreply.github.com> * More PTM stuff Co-Authored-By: Noumi <139501014+noumidev@users.noreply.github.com> * Make system language configurable * Fix building crypto++ for x64 target on Apple silicon MacOS * Attempt to switch to M1 runners again * Prevent selecting Vulkan renderer in Qt frontend and present a message * Libretro: Add system language option * Only enable audio by default on libretro for now * CMake: Bump version * Store configuration file in AppData root if not in working directory (#693) * Store configuration file in AppData root if not in working directory This fixes MacOS app bundles, as the emulator cannot write the config file into the app bundle. * Remove duplicate fs calls * I'm an idiot sandwich --------- Co-authored-by: wheremyfoodat <44909372+wheremyfoodat@users.noreply.github.com> * GL: Add usingGLES to driverInfo struct (#694) * Wayland fixes part 1 * Support GLES on desktop * Qt: Fix Wayland support Qt will only create a Wayland surface when show() is called on the main window and on the ScreenWidget. Thus, call the function before creating the GL context. Doesn't cause regressions on XWayland, untested in other platforms. Fixes #586 * No need to call screen->show() twice * Fix disabling Wayland & building on some distros (#700) * GLES: Properly stub out logic ops * Fix git versioning * Android_Build: Implement ccache (#703) * Android_Build: Implement ccache * Update Android_Build.yml * Update Android_Build.yml --------- Co-authored-by: wheremyfoodat <44909372+wheremyfoodat@users.noreply.github.com> * Removed dead Citra link in readme (#706) * CRO: Lighter icache flushes * Implement Luma icache SVCs * Add missing SVC logs * GPU: Add sw texture copies * Use vk::detail::DynamicLoader instead of vk::DynamicLoader (#710) * Use vk::detail::DynamicLoader instead of vk::DynamicLoader * Update renderer_vk.cpp * Vk: Fix typo * Vk: Lock CI runners to SDK version 1.3.301 temporarily * Vk: Fixing CI pt 2 * Vulkan: Fixing CI pt 3 * Vk: Fix typo * Temporarily give 80MB to all processes (#715) * Try to cross-compile Libretro core for arm64 (#717) * Try to cross-compile Libretro core for arm64 * Bonk * Update Hydra_Build.yml * [WIP] Libretro: Add audio support (#714) * Libretro: Add audio support * Adding audio interface part 1 * Audio device pt 2 * More audio device * More audio device * Morea uudi odevice * More audio device * More audio device * More audio device --------- Co-authored-by: wheremyfoodat <44909372+wheremyfoodat@users.noreply.github.com> * Libretro audio device: Fix frame count * Mark audio devices as final * Add toggle for libretro audio device (#719) * Very important work (#720) * Very important work * Most important fix * Add more HLE service calls for eshop (#721) * CI: Fix Vulkan SDK action (#723) * GPU registers: Fix writes to some registers ignoring the mask (#725) Co-authored-by: henry <23128103+atem2069@users.noreply.github.com> * OLED theme * OLED theme config fix (#736) Co-authored-by: smiRaphi <neogt404@gmail.com> * Adding Swedish translation * Fix Metal renderer compilation on iOS * [Core] Improve iOS compilation workflow * [Qt] Hook Swedish to UI * AppDataDocumentProvider: Typo (#740) * More iOS work * More iOS progress * More iOS work * AppDataDocumentProvider: Add missing ``COLUMN_FLAGS`` in the default document projectation (#741) Fixes unable to copy files from device to app's internal storage problem * More iOS work * ios: Simplify MTKView interface (still doesn't work though) * ios: Pass CAMetalLayer instead of void* to Obj-C++ bridging header * Fix bridging cast * FINALLY IOS GRAPHICS * ios: Remove printf spam * Metal: Reimplement some texture formats on iOS * metal: implement texture decoder * metal: check for format support * metal: implement texture swizzling * metal: remove unused texture functions * Shadergen types: Add Metal & MSL * Format * Undo submodule changes * Readme: Add Chonkystation 3 * Metal: Use std::unique_ptr for texture decode * AppDataDocumentProvider: Allow to remove documents (#744) * AppDataDocumentProvider: Allow to remove documents * Typo * Metal renderer fixes for iOS * iOS driver: Add doc comments * iOS: Add frontend & frontend build files (#746) * iOS: Add SwiftUI part to repo * Add iOS build script * Update SDL2 submodule * Fix iOS build script * CI: Update xcode tools for iOS * Update iOS_Build.yml * Update iOS build * Lower XCode version * A * Update project.pbxproj * Update iOS_Build.yml * Update iOS_Build.yml * Update build.sh * iOS: Fail on build error * iOS: Add file picker (#747) * iOS: Add file picker * Fix lock placement * Qt: Add runpog icon (#752) * Update discord-rpc submodule (#753) * Remove cryptoppwin submodule (#754) * Add optional texture hashing * Fix build on new Vk SDK (#757) Co-authored-by: Nadia Holmquist Pedersen <893884+nadiaholmquist@users.noreply.github.com> * CI: Use new Vulkan SDK --------- Co-authored-by: Noumi <139501014+noumidev@users.noreply.github.com> Co-authored-by: Thomas <thomas@thomasw.dev> Co-authored-by: Thomas <twvd@users.noreply.github.com> Co-authored-by: Daniel López Guimaraes <danielectra@outlook.com> Co-authored-by: Jonian Guveli <jonian@hardpixel.eu> Co-authored-by: Ishan09811 <156402647+Ishan09811@users.noreply.github.com> Co-authored-by: Auxy6858 <71662994+Auxy6858@users.noreply.github.com> Co-authored-by: Paris Oplopoios <parisoplop@gmail.com> Co-authored-by: henry <23128103+atem2069@users.noreply.github.com> Co-authored-by: smiRaphi <neogt404@gmail.com> Co-authored-by: smiRaphi <87574679+smiRaphi@users.noreply.github.com> Co-authored-by: Daniel Nylander <po@danielnylander.se> Co-authored-by: Samuliak <samuliak77@gmail.com> Co-authored-by: Albert <45282415+ggrtk@users.noreply.github.com> Co-authored-by: Nadia Holmquist Pedersen <893884+nadiaholmquist@users.noreply.github.com>
2378 lines
98 KiB
C++
2378 lines
98 KiB
C++
// pubkey.h - originally written and placed in the public domain by Wei Dai
|
|
|
|
/// \file pubkey.h
|
|
/// \brief This file contains helper classes/functions for implementing public key algorithms.
|
|
/// \details The class hierarchies in this header file tend to look like this:
|
|
///
|
|
/// <pre>
|
|
/// x1
|
|
/// +--+
|
|
/// | |
|
|
/// y1 z1
|
|
/// | |
|
|
/// x2<y1> x2<z1>
|
|
/// | |
|
|
/// y2 z2
|
|
/// | |
|
|
/// x3<y2> x3<z2>
|
|
/// | |
|
|
/// y3 z3
|
|
/// </pre>
|
|
///
|
|
/// <ul>
|
|
/// <li>x1, y1, z1 are abstract interface classes defined in cryptlib.h
|
|
/// <li>x2, y2, z2 are implementations of the interfaces using "abstract policies", which
|
|
/// are pure virtual functions that should return interfaces to interchangeable algorithms.
|
|
/// These classes have Base suffixes.
|
|
/// <li>x3, y3, z3 hold actual algorithms and implement those virtual functions.
|
|
/// These classes have Impl suffixes.
|
|
/// </ul>
|
|
///
|
|
/// \details The TF_ prefix means an implementation using trapdoor functions on integers.
|
|
/// \details The DL_ prefix means an implementation using group operations in groups where discrete log is hard.
|
|
|
|
#ifndef CRYPTOPP_PUBKEY_H
|
|
#define CRYPTOPP_PUBKEY_H
|
|
|
|
#include "config.h"
|
|
|
|
#if CRYPTOPP_MSC_VERSION
|
|
# pragma warning(push)
|
|
# pragma warning(disable: 4702)
|
|
#endif
|
|
|
|
#include "cryptlib.h"
|
|
#include "integer.h"
|
|
#include "algebra.h"
|
|
#include "modarith.h"
|
|
#include "filters.h"
|
|
#include "eprecomp.h"
|
|
#include "fips140.h"
|
|
#include "argnames.h"
|
|
#include "smartptr.h"
|
|
#include "stdcpp.h"
|
|
|
|
#if defined(__SUNPRO_CC)
|
|
# define MAYBE_RETURN(x) return x
|
|
#else
|
|
# define MAYBE_RETURN(x) CRYPTOPP_UNUSED(x)
|
|
#endif
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
/// \brief Provides range for plaintext and ciphertext lengths
|
|
/// \details A trapdoor function is a function that is easy to compute in one direction,
|
|
/// but difficult to compute in the opposite direction without special knowledge.
|
|
/// The special knowledge is usually the private key.
|
|
/// \details Trapdoor functions only handle messages of a limited length or size.
|
|
/// MaxPreimage is the plaintext's maximum length, and MaxImage is the
|
|
/// ciphertext's maximum length.
|
|
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
|
|
/// RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TrapdoorFunctionBounds
|
|
{
|
|
public:
|
|
virtual ~TrapdoorFunctionBounds() {}
|
|
|
|
/// \brief Returns the maximum size of a message before the trapdoor function is applied
|
|
/// \return the maximum size of a message before the trapdoor function is applied
|
|
/// \details Derived classes must implement PreimageBound().
|
|
virtual Integer PreimageBound() const =0;
|
|
/// \brief Returns the maximum size of a representation after the trapdoor function is applied
|
|
/// \return the maximum size of a representation after the trapdoor function is applied
|
|
/// \details Derived classes must implement ImageBound().
|
|
virtual Integer ImageBound() const =0;
|
|
/// \brief Returns the maximum size of a message before the trapdoor function is applied bound to a public key
|
|
/// \return the maximum size of a message before the trapdoor function is applied bound to a public key
|
|
/// \details The default implementation returns <tt>PreimageBound() - 1</tt>.
|
|
virtual Integer MaxPreimage() const {return --PreimageBound();}
|
|
/// \brief Returns the maximum size of a representation after the trapdoor function is applied bound to a public key
|
|
/// \return the maximum size of a representation after the trapdoor function is applied bound to a public key
|
|
/// \details The default implementation returns <tt>ImageBound() - 1</tt>.
|
|
virtual Integer MaxImage() const {return --ImageBound();}
|
|
};
|
|
|
|
/// \brief Applies the trapdoor function, using random data if required
|
|
/// \details ApplyFunction() is the foundation for encrypting a message under a public key.
|
|
/// Derived classes will override it at some point.
|
|
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
|
|
/// RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE RandomizedTrapdoorFunction : public TrapdoorFunctionBounds
|
|
{
|
|
public:
|
|
virtual ~RandomizedTrapdoorFunction() {}
|
|
|
|
/// \brief Applies the trapdoor function, using random data if required
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
/// \param x the message on which the encryption function is applied
|
|
/// \return the message x encrypted under the public key
|
|
/// \details ApplyRandomizedFunction is a generalization of encryption under a public key
|
|
/// cryptosystem. The RandomNumberGenerator may (or may not) be required.
|
|
/// Derived classes must implement it.
|
|
virtual Integer ApplyRandomizedFunction(RandomNumberGenerator &rng, const Integer &x) const =0;
|
|
|
|
/// \brief Determines if the encryption algorithm is randomized
|
|
/// \return true if the encryption algorithm is randomized, false otherwise
|
|
/// \details If IsRandomized() returns false, then NullRNG() can be used.
|
|
virtual bool IsRandomized() const {return true;}
|
|
};
|
|
|
|
/// \brief Applies the trapdoor function
|
|
/// \details ApplyFunction() is the foundation for encrypting a message under a public key.
|
|
/// Derived classes will override it at some point.
|
|
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
|
|
/// RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TrapdoorFunction : public RandomizedTrapdoorFunction
|
|
{
|
|
public:
|
|
virtual ~TrapdoorFunction() {}
|
|
|
|
/// \brief Applies the trapdoor function
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
/// \param x the message on which the encryption function is applied
|
|
/// \details ApplyRandomizedFunction is a generalization of encryption under a public key
|
|
/// cryptosystem. The RandomNumberGenerator may (or may not) be required.
|
|
/// \details Internally, ApplyRandomizedFunction() calls ApplyFunction()
|
|
/// without the RandomNumberGenerator.
|
|
Integer ApplyRandomizedFunction(RandomNumberGenerator &rng, const Integer &x) const
|
|
{CRYPTOPP_UNUSED(rng); return ApplyFunction(x);}
|
|
bool IsRandomized() const {return false;}
|
|
|
|
/// \brief Applies the trapdoor
|
|
/// \param x the message on which the encryption function is applied
|
|
/// \return the message x encrypted under the public key
|
|
/// \details ApplyFunction is a generalization of encryption under a public key
|
|
/// cryptosystem. Derived classes must implement it.
|
|
virtual Integer ApplyFunction(const Integer &x) const =0;
|
|
};
|
|
|
|
/// \brief Applies the inverse of the trapdoor function, using random data if required
|
|
/// \details CalculateInverse() is the foundation for decrypting a message under a private key
|
|
/// in a public key cryptosystem. Derived classes will override it at some point.
|
|
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
|
|
/// RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE RandomizedTrapdoorFunctionInverse
|
|
{
|
|
public:
|
|
virtual ~RandomizedTrapdoorFunctionInverse() {}
|
|
|
|
/// \brief Applies the inverse of the trapdoor function, using random data if required
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
/// \param x the message on which the decryption function is applied
|
|
/// \return the message x decrypted under the private key
|
|
/// \details CalculateRandomizedInverse is a generalization of decryption using the private key
|
|
/// The RandomNumberGenerator may (or may not) be required. Derived classes must implement it.
|
|
virtual Integer CalculateRandomizedInverse(RandomNumberGenerator &rng, const Integer &x) const =0;
|
|
|
|
/// \brief Determines if the decryption algorithm is randomized
|
|
/// \return true if the decryption algorithm is randomized, false otherwise
|
|
/// \details If IsRandomized() returns false, then NullRNG() can be used.
|
|
virtual bool IsRandomized() const {return true;}
|
|
};
|
|
|
|
/// \brief Applies the inverse of the trapdoor function
|
|
/// \details CalculateInverse() is the foundation for decrypting a message under a private key
|
|
/// in a public key cryptosystem. Derived classes will override it at some point.
|
|
/// \sa TrapdoorFunctionBounds(), RandomizedTrapdoorFunction(), TrapdoorFunction(),
|
|
/// RandomizedTrapdoorFunctionInverse() and TrapdoorFunctionInverse()
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TrapdoorFunctionInverse : public RandomizedTrapdoorFunctionInverse
|
|
{
|
|
public:
|
|
virtual ~TrapdoorFunctionInverse() {}
|
|
|
|
/// \brief Applies the inverse of the trapdoor function
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
/// \param x the message on which the decryption function is applied
|
|
/// \return the message x decrypted under the private key
|
|
/// \details CalculateRandomizedInverse is a generalization of decryption using the private key
|
|
/// \details Internally, CalculateRandomizedInverse() calls CalculateInverse()
|
|
/// without the RandomNumberGenerator.
|
|
Integer CalculateRandomizedInverse(RandomNumberGenerator &rng, const Integer &x) const
|
|
{return CalculateInverse(rng, x);}
|
|
|
|
/// \brief Determines if the decryption algorithm is randomized
|
|
/// \return true if the decryption algorithm is randomized, false otherwise
|
|
/// \details If IsRandomized() returns false, then NullRNG() can be used.
|
|
bool IsRandomized() const {return false;}
|
|
|
|
/// \brief Calculates the inverse of an element
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
/// \param x the element
|
|
/// \return the inverse of the element in the group
|
|
virtual Integer CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const =0;
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Message encoding method for public key encryption
|
|
class CRYPTOPP_NO_VTABLE PK_EncryptionMessageEncodingMethod
|
|
{
|
|
public:
|
|
virtual ~PK_EncryptionMessageEncodingMethod() {}
|
|
|
|
virtual bool ParameterSupported(const char *name) const
|
|
{CRYPTOPP_UNUSED(name); return false;}
|
|
|
|
/// max size of unpadded message in bytes, given max size of padded message in bits (1 less than size of modulus)
|
|
virtual size_t MaxUnpaddedLength(size_t paddedLength) const =0;
|
|
|
|
virtual void Pad(RandomNumberGenerator &rng, const byte *raw, size_t inputLength, byte *padded, size_t paddedBitLength, const NameValuePairs ¶meters) const =0;
|
|
|
|
virtual DecodingResult Unpad(const byte *padded, size_t paddedBitLength, byte *raw, const NameValuePairs ¶meters) const =0;
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief The base for trapdoor based cryptosystems
|
|
/// \tparam TFI trapdoor function interface derived class
|
|
/// \tparam MEI message encoding interface derived class
|
|
template <class TFI, class MEI>
|
|
class CRYPTOPP_NO_VTABLE TF_Base
|
|
{
|
|
protected:
|
|
virtual ~TF_Base() {}
|
|
|
|
virtual const TrapdoorFunctionBounds & GetTrapdoorFunctionBounds() const =0;
|
|
|
|
typedef TFI TrapdoorFunctionInterface;
|
|
virtual const TrapdoorFunctionInterface & GetTrapdoorFunctionInterface() const =0;
|
|
|
|
typedef MEI MessageEncodingInterface;
|
|
virtual const MessageEncodingInterface & GetMessageEncodingInterface() const =0;
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Public key trapdoor function default implementation
|
|
/// \tparam BASE public key cryptosystem with a fixed length
|
|
template <class BASE>
|
|
class CRYPTOPP_NO_VTABLE PK_FixedLengthCryptoSystemImpl : public BASE
|
|
{
|
|
public:
|
|
virtual ~PK_FixedLengthCryptoSystemImpl() {}
|
|
|
|
size_t MaxPlaintextLength(size_t ciphertextLength) const
|
|
{return ciphertextLength == FixedCiphertextLength() ? FixedMaxPlaintextLength() : 0;}
|
|
size_t CiphertextLength(size_t plaintextLength) const
|
|
{return plaintextLength <= FixedMaxPlaintextLength() ? FixedCiphertextLength() : 0;}
|
|
|
|
virtual size_t FixedMaxPlaintextLength() const =0;
|
|
virtual size_t FixedCiphertextLength() const =0;
|
|
};
|
|
|
|
/// \brief Trapdoor function cryptosystem base class
|
|
/// \tparam INTFACE public key cryptosystem base interface
|
|
/// \tparam BASE public key cryptosystem implementation base
|
|
template <class INTFACE, class BASE>
|
|
class CRYPTOPP_NO_VTABLE TF_CryptoSystemBase : public PK_FixedLengthCryptoSystemImpl<INTFACE>, protected BASE
|
|
{
|
|
public:
|
|
virtual ~TF_CryptoSystemBase() {}
|
|
|
|
bool ParameterSupported(const char *name) const {return this->GetMessageEncodingInterface().ParameterSupported(name);}
|
|
size_t FixedMaxPlaintextLength() const {return this->GetMessageEncodingInterface().MaxUnpaddedLength(PaddedBlockBitLength());}
|
|
size_t FixedCiphertextLength() const {return this->GetTrapdoorFunctionBounds().MaxImage().ByteCount();}
|
|
|
|
protected:
|
|
size_t PaddedBlockByteLength() const {return BitsToBytes(PaddedBlockBitLength());}
|
|
// Coverity finding on potential overflow/underflow.
|
|
size_t PaddedBlockBitLength() const {return SaturatingSubtract(this->GetTrapdoorFunctionBounds().PreimageBound().BitCount(),1U);}
|
|
};
|
|
|
|
/// \brief Trapdoor function cryptosystems decryption base class
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TF_DecryptorBase : public TF_CryptoSystemBase<PK_Decryptor, TF_Base<TrapdoorFunctionInverse, PK_EncryptionMessageEncodingMethod> >
|
|
{
|
|
public:
|
|
virtual ~TF_DecryptorBase() {}
|
|
|
|
DecodingResult Decrypt(RandomNumberGenerator &rng, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs ¶meters = g_nullNameValuePairs) const;
|
|
};
|
|
|
|
/// \brief Trapdoor function cryptosystems encryption base class
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TF_EncryptorBase : public TF_CryptoSystemBase<PK_Encryptor, TF_Base<RandomizedTrapdoorFunction, PK_EncryptionMessageEncodingMethod> >
|
|
{
|
|
public:
|
|
virtual ~TF_EncryptorBase() {}
|
|
|
|
void Encrypt(RandomNumberGenerator &rng, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs ¶meters = g_nullNameValuePairs) const;
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
// Typedef change due to Clang, http://github.com/weidai11/cryptopp/issues/300
|
|
typedef std::pair<const byte *, unsigned int> HashIdentifier;
|
|
|
|
/// \brief Interface for message encoding method for public key signature schemes.
|
|
/// \details PK_SignatureMessageEncodingMethod provides interfaces for message
|
|
/// encoding method for public key signature schemes. The methods support both
|
|
/// trapdoor functions (<tt>TF_*</tt>) and discrete logarithm (<tt>DL_*</tt>)
|
|
/// based schemes.
|
|
class CRYPTOPP_NO_VTABLE PK_SignatureMessageEncodingMethod
|
|
{
|
|
public:
|
|
virtual ~PK_SignatureMessageEncodingMethod() {}
|
|
|
|
virtual size_t MinRepresentativeBitLength(size_t hashIdentifierLength, size_t digestLength) const
|
|
{CRYPTOPP_UNUSED(hashIdentifierLength); CRYPTOPP_UNUSED(digestLength); return 0;}
|
|
virtual size_t MaxRecoverableLength(size_t representativeBitLength, size_t hashIdentifierLength, size_t digestLength) const
|
|
{CRYPTOPP_UNUSED(representativeBitLength); CRYPTOPP_UNUSED(representativeBitLength); CRYPTOPP_UNUSED(hashIdentifierLength); CRYPTOPP_UNUSED(digestLength); return 0;}
|
|
|
|
/// \brief Determines whether an encoding method requires a random number generator
|
|
/// \return true if the encoding method requires a RandomNumberGenerator()
|
|
/// \details if IsProbabilistic() returns false, then NullRNG() can be passed to functions that take
|
|
/// RandomNumberGenerator().
|
|
/// \sa Bellare and Rogaway<a href="http://grouper.ieee.org/groups/1363/P1363a/contributions/pss-submission.pdf">PSS:
|
|
/// Provably Secure Encoding Method for Digital Signatures</a>
|
|
bool IsProbabilistic() const
|
|
{return true;}
|
|
bool AllowNonrecoverablePart() const
|
|
{throw NotImplemented("PK_MessageEncodingMethod: this signature scheme does not support message recovery");}
|
|
virtual bool RecoverablePartFirst() const
|
|
{throw NotImplemented("PK_MessageEncodingMethod: this signature scheme does not support message recovery");}
|
|
|
|
// for verification, DL
|
|
virtual void ProcessSemisignature(HashTransformation &hash, const byte *semisignature, size_t semisignatureLength) const
|
|
{CRYPTOPP_UNUSED(hash); CRYPTOPP_UNUSED(semisignature); CRYPTOPP_UNUSED(semisignatureLength);}
|
|
|
|
// for signature
|
|
virtual void ProcessRecoverableMessage(HashTransformation &hash,
|
|
const byte *recoverableMessage, size_t recoverableMessageLength,
|
|
const byte *presignature, size_t presignatureLength,
|
|
SecByteBlock &semisignature) const
|
|
{
|
|
CRYPTOPP_UNUSED(hash);CRYPTOPP_UNUSED(recoverableMessage); CRYPTOPP_UNUSED(recoverableMessageLength);
|
|
CRYPTOPP_UNUSED(presignature); CRYPTOPP_UNUSED(presignatureLength); CRYPTOPP_UNUSED(semisignature);
|
|
if (RecoverablePartFirst())
|
|
CRYPTOPP_ASSERT(!"ProcessRecoverableMessage() not implemented");
|
|
}
|
|
|
|
virtual void ComputeMessageRepresentative(RandomNumberGenerator &rng,
|
|
const byte *recoverableMessage, size_t recoverableMessageLength,
|
|
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
|
|
byte *representative, size_t representativeBitLength) const =0;
|
|
|
|
virtual bool VerifyMessageRepresentative(
|
|
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
|
|
byte *representative, size_t representativeBitLength) const =0;
|
|
|
|
virtual DecodingResult RecoverMessageFromRepresentative( // for TF
|
|
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
|
|
byte *representative, size_t representativeBitLength,
|
|
byte *recoveredMessage) const
|
|
{CRYPTOPP_UNUSED(hash);CRYPTOPP_UNUSED(hashIdentifier); CRYPTOPP_UNUSED(messageEmpty);
|
|
CRYPTOPP_UNUSED(representative); CRYPTOPP_UNUSED(representativeBitLength); CRYPTOPP_UNUSED(recoveredMessage);
|
|
throw NotImplemented("PK_MessageEncodingMethod: this signature scheme does not support message recovery");}
|
|
|
|
virtual DecodingResult RecoverMessageFromSemisignature( // for DL
|
|
HashTransformation &hash, HashIdentifier hashIdentifier,
|
|
const byte *presignature, size_t presignatureLength,
|
|
const byte *semisignature, size_t semisignatureLength,
|
|
byte *recoveredMessage) const
|
|
{CRYPTOPP_UNUSED(hash);CRYPTOPP_UNUSED(hashIdentifier); CRYPTOPP_UNUSED(presignature); CRYPTOPP_UNUSED(presignatureLength);
|
|
CRYPTOPP_UNUSED(semisignature); CRYPTOPP_UNUSED(semisignatureLength); CRYPTOPP_UNUSED(recoveredMessage);
|
|
throw NotImplemented("PK_MessageEncodingMethod: this signature scheme does not support message recovery");}
|
|
|
|
// VC60 workaround
|
|
struct HashIdentifierLookup
|
|
{
|
|
template <class H> struct HashIdentifierLookup2
|
|
{
|
|
static HashIdentifier CRYPTOPP_API Lookup()
|
|
{
|
|
return HashIdentifier(static_cast<const byte *>(NULLPTR), 0);
|
|
}
|
|
};
|
|
};
|
|
};
|
|
|
|
/// \brief Interface for message encoding method for public key signature schemes.
|
|
/// \details PK_DeterministicSignatureMessageEncodingMethod provides interfaces
|
|
/// for message encoding method for public key signature schemes.
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_DeterministicSignatureMessageEncodingMethod : public PK_SignatureMessageEncodingMethod
|
|
{
|
|
public:
|
|
bool VerifyMessageRepresentative(
|
|
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
|
|
byte *representative, size_t representativeBitLength) const;
|
|
};
|
|
|
|
/// \brief Interface for message encoding method for public key signature schemes.
|
|
/// \details PK_RecoverableSignatureMessageEncodingMethod provides interfaces
|
|
/// for message encoding method for public key signature schemes.
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_RecoverableSignatureMessageEncodingMethod : public PK_SignatureMessageEncodingMethod
|
|
{
|
|
public:
|
|
bool VerifyMessageRepresentative(
|
|
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
|
|
byte *representative, size_t representativeBitLength) const;
|
|
};
|
|
|
|
/// \brief Interface for message encoding method for public key signature schemes.
|
|
/// \details DL_SignatureMessageEncodingMethod_DSA provides interfaces
|
|
/// for message encoding method for DSA.
|
|
class CRYPTOPP_DLL DL_SignatureMessageEncodingMethod_DSA : public PK_DeterministicSignatureMessageEncodingMethod
|
|
{
|
|
public:
|
|
void ComputeMessageRepresentative(RandomNumberGenerator &rng,
|
|
const byte *recoverableMessage, size_t recoverableMessageLength,
|
|
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
|
|
byte *representative, size_t representativeBitLength) const;
|
|
};
|
|
|
|
/// \brief Interface for message encoding method for public key signature schemes.
|
|
/// \details DL_SignatureMessageEncodingMethod_NR provides interfaces
|
|
/// for message encoding method for Nyberg-Rueppel.
|
|
class CRYPTOPP_DLL DL_SignatureMessageEncodingMethod_NR : public PK_DeterministicSignatureMessageEncodingMethod
|
|
{
|
|
public:
|
|
void ComputeMessageRepresentative(RandomNumberGenerator &rng,
|
|
const byte *recoverableMessage, size_t recoverableMessageLength,
|
|
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
|
|
byte *representative, size_t representativeBitLength) const;
|
|
};
|
|
|
|
#if 0
|
|
/// \brief Interface for message encoding method for public key signature schemes.
|
|
/// \details DL_SignatureMessageEncodingMethod_SM2 provides interfaces
|
|
/// for message encoding method for SM2.
|
|
class CRYPTOPP_DLL DL_SignatureMessageEncodingMethod_SM2 : public PK_DeterministicSignatureMessageEncodingMethod
|
|
{
|
|
public:
|
|
void ComputeMessageRepresentative(RandomNumberGenerator &rng,
|
|
const byte *recoverableMessage, size_t recoverableMessageLength,
|
|
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
|
|
byte *representative, size_t representativeBitLength) const;
|
|
};
|
|
#endif
|
|
|
|
/// \brief Interface for message encoding method for public key signature schemes.
|
|
/// \details PK_MessageAccumulatorBase provides interfaces
|
|
/// for message encoding method.
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_MessageAccumulatorBase : public PK_MessageAccumulator
|
|
{
|
|
public:
|
|
PK_MessageAccumulatorBase() : m_empty(true) {}
|
|
|
|
virtual HashTransformation & AccessHash() =0;
|
|
|
|
void Update(const byte *input, size_t length)
|
|
{
|
|
AccessHash().Update(input, length);
|
|
m_empty = m_empty && length == 0;
|
|
}
|
|
|
|
SecByteBlock m_recoverableMessage, m_representative, m_presignature, m_semisignature;
|
|
Integer m_k, m_s;
|
|
bool m_empty;
|
|
};
|
|
|
|
/// \brief Interface for message encoding method for public key signature schemes.
|
|
/// \details PK_MessageAccumulatorBase provides interfaces
|
|
/// for message encoding method.
|
|
template <class HASH_ALGORITHM>
|
|
class PK_MessageAccumulatorImpl : public PK_MessageAccumulatorBase, protected ObjectHolder<HASH_ALGORITHM>
|
|
{
|
|
public:
|
|
HashTransformation & AccessHash() {return this->m_object;}
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) Signature Scheme base class
|
|
/// \tparam INTFACE interface
|
|
/// \tparam BASE base class
|
|
template <class INTFACE, class BASE>
|
|
class CRYPTOPP_NO_VTABLE TF_SignatureSchemeBase : public INTFACE, protected BASE
|
|
{
|
|
public:
|
|
virtual ~TF_SignatureSchemeBase() {}
|
|
|
|
size_t SignatureLength() const
|
|
{return this->GetTrapdoorFunctionBounds().MaxPreimage().ByteCount();}
|
|
size_t MaxRecoverableLength() const
|
|
{return this->GetMessageEncodingInterface().MaxRecoverableLength(MessageRepresentativeBitLength(), GetHashIdentifier().second, GetDigestSize());}
|
|
size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const
|
|
{CRYPTOPP_UNUSED(signatureLength); return this->MaxRecoverableLength();}
|
|
|
|
bool IsProbabilistic() const
|
|
{return this->GetTrapdoorFunctionInterface().IsRandomized() || this->GetMessageEncodingInterface().IsProbabilistic();}
|
|
bool AllowNonrecoverablePart() const
|
|
{return this->GetMessageEncodingInterface().AllowNonrecoverablePart();}
|
|
bool RecoverablePartFirst() const
|
|
{return this->GetMessageEncodingInterface().RecoverablePartFirst();}
|
|
|
|
protected:
|
|
size_t MessageRepresentativeLength() const {return BitsToBytes(MessageRepresentativeBitLength());}
|
|
// Coverity finding on potential overflow/underflow.
|
|
size_t MessageRepresentativeBitLength() const {return SaturatingSubtract(this->GetTrapdoorFunctionBounds().ImageBound().BitCount(),1U);}
|
|
virtual HashIdentifier GetHashIdentifier() const =0;
|
|
virtual size_t GetDigestSize() const =0;
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) Signer base class
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TF_SignerBase : public TF_SignatureSchemeBase<PK_Signer, TF_Base<RandomizedTrapdoorFunctionInverse, PK_SignatureMessageEncodingMethod> >
|
|
{
|
|
public:
|
|
virtual ~TF_SignerBase() {}
|
|
|
|
void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const;
|
|
size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart=true) const;
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) Verifier base class
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE TF_VerifierBase : public TF_SignatureSchemeBase<PK_Verifier, TF_Base<TrapdoorFunction, PK_SignatureMessageEncodingMethod> >
|
|
{
|
|
public:
|
|
virtual ~TF_VerifierBase() {}
|
|
|
|
void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const;
|
|
bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const;
|
|
DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &recoveryAccumulator) const;
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Trapdoor Function (TF) scheme options
|
|
/// \tparam T1 algorithm info class
|
|
/// \tparam T2 keys class with public and private key
|
|
/// \tparam T3 message encoding class
|
|
template <class T1, class T2, class T3>
|
|
struct TF_CryptoSchemeOptions
|
|
{
|
|
typedef T1 AlgorithmInfo;
|
|
typedef T2 Keys;
|
|
typedef typename Keys::PrivateKey PrivateKey;
|
|
typedef typename Keys::PublicKey PublicKey;
|
|
typedef T3 MessageEncodingMethod;
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) signature scheme options
|
|
/// \tparam T1 algorithm info class
|
|
/// \tparam T2 keys class with public and private key
|
|
/// \tparam T3 message encoding class
|
|
/// \tparam T4 HashTransformation class
|
|
template <class T1, class T2, class T3, class T4>
|
|
struct TF_SignatureSchemeOptions : public TF_CryptoSchemeOptions<T1, T2, T3>
|
|
{
|
|
typedef T4 HashFunction;
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) base implementation
|
|
/// \tparam BASE base class
|
|
/// \tparam SCHEME_OPTIONS scheme options class
|
|
/// \tparam KEY_CLASS key class
|
|
template <class BASE, class SCHEME_OPTIONS, class KEY_CLASS>
|
|
class CRYPTOPP_NO_VTABLE TF_ObjectImplBase : public AlgorithmImpl<BASE, typename SCHEME_OPTIONS::AlgorithmInfo>
|
|
{
|
|
public:
|
|
typedef SCHEME_OPTIONS SchemeOptions;
|
|
typedef KEY_CLASS KeyClass;
|
|
|
|
virtual ~TF_ObjectImplBase() {}
|
|
|
|
PublicKey & AccessPublicKey() {return AccessKey();}
|
|
const PublicKey & GetPublicKey() const {return GetKey();}
|
|
|
|
PrivateKey & AccessPrivateKey() {return AccessKey();}
|
|
const PrivateKey & GetPrivateKey() const {return GetKey();}
|
|
|
|
virtual const KeyClass & GetKey() const =0;
|
|
virtual KeyClass & AccessKey() =0;
|
|
|
|
const KeyClass & GetTrapdoorFunction() const {return GetKey();}
|
|
|
|
PK_MessageAccumulator * NewSignatureAccumulator(RandomNumberGenerator &rng) const
|
|
{
|
|
CRYPTOPP_UNUSED(rng);
|
|
return new PK_MessageAccumulatorImpl<typename SCHEME_OPTIONS::HashFunction>;
|
|
}
|
|
PK_MessageAccumulator * NewVerificationAccumulator() const
|
|
{
|
|
return new PK_MessageAccumulatorImpl<typename SCHEME_OPTIONS::HashFunction>;
|
|
}
|
|
|
|
protected:
|
|
const typename BASE::MessageEncodingInterface & GetMessageEncodingInterface() const
|
|
{return Singleton<typename SCHEME_OPTIONS::MessageEncodingMethod>().Ref();}
|
|
const TrapdoorFunctionBounds & GetTrapdoorFunctionBounds() const
|
|
{return GetKey();}
|
|
const typename BASE::TrapdoorFunctionInterface & GetTrapdoorFunctionInterface() const
|
|
{return GetKey();}
|
|
|
|
// for signature scheme
|
|
HashIdentifier GetHashIdentifier() const
|
|
{
|
|
typedef typename SchemeOptions::MessageEncodingMethod::HashIdentifierLookup::template HashIdentifierLookup2<typename SchemeOptions::HashFunction> L;
|
|
return L::Lookup();
|
|
}
|
|
size_t GetDigestSize() const
|
|
{
|
|
typedef typename SchemeOptions::HashFunction H;
|
|
return H::DIGESTSIZE;
|
|
}
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) signature with external reference
|
|
/// \tparam BASE base class
|
|
/// \tparam SCHEME_OPTIONS scheme options class
|
|
/// \tparam KEY key class
|
|
/// \details TF_ObjectImplExtRef() holds a pointer to an external key structure
|
|
template <class BASE, class SCHEME_OPTIONS, class KEY>
|
|
class TF_ObjectImplExtRef : public TF_ObjectImplBase<BASE, SCHEME_OPTIONS, KEY>
|
|
{
|
|
public:
|
|
virtual ~TF_ObjectImplExtRef() {}
|
|
|
|
TF_ObjectImplExtRef(const KEY *pKey = NULLPTR) : m_pKey(pKey) {}
|
|
void SetKeyPtr(const KEY *pKey) {m_pKey = pKey;}
|
|
|
|
const KEY & GetKey() const {return *m_pKey;}
|
|
KEY & AccessKey() {throw NotImplemented("TF_ObjectImplExtRef: cannot modify refererenced key");}
|
|
|
|
private:
|
|
const KEY * m_pKey;
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) signature scheme options
|
|
/// \tparam BASE base class
|
|
/// \tparam SCHEME_OPTIONS scheme options class
|
|
/// \tparam KEY_CLASS key class
|
|
/// \details TF_ObjectImpl() holds a reference to a trapdoor function
|
|
template <class BASE, class SCHEME_OPTIONS, class KEY_CLASS>
|
|
class CRYPTOPP_NO_VTABLE TF_ObjectImpl : public TF_ObjectImplBase<BASE, SCHEME_OPTIONS, KEY_CLASS>
|
|
{
|
|
public:
|
|
typedef KEY_CLASS KeyClass;
|
|
|
|
virtual ~TF_ObjectImpl() {}
|
|
|
|
const KeyClass & GetKey() const {return m_trapdoorFunction;}
|
|
KeyClass & AccessKey() {return m_trapdoorFunction;}
|
|
|
|
private:
|
|
KeyClass m_trapdoorFunction;
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) decryptor options
|
|
/// \tparam SCHEME_OPTIONS scheme options class
|
|
template <class SCHEME_OPTIONS>
|
|
class TF_DecryptorImpl : public TF_ObjectImpl<TF_DecryptorBase, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PrivateKey>
|
|
{
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) encryptor options
|
|
/// \tparam SCHEME_OPTIONS scheme options class
|
|
template <class SCHEME_OPTIONS>
|
|
class TF_EncryptorImpl : public TF_ObjectImpl<TF_EncryptorBase, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PublicKey>
|
|
{
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) encryptor options
|
|
/// \tparam SCHEME_OPTIONS scheme options class
|
|
template <class SCHEME_OPTIONS>
|
|
class TF_SignerImpl : public TF_ObjectImpl<TF_SignerBase, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PrivateKey>
|
|
{
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) encryptor options
|
|
/// \tparam SCHEME_OPTIONS scheme options class
|
|
template <class SCHEME_OPTIONS>
|
|
class TF_VerifierImpl : public TF_ObjectImpl<TF_VerifierBase, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PublicKey>
|
|
{
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Mask generation function interface
|
|
/// \sa P1363_KDF2, P1363_MGF1
|
|
/// \since Crypto++ 2.0
|
|
class CRYPTOPP_NO_VTABLE MaskGeneratingFunction
|
|
{
|
|
public:
|
|
virtual ~MaskGeneratingFunction() {}
|
|
|
|
/// \brief Generate and apply mask
|
|
/// \param hash HashTransformation derived class
|
|
/// \param output the destination byte array
|
|
/// \param outputLength the size of the destination byte array
|
|
/// \param input the message to hash
|
|
/// \param inputLength the size of the message
|
|
/// \param mask flag indicating whether to apply the mask
|
|
virtual void GenerateAndMask(HashTransformation &hash, byte *output, size_t outputLength, const byte *input, size_t inputLength, bool mask = true) const =0;
|
|
};
|
|
|
|
/// \fn P1363_MGF1KDF2_Common
|
|
/// \brief P1363 mask generation function
|
|
/// \param hash HashTransformation derived class
|
|
/// \param output the destination byte array
|
|
/// \param outputLength the size of the destination byte array
|
|
/// \param input the message to hash
|
|
/// \param inputLength the size of the message
|
|
/// \param derivationParams additional derivation parameters
|
|
/// \param derivationParamsLength the size of the additional derivation parameters
|
|
/// \param mask flag indicating whether to apply the mask
|
|
/// \param counterStart starting counter value used in generation function
|
|
CRYPTOPP_DLL void CRYPTOPP_API P1363_MGF1KDF2_Common(HashTransformation &hash, byte *output, size_t outputLength, const byte *input, size_t inputLength, const byte *derivationParams, size_t derivationParamsLength, bool mask, unsigned int counterStart);
|
|
|
|
/// \brief P1363 mask generation function
|
|
/// \sa P1363_KDF2, MaskGeneratingFunction
|
|
/// \since Crypto++ 2.0
|
|
class P1363_MGF1 : public MaskGeneratingFunction
|
|
{
|
|
public:
|
|
/// \brief The algorithm name
|
|
/// \return the algorithm name
|
|
/// \details StaticAlgorithmName returns the algorithm's name as a static
|
|
/// member function.
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "MGF1";}
|
|
|
|
/// \brief P1363 mask generation function
|
|
/// \param hash HashTransformation derived class
|
|
/// \param output the destination byte array
|
|
/// \param outputLength the size of the destination byte array
|
|
/// \param input the message to hash
|
|
/// \param inputLength the size of the message
|
|
/// \param mask flag indicating whether to apply the mask
|
|
void GenerateAndMask(HashTransformation &hash, byte *output, size_t outputLength, const byte *input, size_t inputLength, bool mask = true) const
|
|
{
|
|
P1363_MGF1KDF2_Common(hash, output, outputLength, input, inputLength, NULLPTR, 0, mask, 0);
|
|
}
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief P1363 key derivation function
|
|
/// \tparam H hash function used in the derivation
|
|
/// \sa P1363_MGF1, KeyDerivationFunction, <A
|
|
/// HREF="https://www.cryptopp.com/wiki/P1363_KDF2">P1363_KDF2</A>
|
|
/// on the Crypto++ wiki
|
|
/// \since Crypto++ 2.0
|
|
template <class H>
|
|
class P1363_KDF2
|
|
{
|
|
public:
|
|
/// \brief P1363 key derivation function
|
|
/// \param output the destination byte array
|
|
/// \param outputLength the size of the destination byte array
|
|
/// \param input the message to hash
|
|
/// \param inputLength the size of the message
|
|
/// \param derivationParams additional derivation parameters
|
|
/// \param derivationParamsLength the size of the additional derivation parameters
|
|
/// \details DeriveKey calls P1363_MGF1KDF2_Common
|
|
static void CRYPTOPP_API DeriveKey(byte *output, size_t outputLength, const byte *input, size_t inputLength, const byte *derivationParams, size_t derivationParamsLength)
|
|
{
|
|
H h;
|
|
P1363_MGF1KDF2_Common(h, output, outputLength, input, inputLength, derivationParams, derivationParamsLength, false, 1);
|
|
}
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Exception thrown when an invalid group element is encountered
|
|
/// \details Thrown by DecodeElement and AgreeWithStaticPrivateKey
|
|
class DL_BadElement : public InvalidDataFormat
|
|
{
|
|
public:
|
|
DL_BadElement() : InvalidDataFormat("CryptoPP: invalid group element") {}
|
|
};
|
|
|
|
/// \brief Interface for Discrete Log (DL) group parameters
|
|
/// \tparam T element in the group
|
|
/// \details The element is usually an Integer, \ref ECP "ECP::Point" or \ref EC2N "EC2N::Point"
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_GroupParameters : public CryptoParameters
|
|
{
|
|
typedef DL_GroupParameters<T> ThisClass;
|
|
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual ~DL_GroupParameters() {}
|
|
|
|
DL_GroupParameters() : m_validationLevel(0) {}
|
|
|
|
// CryptoMaterial
|
|
bool Validate(RandomNumberGenerator &rng, unsigned int level) const
|
|
{
|
|
if (!GetBasePrecomputation().IsInitialized())
|
|
return false;
|
|
|
|
if (m_validationLevel > level)
|
|
return true;
|
|
|
|
CRYPTOPP_ASSERT(ValidateGroup(rng, level));
|
|
bool pass = ValidateGroup(rng, level);
|
|
CRYPTOPP_ASSERT(ValidateElement(level, GetSubgroupGenerator(), &GetBasePrecomputation()));
|
|
pass = pass && ValidateElement(level, GetSubgroupGenerator(), &GetBasePrecomputation());
|
|
|
|
m_validationLevel = pass ? level+1 : 0;
|
|
|
|
return pass;
|
|
}
|
|
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
|
{
|
|
return GetValueHelper(this, name, valueType, pValue)
|
|
CRYPTOPP_GET_FUNCTION_ENTRY(SubgroupOrder)
|
|
CRYPTOPP_GET_FUNCTION_ENTRY(SubgroupGenerator)
|
|
;
|
|
}
|
|
|
|
/// \brief Determines whether the object supports precomputation
|
|
/// \return true if the object supports precomputation, false otherwise
|
|
/// \sa Precompute()
|
|
bool SupportsPrecomputation() const {return true;}
|
|
|
|
/// \brief Perform precomputation
|
|
/// \param precomputationStorage the suggested number of objects for the precompute table
|
|
/// \throw NotImplemented
|
|
/// \details The exact semantics of Precompute() varies, but it typically means calculate
|
|
/// a table of n objects that can be used later to speed up computation.
|
|
/// \details If a derived class does not override Precompute(), then the base class throws
|
|
/// NotImplemented.
|
|
/// \sa SupportsPrecomputation(), LoadPrecomputation(), SavePrecomputation()
|
|
void Precompute(unsigned int precomputationStorage=16)
|
|
{
|
|
AccessBasePrecomputation().Precompute(GetGroupPrecomputation(), GetSubgroupOrder().BitCount(), precomputationStorage);
|
|
}
|
|
|
|
/// \brief Retrieve previously saved precomputation
|
|
/// \param storedPrecomputation BufferedTransformation with the saved precomputation
|
|
/// \throw NotImplemented
|
|
/// \sa SupportsPrecomputation(), Precompute()
|
|
void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
|
|
{
|
|
AccessBasePrecomputation().Load(GetGroupPrecomputation(), storedPrecomputation);
|
|
m_validationLevel = 0;
|
|
}
|
|
|
|
/// \brief Save precomputation for later use
|
|
/// \param storedPrecomputation BufferedTransformation to write the precomputation
|
|
/// \throw NotImplemented
|
|
/// \sa SupportsPrecomputation(), Precompute()
|
|
void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
|
|
{
|
|
GetBasePrecomputation().Save(GetGroupPrecomputation(), storedPrecomputation);
|
|
}
|
|
|
|
/// \brief Retrieves the subgroup generator
|
|
/// \return the subgroup generator
|
|
/// \details The subgroup generator is retrieved from the base precomputation
|
|
virtual const Element & GetSubgroupGenerator() const {return GetBasePrecomputation().GetBase(GetGroupPrecomputation());}
|
|
|
|
/// \brief Sets the subgroup generator
|
|
/// \param base the new subgroup generator
|
|
/// \details The subgroup generator is set in the base precomputation
|
|
virtual void SetSubgroupGenerator(const Element &base) {AccessBasePrecomputation().SetBase(GetGroupPrecomputation(), base);}
|
|
|
|
/// \brief Exponentiates the base
|
|
/// \return the element after exponentiation
|
|
/// \details ExponentiateBase() calls GetBasePrecomputation() and then exponentiates.
|
|
virtual Element ExponentiateBase(const Integer &exponent) const
|
|
{
|
|
return GetBasePrecomputation().Exponentiate(GetGroupPrecomputation(), exponent);
|
|
}
|
|
|
|
/// \brief Exponentiates an element
|
|
/// \param base the base element
|
|
/// \param exponent the exponent to raise the base
|
|
/// \return the result of the exponentiation
|
|
/// \details Internally, ExponentiateElement() calls SimultaneousExponentiate().
|
|
virtual Element ExponentiateElement(const Element &base, const Integer &exponent) const
|
|
{
|
|
Element result;
|
|
SimultaneousExponentiate(&result, base, &exponent, 1);
|
|
return result;
|
|
}
|
|
|
|
/// \brief Retrieves the group precomputation
|
|
/// \return a const reference to the group precomputation
|
|
virtual const DL_GroupPrecomputation<Element> & GetGroupPrecomputation() const =0;
|
|
|
|
/// \brief Retrieves the group precomputation
|
|
/// \return a const reference to the group precomputation using a fixed base
|
|
virtual const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const =0;
|
|
|
|
/// \brief Retrieves the group precomputation
|
|
/// \return a non-const reference to the group precomputation using a fixed base
|
|
virtual DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() =0;
|
|
|
|
/// \brief Retrieves the subgroup order
|
|
/// \return the order of subgroup generated by the base element
|
|
virtual const Integer & GetSubgroupOrder() const =0;
|
|
|
|
/// \brief Retrieves the maximum exponent for the group
|
|
/// \return the maximum exponent for the group
|
|
virtual Integer GetMaxExponent() const =0;
|
|
|
|
/// \brief Retrieves the order of the group
|
|
/// \return the order of the group
|
|
/// \details Either GetGroupOrder() or GetCofactor() must be overridden in a derived class.
|
|
virtual Integer GetGroupOrder() const {return GetSubgroupOrder()*GetCofactor();}
|
|
|
|
/// \brief Retrieves the cofactor
|
|
/// \return the cofactor
|
|
/// \details Either GetGroupOrder() or GetCofactor() must be overridden in a derived class.
|
|
virtual Integer GetCofactor() const {return GetGroupOrder()/GetSubgroupOrder();}
|
|
|
|
/// \brief Retrieves the encoded element's size
|
|
/// \param reversible flag indicating the encoding format
|
|
/// \return encoded element's size, in bytes
|
|
/// \details The format of the encoded element varies by the underlying type of the element and the
|
|
/// reversible flag. GetEncodedElementSize() must be implemented in a derived class.
|
|
/// \sa GetEncodedElementSize(), EncodeElement(), DecodeElement()
|
|
virtual unsigned int GetEncodedElementSize(bool reversible) const =0;
|
|
|
|
/// \brief Encodes the element
|
|
/// \param reversible flag indicating the encoding format
|
|
/// \param element reference to the element to encode
|
|
/// \param encoded destination byte array for the encoded element
|
|
/// \details EncodeElement() must be implemented in a derived class.
|
|
/// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
|
|
virtual void EncodeElement(bool reversible, const Element &element, byte *encoded) const =0;
|
|
|
|
/// \brief Decodes the element
|
|
/// \param encoded byte array with the encoded element
|
|
/// \param checkForGroupMembership flag indicating if the element should be validated
|
|
/// \return Element after decoding
|
|
/// \details DecodeElement() must be implemented in a derived class.
|
|
/// \pre <tt>COUNTOF(encoded) == GetEncodedElementSize()</tt>
|
|
virtual Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const =0;
|
|
|
|
/// \brief Converts an element to an Integer
|
|
/// \param element the element to convert to an Integer
|
|
/// \return Element after converting to an Integer
|
|
/// \details ConvertElementToInteger() must be implemented in a derived class.
|
|
virtual Integer ConvertElementToInteger(const Element &element) const =0;
|
|
|
|
/// \brief Check the group for errors
|
|
/// \param rng RandomNumberGenerator for objects which use randomized testing
|
|
/// \param level level of thoroughness
|
|
/// \return true if the tests succeed, false otherwise
|
|
/// \details There are four levels of thoroughness:
|
|
/// <ul>
|
|
/// <li>0 - using this object won't cause a crash or exception
|
|
/// <li>1 - this object will probably function, and encrypt, sign, other operations correctly
|
|
/// <li>2 - ensure this object will function correctly, and perform reasonable security checks
|
|
/// <li>3 - perform reasonable security checks, and do checks that may take a long time
|
|
/// </ul>
|
|
/// \details Level 0 does not require a RandomNumberGenerator. A NullRNG() can be used for level 0.
|
|
/// Level 1 may not check for weak keys and such. Levels 2 and 3 are recommended.
|
|
/// \details ValidateGroup() must be implemented in a derived class.
|
|
virtual bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const =0;
|
|
|
|
/// \brief Check the element for errors
|
|
/// \param level level of thoroughness
|
|
/// \param element element to check
|
|
/// \param precomp optional pointer to DL_FixedBasePrecomputation
|
|
/// \return true if the tests succeed, false otherwise
|
|
/// \details There are four levels of thoroughness:
|
|
/// <ul>
|
|
/// <li>0 - using this object won't cause a crash or exception
|
|
/// <li>1 - this object will probably function, and encrypt, sign, other operations correctly
|
|
/// <li>2 - ensure this object will function correctly, and perform reasonable security checks
|
|
/// <li>3 - perform reasonable security checks, and do checks that may take a long time
|
|
/// </ul>
|
|
/// \details Level 0 performs group membership checks. Level 1 may not check for weak keys and such.
|
|
/// Levels 2 and 3 are recommended.
|
|
/// \details ValidateElement() must be implemented in a derived class.
|
|
virtual bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const =0;
|
|
|
|
virtual bool FastSubgroupCheckAvailable() const =0;
|
|
|
|
/// \brief Determines if an element is an identity
|
|
/// \param element element to check
|
|
/// \return true if the element is an identity, false otherwise
|
|
/// \details The identity element or or neutral element is a special element in a group that leaves
|
|
/// other elements unchanged when combined with it.
|
|
/// \details IsIdentity() must be implemented in a derived class.
|
|
virtual bool IsIdentity(const Element &element) const =0;
|
|
|
|
/// \brief Exponentiates a base to multiple exponents
|
|
/// \param results an array of Elements
|
|
/// \param base the base to raise to the exponents
|
|
/// \param exponents an array of exponents
|
|
/// \param exponentsCount the number of exponents in the array
|
|
/// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
|
|
/// result at the respective position in the results array.
|
|
/// \details SimultaneousExponentiate() must be implemented in a derived class.
|
|
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
|
|
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
|
|
virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const =0;
|
|
|
|
protected:
|
|
void ParametersChanged() {m_validationLevel = 0;}
|
|
|
|
private:
|
|
mutable unsigned int m_validationLevel;
|
|
};
|
|
|
|
/// \brief Base implementation of Discrete Log (DL) group parameters
|
|
/// \tparam GROUP_PRECOMP group precomputation class
|
|
/// \tparam BASE_PRECOMP fixed base precomputation class
|
|
/// \tparam BASE class or type of an element
|
|
template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<typename GROUP_PRECOMP::Element>, class BASE = DL_GroupParameters<typename GROUP_PRECOMP::Element> >
|
|
class DL_GroupParametersImpl : public BASE
|
|
{
|
|
public:
|
|
typedef GROUP_PRECOMP GroupPrecomputation;
|
|
typedef typename GROUP_PRECOMP::Element Element;
|
|
typedef BASE_PRECOMP BasePrecomputation;
|
|
|
|
virtual ~DL_GroupParametersImpl() {}
|
|
|
|
/// \brief Retrieves the group precomputation
|
|
/// \return a const reference to the group precomputation
|
|
const DL_GroupPrecomputation<Element> & GetGroupPrecomputation() const {return m_groupPrecomputation;}
|
|
|
|
/// \brief Retrieves the group precomputation
|
|
/// \return a const reference to the group precomputation using a fixed base
|
|
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return m_gpc;}
|
|
|
|
/// \brief Retrieves the group precomputation
|
|
/// \return a non-const reference to the group precomputation using a fixed base
|
|
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return m_gpc;}
|
|
|
|
protected:
|
|
GROUP_PRECOMP m_groupPrecomputation;
|
|
BASE_PRECOMP m_gpc;
|
|
};
|
|
|
|
/// \brief Base class for a Discrete Log (DL) key
|
|
/// \tparam T class or type of an element
|
|
/// \details The element is usually an Integer, \ref ECP "ECP::Point" or \ref EC2N "EC2N::Point"
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_Key
|
|
{
|
|
public:
|
|
virtual ~DL_Key() {}
|
|
|
|
/// \brief Retrieves abstract group parameters
|
|
/// \return a const reference to the group parameters
|
|
virtual const DL_GroupParameters<T> & GetAbstractGroupParameters() const =0;
|
|
/// \brief Retrieves abstract group parameters
|
|
/// \return a non-const reference to the group parameters
|
|
virtual DL_GroupParameters<T> & AccessAbstractGroupParameters() =0;
|
|
};
|
|
|
|
/// \brief Interface for Discrete Log (DL) public keys
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_PublicKey : public DL_Key<T>
|
|
{
|
|
typedef DL_PublicKey<T> ThisClass;
|
|
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual ~DL_PublicKey();
|
|
|
|
/// \brief Get a named value
|
|
/// \param name the name of the object or value to retrieve
|
|
/// \param valueType reference to a variable that receives the value
|
|
/// \param pValue void pointer to a variable that receives the value
|
|
/// \return true if the value was retrieved, false otherwise
|
|
/// \details GetVoidValue() retrieves the value of name if it exists.
|
|
/// \note GetVoidValue() is an internal function and should be implemented
|
|
/// by derived classes. Users should use one of the other functions instead.
|
|
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
|
|
/// GetRequiredParameter() and GetRequiredIntParameter()
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
|
{
|
|
return GetValueHelper(this, name, valueType, pValue, &this->GetAbstractGroupParameters())
|
|
CRYPTOPP_GET_FUNCTION_ENTRY(PublicElement);
|
|
}
|
|
|
|
/// \brief Initialize or reinitialize this key
|
|
/// \param source NameValuePairs to assign
|
|
void AssignFrom(const NameValuePairs &source);
|
|
|
|
/// \brief Retrieves the public element
|
|
/// \return the public element
|
|
virtual const Element & GetPublicElement() const {return GetPublicPrecomputation().GetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation());}
|
|
|
|
/// \brief Sets the public element
|
|
/// \param y the public element
|
|
virtual void SetPublicElement(const Element &y) {AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);}
|
|
|
|
/// \brief Exponentiates this element
|
|
/// \param exponent the exponent to raise the base
|
|
/// \return the public element raised to the exponent
|
|
virtual Element ExponentiatePublicElement(const Integer &exponent) const
|
|
{
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
return GetPublicPrecomputation().Exponentiate(params.GetGroupPrecomputation(), exponent);
|
|
}
|
|
|
|
/// \brief Exponentiates an element
|
|
/// \param baseExp the first exponent
|
|
/// \param publicExp the second exponent
|
|
/// \return the public element raised to the exponent
|
|
/// \details CascadeExponentiateBaseAndPublicElement raises the public element to
|
|
/// the base element and precomputation.
|
|
virtual Element CascadeExponentiateBaseAndPublicElement(const Integer &baseExp, const Integer &publicExp) const
|
|
{
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
return params.GetBasePrecomputation().CascadeExponentiate(params.GetGroupPrecomputation(), baseExp, GetPublicPrecomputation(), publicExp);
|
|
}
|
|
|
|
/// \brief Accesses the public precomputation
|
|
/// \details GetPublicPrecomputation returns a const reference, while
|
|
/// AccessPublicPrecomputation returns a non-const reference. Must be
|
|
/// overridden in derived classes.
|
|
virtual const DL_FixedBasePrecomputation<T> & GetPublicPrecomputation() const =0;
|
|
|
|
/// \brief Accesses the public precomputation
|
|
/// \details GetPublicPrecomputation returns a const reference, while
|
|
/// AccessPublicPrecomputation returns a non-const reference. Must be
|
|
/// overridden in derived classes.
|
|
virtual DL_FixedBasePrecomputation<T> & AccessPublicPrecomputation() =0;
|
|
};
|
|
|
|
// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
|
|
template<class T>
|
|
DL_PublicKey<T>::~DL_PublicKey() {}
|
|
|
|
/// \brief Interface for Discrete Log (DL) private keys
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_PrivateKey : public DL_Key<T>
|
|
{
|
|
typedef DL_PrivateKey<T> ThisClass;
|
|
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual ~DL_PrivateKey();
|
|
|
|
/// \brief Initializes a public key from this key
|
|
/// \param pub reference to a public key
|
|
void MakePublicKey(DL_PublicKey<T> &pub) const
|
|
{
|
|
pub.AccessAbstractGroupParameters().AssignFrom(this->GetAbstractGroupParameters());
|
|
pub.SetPublicElement(this->GetAbstractGroupParameters().ExponentiateBase(GetPrivateExponent()));
|
|
}
|
|
|
|
/// \brief Get a named value
|
|
/// \param name the name of the object or value to retrieve
|
|
/// \param valueType reference to a variable that receives the value
|
|
/// \param pValue void pointer to a variable that receives the value
|
|
/// \return true if the value was retrieved, false otherwise
|
|
/// \details GetVoidValue() retrieves the value of name if it exists.
|
|
/// \note GetVoidValue() is an internal function and should be implemented
|
|
/// by derived classes. Users should use one of the other functions instead.
|
|
/// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
|
|
/// GetRequiredParameter() and GetRequiredIntParameter()
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
|
{
|
|
return GetValueHelper(this, name, valueType, pValue, &this->GetAbstractGroupParameters())
|
|
CRYPTOPP_GET_FUNCTION_ENTRY(PrivateExponent);
|
|
}
|
|
|
|
/// \brief Initialize or reinitialize this key
|
|
/// \param source NameValuePairs to assign
|
|
void AssignFrom(const NameValuePairs &source)
|
|
{
|
|
this->AccessAbstractGroupParameters().AssignFrom(source);
|
|
AssignFromHelper(this, source)
|
|
CRYPTOPP_SET_FUNCTION_ENTRY(PrivateExponent);
|
|
}
|
|
|
|
/// \brief Retrieves the private exponent
|
|
/// \return the private exponent
|
|
/// \details Must be overridden in derived classes.
|
|
virtual const Integer & GetPrivateExponent() const =0;
|
|
/// \brief Sets the private exponent
|
|
/// \param x the private exponent
|
|
/// \details Must be overridden in derived classes.
|
|
virtual void SetPrivateExponent(const Integer &x) =0;
|
|
};
|
|
|
|
// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
|
|
template<class T>
|
|
DL_PrivateKey<T>::~DL_PrivateKey() {}
|
|
|
|
template <class T>
|
|
void DL_PublicKey<T>::AssignFrom(const NameValuePairs &source)
|
|
{
|
|
DL_PrivateKey<T> *pPrivateKey = NULLPTR;
|
|
if (source.GetThisPointer(pPrivateKey))
|
|
pPrivateKey->MakePublicKey(*this);
|
|
else
|
|
{
|
|
this->AccessAbstractGroupParameters().AssignFrom(source);
|
|
AssignFromHelper(this, source)
|
|
CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement);
|
|
}
|
|
}
|
|
|
|
class OID;
|
|
|
|
/// \brief Discrete Log (DL) key base implementation
|
|
/// \tparam PK Key class
|
|
/// \tparam GP GroupParameters class
|
|
/// \tparam O OID class
|
|
template <class PK, class GP, class O = OID>
|
|
class DL_KeyImpl : public PK
|
|
{
|
|
public:
|
|
typedef GP GroupParameters;
|
|
|
|
virtual ~DL_KeyImpl() {}
|
|
|
|
O GetAlgorithmID() const {return GetGroupParameters().GetAlgorithmID();}
|
|
bool BERDecodeAlgorithmParameters(BufferedTransformation &bt)
|
|
{AccessGroupParameters().BERDecode(bt); return true;}
|
|
bool DEREncodeAlgorithmParameters(BufferedTransformation &bt) const
|
|
{GetGroupParameters().DEREncode(bt); return true;}
|
|
|
|
const GP & GetGroupParameters() const {return m_groupParameters;}
|
|
GP & AccessGroupParameters() {return m_groupParameters;}
|
|
|
|
private:
|
|
GP m_groupParameters;
|
|
};
|
|
|
|
class X509PublicKey;
|
|
class PKCS8PrivateKey;
|
|
|
|
/// \brief Discrete Log (DL) private key base implementation
|
|
/// \tparam GP GroupParameters class
|
|
template <class GP>
|
|
class DL_PrivateKeyImpl : public DL_PrivateKey<typename GP::Element>, public DL_KeyImpl<PKCS8PrivateKey, GP>
|
|
{
|
|
public:
|
|
typedef typename GP::Element Element;
|
|
|
|
virtual ~DL_PrivateKeyImpl() {}
|
|
|
|
// GeneratableCryptoMaterial
|
|
bool Validate(RandomNumberGenerator &rng, unsigned int level) const
|
|
{
|
|
CRYPTOPP_ASSERT(GetAbstractGroupParameters().Validate(rng, level));
|
|
bool pass = GetAbstractGroupParameters().Validate(rng, level);
|
|
|
|
const Integer &q = GetAbstractGroupParameters().GetSubgroupOrder();
|
|
const Integer &x = GetPrivateExponent();
|
|
|
|
CRYPTOPP_ASSERT(x.IsPositive());
|
|
CRYPTOPP_ASSERT(x < q);
|
|
pass = pass && x.IsPositive() && x < q;
|
|
|
|
if (level >= 1)
|
|
{
|
|
CRYPTOPP_ASSERT(Integer::Gcd(x, q) == Integer::One());
|
|
pass = pass && Integer::Gcd(x, q) == Integer::One();
|
|
}
|
|
return pass;
|
|
}
|
|
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
|
{
|
|
return GetValueHelper<DL_PrivateKey<Element> >(this, name, valueType, pValue).Assignable();
|
|
}
|
|
|
|
void AssignFrom(const NameValuePairs &source)
|
|
{
|
|
AssignFromHelper<DL_PrivateKey<Element> >(this, source);
|
|
}
|
|
|
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms)
|
|
{
|
|
if (!params.GetThisObject(this->AccessGroupParameters()))
|
|
this->AccessGroupParameters().GenerateRandom(rng, params);
|
|
Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
|
|
SetPrivateExponent(x);
|
|
}
|
|
|
|
bool SupportsPrecomputation() const {return true;}
|
|
|
|
void Precompute(unsigned int precomputationStorage=16)
|
|
{AccessAbstractGroupParameters().Precompute(precomputationStorage);}
|
|
|
|
void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
|
|
{AccessAbstractGroupParameters().LoadPrecomputation(storedPrecomputation);}
|
|
|
|
void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
|
|
{GetAbstractGroupParameters().SavePrecomputation(storedPrecomputation);}
|
|
|
|
// DL_Key
|
|
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return this->GetGroupParameters();}
|
|
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return this->AccessGroupParameters();}
|
|
|
|
// DL_PrivateKey
|
|
const Integer & GetPrivateExponent() const {return m_x;}
|
|
void SetPrivateExponent(const Integer &x) {m_x = x;}
|
|
|
|
// PKCS8PrivateKey
|
|
void BERDecodePrivateKey(BufferedTransformation &bt, bool, size_t)
|
|
{m_x.BERDecode(bt);}
|
|
void DEREncodePrivateKey(BufferedTransformation &bt) const
|
|
{m_x.DEREncode(bt);}
|
|
|
|
private:
|
|
Integer m_x;
|
|
};
|
|
|
|
template <class BASE, class SIGNATURE_SCHEME>
|
|
class DL_PrivateKey_WithSignaturePairwiseConsistencyTest : public BASE
|
|
{
|
|
public:
|
|
virtual ~DL_PrivateKey_WithSignaturePairwiseConsistencyTest() {}
|
|
|
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms)
|
|
{
|
|
BASE::GenerateRandom(rng, params);
|
|
|
|
if (FIPS_140_2_ComplianceEnabled())
|
|
{
|
|
typename SIGNATURE_SCHEME::Signer signer(*this);
|
|
typename SIGNATURE_SCHEME::Verifier verifier(signer);
|
|
SignaturePairwiseConsistencyTest_FIPS_140_Only(signer, verifier);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) public key base implementation
|
|
/// \tparam GP GroupParameters class
|
|
template <class GP>
|
|
class DL_PublicKeyImpl : public DL_PublicKey<typename GP::Element>, public DL_KeyImpl<X509PublicKey, GP>
|
|
{
|
|
public:
|
|
typedef typename GP::Element Element;
|
|
|
|
virtual ~DL_PublicKeyImpl();
|
|
|
|
// CryptoMaterial
|
|
bool Validate(RandomNumberGenerator &rng, unsigned int level) const
|
|
{
|
|
CRYPTOPP_ASSERT(GetAbstractGroupParameters().Validate(rng, level));
|
|
bool pass = GetAbstractGroupParameters().Validate(rng, level);
|
|
CRYPTOPP_ASSERT(GetAbstractGroupParameters().ValidateElement(level, this->GetPublicElement(), &GetPublicPrecomputation()));
|
|
pass = pass && GetAbstractGroupParameters().ValidateElement(level, this->GetPublicElement(), &GetPublicPrecomputation());
|
|
return pass;
|
|
}
|
|
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
|
{
|
|
return GetValueHelper<DL_PublicKey<Element> >(this, name, valueType, pValue).Assignable();
|
|
}
|
|
|
|
void AssignFrom(const NameValuePairs &source)
|
|
{
|
|
AssignFromHelper<DL_PublicKey<Element> >(this, source);
|
|
}
|
|
|
|
bool SupportsPrecomputation() const {return true;}
|
|
|
|
void Precompute(unsigned int precomputationStorage=16)
|
|
{
|
|
AccessAbstractGroupParameters().Precompute(precomputationStorage);
|
|
AccessPublicPrecomputation().Precompute(GetAbstractGroupParameters().GetGroupPrecomputation(), GetAbstractGroupParameters().GetSubgroupOrder().BitCount(), precomputationStorage);
|
|
}
|
|
|
|
void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
|
|
{
|
|
AccessAbstractGroupParameters().LoadPrecomputation(storedPrecomputation);
|
|
AccessPublicPrecomputation().Load(GetAbstractGroupParameters().GetGroupPrecomputation(), storedPrecomputation);
|
|
}
|
|
|
|
void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
|
|
{
|
|
GetAbstractGroupParameters().SavePrecomputation(storedPrecomputation);
|
|
GetPublicPrecomputation().Save(GetAbstractGroupParameters().GetGroupPrecomputation(), storedPrecomputation);
|
|
}
|
|
|
|
// DL_Key
|
|
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return this->GetGroupParameters();}
|
|
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return this->AccessGroupParameters();}
|
|
|
|
// DL_PublicKey
|
|
const DL_FixedBasePrecomputation<Element> & GetPublicPrecomputation() const {return m_ypc;}
|
|
DL_FixedBasePrecomputation<Element> & AccessPublicPrecomputation() {return m_ypc;}
|
|
|
|
// non-inherited
|
|
bool operator==(const DL_PublicKeyImpl<GP> &rhs) const
|
|
{return this->GetGroupParameters() == rhs.GetGroupParameters() && this->GetPublicElement() == rhs.GetPublicElement();}
|
|
|
|
private:
|
|
typename GP::BasePrecomputation m_ypc;
|
|
};
|
|
|
|
// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
|
|
template<class GP>
|
|
DL_PublicKeyImpl<GP>::~DL_PublicKeyImpl() {}
|
|
|
|
/// \brief Interface for Elgamal-like signature algorithms
|
|
/// \tparam T Field element type or class
|
|
/// \details Field element <tt>T</tt> can be Integer, ECP or EC2N.
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_ElgamalLikeSignatureAlgorithm
|
|
{
|
|
public:
|
|
virtual ~DL_ElgamalLikeSignatureAlgorithm() {}
|
|
|
|
/// \brief Sign a message using a private key
|
|
/// \param params GroupParameters
|
|
/// \param privateKey private key
|
|
/// \param k signing exponent
|
|
/// \param e encoded message
|
|
/// \param r r part of signature
|
|
/// \param s s part of signature
|
|
virtual void Sign(const DL_GroupParameters<T> ¶ms, const Integer &privateKey, const Integer &k, const Integer &e, Integer &r, Integer &s) const =0;
|
|
|
|
/// \brief Verify a message using a public key
|
|
/// \param params GroupParameters
|
|
/// \param publicKey public key
|
|
/// \param e encoded message
|
|
/// \param r r part of signature
|
|
/// \param s s part of signature
|
|
virtual bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const =0;
|
|
|
|
/// \brief Recover a Presignature
|
|
/// \param params GroupParameters
|
|
/// \param publicKey public key
|
|
/// \param r r part of signature
|
|
/// \param s s part of signature
|
|
virtual Integer RecoverPresignature(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &r, const Integer &s) const
|
|
{
|
|
CRYPTOPP_UNUSED(params); CRYPTOPP_UNUSED(publicKey); CRYPTOPP_UNUSED(r); CRYPTOPP_UNUSED(s);
|
|
throw NotImplemented("DL_ElgamalLikeSignatureAlgorithm: this signature scheme does not support message recovery");
|
|
MAYBE_RETURN(Integer::Zero());
|
|
}
|
|
|
|
/// \brief Retrieve R length
|
|
/// \param params GroupParameters
|
|
virtual size_t RLen(const DL_GroupParameters<T> ¶ms) const
|
|
{return params.GetSubgroupOrder().ByteCount();}
|
|
|
|
/// \brief Retrieve S length
|
|
/// \param params GroupParameters
|
|
virtual size_t SLen(const DL_GroupParameters<T> ¶ms) const
|
|
{return params.GetSubgroupOrder().ByteCount();}
|
|
|
|
/// \brief Signature scheme flag
|
|
/// \return true if the signature scheme is deterministic, false otherwise
|
|
/// \details IsDeterministic() is provided for DL signers. It is used by RFC 6979 signature schemes.
|
|
virtual bool IsDeterministic() const
|
|
{return false;}
|
|
};
|
|
|
|
/// \brief Interface for deterministic signers
|
|
/// \details RFC 6979 signers which generate k based on the encoded message and private key
|
|
class CRYPTOPP_NO_VTABLE DeterministicSignatureAlgorithm
|
|
{
|
|
public:
|
|
virtual ~DeterministicSignatureAlgorithm() {}
|
|
|
|
/// \brief Generate k
|
|
/// \param x private key
|
|
/// \param q subgroup generator
|
|
/// \param e encoded message
|
|
virtual Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const =0;
|
|
};
|
|
|
|
/// \brief Interface for DL key agreement algorithms
|
|
/// \tparam T Field element type or class
|
|
/// \details Field element <tt>T</tt> can be Integer, ECP or EC2N.
|
|
/// \sa DLIES, ECIES, ECIES_P1363
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_KeyAgreementAlgorithm
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual ~DL_KeyAgreementAlgorithm() {}
|
|
|
|
virtual Element AgreeWithEphemeralPrivateKey(const DL_GroupParameters<Element> ¶ms, const DL_FixedBasePrecomputation<Element> &publicPrecomputation, const Integer &privateExponent) const =0;
|
|
virtual Element AgreeWithStaticPrivateKey(const DL_GroupParameters<Element> ¶ms, const Element &publicElement, bool validateOtherPublicKey, const Integer &privateExponent) const =0;
|
|
};
|
|
|
|
/// \brief Interface for key derivation algorithms used in DL cryptosystems
|
|
/// \tparam T Field element type or class
|
|
/// \details Field element <tt>T</tt> can be Integer, ECP or EC2N.
|
|
/// \sa DLIES, ECIES, ECIES_P1363
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_KeyDerivationAlgorithm
|
|
{
|
|
public:
|
|
virtual ~DL_KeyDerivationAlgorithm() {}
|
|
|
|
virtual bool ParameterSupported(const char *name) const
|
|
{CRYPTOPP_UNUSED(name); return false;}
|
|
virtual void Derive(const DL_GroupParameters<T> &groupParams, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs &derivationParams) const =0;
|
|
};
|
|
|
|
/// \brief Interface for symmetric encryption algorithms used in DL cryptosystems
|
|
/// \sa DLIES, ECIES, ECIES_P1363
|
|
class CRYPTOPP_NO_VTABLE DL_SymmetricEncryptionAlgorithm
|
|
{
|
|
public:
|
|
virtual ~DL_SymmetricEncryptionAlgorithm() {}
|
|
|
|
virtual bool ParameterSupported(const char *name) const
|
|
{CRYPTOPP_UNUSED(name); return false;}
|
|
virtual size_t GetSymmetricKeyLength(size_t plaintextLength) const =0;
|
|
virtual size_t GetSymmetricCiphertextLength(size_t plaintextLength) const =0;
|
|
virtual size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const =0;
|
|
virtual void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs ¶meters) const =0;
|
|
virtual DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs ¶meters) const =0;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) base interface
|
|
/// \tparam KI public or private key interface
|
|
template <class KI>
|
|
class CRYPTOPP_NO_VTABLE DL_Base
|
|
{
|
|
protected:
|
|
typedef KI KeyInterface;
|
|
typedef typename KI::Element Element;
|
|
|
|
virtual ~DL_Base() {}
|
|
|
|
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return GetKeyInterface().GetAbstractGroupParameters();}
|
|
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return AccessKeyInterface().AccessAbstractGroupParameters();}
|
|
|
|
virtual KeyInterface & AccessKeyInterface() =0;
|
|
virtual const KeyInterface & GetKeyInterface() const =0;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) signature scheme base implementation
|
|
/// \tparam INTFACE PK_Signer or PK_Verifier derived class
|
|
/// \tparam KEY_INTFACE DL_Base key base used in the scheme
|
|
/// \details DL_SignatureSchemeBase provides common functions for signers and verifiers.
|
|
/// DL_Base<DL_PrivateKey> is used for signers, and DL_Base<DL_PublicKey> is used for verifiers.
|
|
template <class INTFACE, class KEY_INTFACE>
|
|
class CRYPTOPP_NO_VTABLE DL_SignatureSchemeBase : public INTFACE, public DL_Base<KEY_INTFACE>
|
|
{
|
|
public:
|
|
virtual ~DL_SignatureSchemeBase() {}
|
|
|
|
/// \brief Provides the signature length
|
|
/// \return signature length, in bytes
|
|
/// \details SignatureLength returns the size required for <tt>r+s</tt>.
|
|
size_t SignatureLength() const
|
|
{
|
|
return GetSignatureAlgorithm().RLen(this->GetAbstractGroupParameters())
|
|
+ GetSignatureAlgorithm().SLen(this->GetAbstractGroupParameters());
|
|
}
|
|
|
|
/// \brief Provides the maximum recoverable length
|
|
/// \return maximum recoverable length, in bytes
|
|
size_t MaxRecoverableLength() const
|
|
{return GetMessageEncodingInterface().MaxRecoverableLength(0, GetHashIdentifier().second, GetDigestSize());}
|
|
|
|
/// \brief Provides the maximum recoverable length
|
|
/// \param signatureLength the size of the signature
|
|
/// \return maximum recoverable length based on signature length, in bytes
|
|
/// \details this function is not implemented and always returns 0.
|
|
size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const
|
|
{CRYPTOPP_UNUSED(signatureLength); CRYPTOPP_ASSERT(false); return 0;} // TODO
|
|
|
|
/// \brief Determines if the scheme is probabilistic
|
|
/// \return true if the scheme is probabilistic, false otherwise
|
|
bool IsProbabilistic() const
|
|
{return true;}
|
|
|
|
/// \brief Determines if the scheme has non-recoverable part
|
|
/// \return true if the message encoding has a non-recoverable part, false otherwise.
|
|
bool AllowNonrecoverablePart() const
|
|
{return GetMessageEncodingInterface().AllowNonrecoverablePart();}
|
|
|
|
/// \brief Determines if the scheme allows recoverable part first
|
|
/// \return true if the message encoding allows the recoverable part, false otherwise.
|
|
bool RecoverablePartFirst() const
|
|
{return GetMessageEncodingInterface().RecoverablePartFirst();}
|
|
|
|
protected:
|
|
size_t MessageRepresentativeLength() const {return BitsToBytes(MessageRepresentativeBitLength());}
|
|
size_t MessageRepresentativeBitLength() const {return this->GetAbstractGroupParameters().GetSubgroupOrder().BitCount();}
|
|
|
|
// true if the scheme conforms to RFC 6979
|
|
virtual bool IsDeterministic() const {return false;}
|
|
|
|
virtual const DL_ElgamalLikeSignatureAlgorithm<typename KEY_INTFACE::Element> & GetSignatureAlgorithm() const =0;
|
|
virtual const PK_SignatureMessageEncodingMethod & GetMessageEncodingInterface() const =0;
|
|
virtual HashIdentifier GetHashIdentifier() const =0;
|
|
virtual size_t GetDigestSize() const =0;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) signature scheme signer base implementation
|
|
/// \tparam T Field element type or class
|
|
/// \details Field element <tt>T</tt> can be Integer, ECP or EC2N.
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_SignerBase : public DL_SignatureSchemeBase<PK_Signer, DL_PrivateKey<T> >
|
|
{
|
|
public:
|
|
virtual ~DL_SignerBase() {}
|
|
|
|
/// \brief Testing interface
|
|
/// \param k Integer
|
|
/// \param e Integer
|
|
/// \param r Integer
|
|
/// \param s Integer
|
|
void RawSign(const Integer &k, const Integer &e, Integer &r, Integer &s) const
|
|
{
|
|
const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
const DL_PrivateKey<T> &key = this->GetKeyInterface();
|
|
|
|
r = params.ConvertElementToInteger(params.ExponentiateBase(k));
|
|
alg.Sign(params, key.GetPrivateExponent(), k, e, r, s);
|
|
}
|
|
|
|
void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const
|
|
{
|
|
PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
|
|
ma.m_recoverableMessage.Assign(recoverableMessage, recoverableMessageLength);
|
|
this->GetMessageEncodingInterface().ProcessRecoverableMessage(ma.AccessHash(),
|
|
recoverableMessage, recoverableMessageLength,
|
|
ma.m_presignature, ma.m_presignature.size(),
|
|
ma.m_semisignature);
|
|
}
|
|
|
|
size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart) const
|
|
{
|
|
this->GetMaterial().DoQuickSanityCheck();
|
|
|
|
PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
|
|
const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
const DL_PrivateKey<T> &key = this->GetKeyInterface();
|
|
|
|
SecByteBlock representative(this->MessageRepresentativeLength());
|
|
this->GetMessageEncodingInterface().ComputeMessageRepresentative(
|
|
rng,
|
|
ma.m_recoverableMessage, ma.m_recoverableMessage.size(),
|
|
ma.AccessHash(), this->GetHashIdentifier(), ma.m_empty,
|
|
representative, this->MessageRepresentativeBitLength());
|
|
ma.m_empty = true;
|
|
Integer e(representative, representative.size());
|
|
|
|
// hash message digest into random number k to prevent reusing the same k on
|
|
// different messages after virtual machine rollback
|
|
if (rng.CanIncorporateEntropy())
|
|
rng.IncorporateEntropy(representative, representative.size());
|
|
|
|
Integer k, ks;
|
|
const Integer& q = params.GetSubgroupOrder();
|
|
if (alg.IsDeterministic())
|
|
{
|
|
const Integer& x = key.GetPrivateExponent();
|
|
const DeterministicSignatureAlgorithm& det = dynamic_cast<const DeterministicSignatureAlgorithm&>(alg);
|
|
k = det.GenerateRandom(x, q, e);
|
|
}
|
|
else
|
|
{
|
|
k.Randomize(rng, 1, params.GetSubgroupOrder()-1);
|
|
}
|
|
|
|
// Due to timing attack on nonce length by Jancar
|
|
// https://github.com/weidai11/cryptopp/issues/869
|
|
ks = k + q;
|
|
if (ks.BitCount() == q.BitCount()) {
|
|
ks += q;
|
|
}
|
|
|
|
Integer r, s;
|
|
r = params.ConvertElementToInteger(params.ExponentiateBase(ks));
|
|
alg.Sign(params, key.GetPrivateExponent(), k, e, r, s);
|
|
|
|
/*
|
|
Integer r, s;
|
|
if (this->MaxRecoverableLength() > 0)
|
|
r.Decode(ma.m_semisignature, ma.m_semisignature.size());
|
|
else
|
|
r.Decode(ma.m_presignature, ma.m_presignature.size());
|
|
alg.Sign(params, key.GetPrivateExponent(), ma.m_k, e, r, s);
|
|
*/
|
|
|
|
const size_t rLen = alg.RLen(params);
|
|
r.Encode(signature, rLen);
|
|
s.Encode(signature+rLen, alg.SLen(params));
|
|
|
|
if (restart)
|
|
RestartMessageAccumulator(rng, ma);
|
|
|
|
return this->SignatureLength();
|
|
}
|
|
|
|
protected:
|
|
void RestartMessageAccumulator(RandomNumberGenerator &rng, PK_MessageAccumulatorBase &ma) const
|
|
{
|
|
// k needs to be generated before hashing for signature schemes with recovery
|
|
// but to defend against VM rollbacks we need to generate k after hashing.
|
|
// so this code is commented out, since no DL-based signature scheme with recovery
|
|
// has been implemented in Crypto++ anyway
|
|
/*
|
|
const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
ma.m_k.Randomize(rng, 1, params.GetSubgroupOrder()-1);
|
|
ma.m_presignature.New(params.GetEncodedElementSize(false));
|
|
params.ConvertElementToInteger(params.ExponentiateBase(ma.m_k)).Encode(ma.m_presignature, ma.m_presignature.size());
|
|
*/
|
|
CRYPTOPP_UNUSED(rng); CRYPTOPP_UNUSED(ma);
|
|
}
|
|
};
|
|
|
|
/// \brief Discret Log (DL) Verifier base class
|
|
/// \tparam T Field element type or class
|
|
/// \details Field element <tt>T</tt> can be Integer, ECP or EC2N.
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_VerifierBase : public DL_SignatureSchemeBase<PK_Verifier, DL_PublicKey<T> >
|
|
{
|
|
public:
|
|
virtual ~DL_VerifierBase() {}
|
|
|
|
void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const
|
|
{
|
|
PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
|
|
const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
|
|
// Validation due to https://github.com/weidai11/cryptopp/issues/981
|
|
// We allow a caller to provide R and S in oversized buffer. R and S
|
|
// are read based on the field element size, and not the buffer size.
|
|
const size_t rLen = alg.RLen(params);
|
|
const size_t sLen = alg.SLen(params);
|
|
CRYPTOPP_ASSERT(signatureLength >= rLen + sLen);
|
|
if (signatureLength < rLen + sLen)
|
|
throw InvalidDataFormat("DL_VerifierBase: signature length is not valid.");
|
|
|
|
ma.m_semisignature.Assign(signature, rLen);
|
|
ma.m_s.Decode(signature+rLen, sLen);
|
|
|
|
this->GetMessageEncodingInterface().ProcessSemisignature(ma.AccessHash(), ma.m_semisignature, ma.m_semisignature.size());
|
|
}
|
|
|
|
bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const
|
|
{
|
|
this->GetMaterial().DoQuickSanityCheck();
|
|
|
|
PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
|
|
const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
const DL_PublicKey<T> &key = this->GetKeyInterface();
|
|
|
|
SecByteBlock representative(this->MessageRepresentativeLength());
|
|
this->GetMessageEncodingInterface().ComputeMessageRepresentative(NullRNG(), ma.m_recoverableMessage, ma.m_recoverableMessage.size(),
|
|
ma.AccessHash(), this->GetHashIdentifier(), ma.m_empty,
|
|
representative, this->MessageRepresentativeBitLength());
|
|
ma.m_empty = true;
|
|
Integer e(representative, representative.size());
|
|
|
|
Integer r(ma.m_semisignature, ma.m_semisignature.size());
|
|
return alg.Verify(params, key, e, r, ma.m_s);
|
|
}
|
|
|
|
DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &messageAccumulator) const
|
|
{
|
|
this->GetMaterial().DoQuickSanityCheck();
|
|
|
|
PK_MessageAccumulatorBase &ma = static_cast<PK_MessageAccumulatorBase &>(messageAccumulator);
|
|
const DL_ElgamalLikeSignatureAlgorithm<T> &alg = this->GetSignatureAlgorithm();
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
const DL_PublicKey<T> &key = this->GetKeyInterface();
|
|
|
|
SecByteBlock representative(this->MessageRepresentativeLength());
|
|
this->GetMessageEncodingInterface().ComputeMessageRepresentative(
|
|
NullRNG(),
|
|
ma.m_recoverableMessage, ma.m_recoverableMessage.size(),
|
|
ma.AccessHash(), this->GetHashIdentifier(), ma.m_empty,
|
|
representative, this->MessageRepresentativeBitLength());
|
|
ma.m_empty = true;
|
|
Integer e(representative, representative.size());
|
|
|
|
ma.m_presignature.New(params.GetEncodedElementSize(false));
|
|
Integer r(ma.m_semisignature, ma.m_semisignature.size());
|
|
alg.RecoverPresignature(params, key, r, ma.m_s).Encode(ma.m_presignature, ma.m_presignature.size());
|
|
|
|
return this->GetMessageEncodingInterface().RecoverMessageFromSemisignature(
|
|
ma.AccessHash(), this->GetHashIdentifier(),
|
|
ma.m_presignature, ma.m_presignature.size(),
|
|
ma.m_semisignature, ma.m_semisignature.size(),
|
|
recoveredMessage);
|
|
}
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) cryptosystem base implementation
|
|
/// \tparam PK field element type
|
|
/// \tparam KI public or private key interface
|
|
template <class PK, class KI>
|
|
class CRYPTOPP_NO_VTABLE DL_CryptoSystemBase : public PK, public DL_Base<KI>
|
|
{
|
|
public:
|
|
typedef typename DL_Base<KI>::Element Element;
|
|
|
|
virtual ~DL_CryptoSystemBase() {}
|
|
|
|
size_t MaxPlaintextLength(size_t ciphertextLength) const
|
|
{
|
|
unsigned int minLen = this->GetAbstractGroupParameters().GetEncodedElementSize(true);
|
|
return ciphertextLength < minLen ? 0 : GetSymmetricEncryptionAlgorithm().GetMaxSymmetricPlaintextLength(ciphertextLength - minLen);
|
|
}
|
|
|
|
size_t CiphertextLength(size_t plaintextLength) const
|
|
{
|
|
size_t len = GetSymmetricEncryptionAlgorithm().GetSymmetricCiphertextLength(plaintextLength);
|
|
return len == 0 ? 0 : this->GetAbstractGroupParameters().GetEncodedElementSize(true) + len;
|
|
}
|
|
|
|
bool ParameterSupported(const char *name) const
|
|
{return GetKeyDerivationAlgorithm().ParameterSupported(name) || GetSymmetricEncryptionAlgorithm().ParameterSupported(name);}
|
|
|
|
protected:
|
|
virtual const DL_KeyAgreementAlgorithm<Element> & GetKeyAgreementAlgorithm() const =0;
|
|
virtual const DL_KeyDerivationAlgorithm<Element> & GetKeyDerivationAlgorithm() const =0;
|
|
virtual const DL_SymmetricEncryptionAlgorithm & GetSymmetricEncryptionAlgorithm() const =0;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) decryptor base implementation
|
|
/// \tparam T Field element type or class
|
|
/// \details Field element <tt>T</tt> can be Integer, ECP or EC2N.
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_DecryptorBase : public DL_CryptoSystemBase<PK_Decryptor, DL_PrivateKey<T> >
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual ~DL_DecryptorBase() {}
|
|
|
|
DecodingResult Decrypt(RandomNumberGenerator &rng, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs ¶meters = g_nullNameValuePairs) const
|
|
{
|
|
try
|
|
{
|
|
CRYPTOPP_UNUSED(rng);
|
|
const DL_KeyAgreementAlgorithm<T> &agreeAlg = this->GetKeyAgreementAlgorithm();
|
|
const DL_KeyDerivationAlgorithm<T> &derivAlg = this->GetKeyDerivationAlgorithm();
|
|
const DL_SymmetricEncryptionAlgorithm &encAlg = this->GetSymmetricEncryptionAlgorithm();
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
const DL_PrivateKey<T> &key = this->GetKeyInterface();
|
|
|
|
Element q = params.DecodeElement(ciphertext, true);
|
|
size_t elementSize = params.GetEncodedElementSize(true);
|
|
ciphertext += elementSize;
|
|
ciphertextLength -= elementSize;
|
|
|
|
Element z = agreeAlg.AgreeWithStaticPrivateKey(params, q, true, key.GetPrivateExponent());
|
|
|
|
SecByteBlock derivedKey(encAlg.GetSymmetricKeyLength(encAlg.GetMaxSymmetricPlaintextLength(ciphertextLength)));
|
|
derivAlg.Derive(params, derivedKey, derivedKey.size(), z, q, parameters);
|
|
|
|
return encAlg.SymmetricDecrypt(derivedKey, ciphertext, ciphertextLength, plaintext, parameters);
|
|
}
|
|
catch (DL_BadElement &)
|
|
{
|
|
return DecodingResult();
|
|
}
|
|
}
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) encryptor base implementation
|
|
/// \tparam T Field element type or class
|
|
/// \details Field element <tt>T</tt> can be Integer, ECP or EC2N.
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_EncryptorBase : public DL_CryptoSystemBase<PK_Encryptor, DL_PublicKey<T> >
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual ~DL_EncryptorBase() {}
|
|
|
|
void Encrypt(RandomNumberGenerator &rng, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs ¶meters = g_nullNameValuePairs) const
|
|
{
|
|
const DL_KeyAgreementAlgorithm<T> &agreeAlg = this->GetKeyAgreementAlgorithm();
|
|
const DL_KeyDerivationAlgorithm<T> &derivAlg = this->GetKeyDerivationAlgorithm();
|
|
const DL_SymmetricEncryptionAlgorithm &encAlg = this->GetSymmetricEncryptionAlgorithm();
|
|
const DL_GroupParameters<T> ¶ms = this->GetAbstractGroupParameters();
|
|
const DL_PublicKey<T> &key = this->GetKeyInterface();
|
|
|
|
Integer x(rng, Integer::One(), params.GetMaxExponent());
|
|
Element q = params.ExponentiateBase(x);
|
|
params.EncodeElement(true, q, ciphertext);
|
|
unsigned int elementSize = params.GetEncodedElementSize(true);
|
|
ciphertext += elementSize;
|
|
|
|
Element z = agreeAlg.AgreeWithEphemeralPrivateKey(params, key.GetPublicPrecomputation(), x);
|
|
|
|
SecByteBlock derivedKey(encAlg.GetSymmetricKeyLength(plaintextLength));
|
|
derivAlg.Derive(params, derivedKey, derivedKey.size(), z, q, parameters);
|
|
|
|
encAlg.SymmetricEncrypt(rng, derivedKey, plaintext, plaintextLength, ciphertext, parameters);
|
|
}
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) scheme options
|
|
/// \tparam T1 algorithm information
|
|
/// \tparam T2 group parameters for the scheme
|
|
template <class T1, class T2>
|
|
struct DL_SchemeOptionsBase
|
|
{
|
|
typedef T1 AlgorithmInfo;
|
|
typedef T2 GroupParameters;
|
|
typedef typename GroupParameters::Element Element;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) key options
|
|
/// \tparam T1 algorithm information
|
|
/// \tparam T2 keys used in the scheme
|
|
template <class T1, class T2>
|
|
struct DL_KeyedSchemeOptions : public DL_SchemeOptionsBase<T1, typename T2::PublicKey::GroupParameters>
|
|
{
|
|
typedef T2 Keys;
|
|
typedef typename Keys::PrivateKey PrivateKey;
|
|
typedef typename Keys::PublicKey PublicKey;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) signature scheme options
|
|
/// \tparam T1 algorithm information
|
|
/// \tparam T2 keys used in the scheme
|
|
/// \tparam T3 signature algorithm
|
|
/// \tparam T4 message encoding method
|
|
/// \tparam T5 hash function
|
|
template <class T1, class T2, class T3, class T4, class T5>
|
|
struct DL_SignatureSchemeOptions : public DL_KeyedSchemeOptions<T1, T2>
|
|
{
|
|
typedef T3 SignatureAlgorithm;
|
|
typedef T4 MessageEncodingMethod;
|
|
typedef T5 HashFunction;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) crypto scheme options
|
|
/// \tparam T1 algorithm information
|
|
/// \tparam T2 keys used in the scheme
|
|
/// \tparam T3 key agreement algorithm
|
|
/// \tparam T4 key derivation algorithm
|
|
/// \tparam T5 symmetric encryption algorithm
|
|
template <class T1, class T2, class T3, class T4, class T5>
|
|
struct DL_CryptoSchemeOptions : public DL_KeyedSchemeOptions<T1, T2>
|
|
{
|
|
typedef T3 KeyAgreementAlgorithm;
|
|
typedef T4 KeyDerivationAlgorithm;
|
|
typedef T5 SymmetricEncryptionAlgorithm;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) base object implementation
|
|
/// \tparam BASE TODO
|
|
/// \tparam SCHEME_OPTIONS options for the scheme
|
|
/// \tparam KEY key used in the scheme
|
|
template <class BASE, class SCHEME_OPTIONS, class KEY>
|
|
class CRYPTOPP_NO_VTABLE DL_ObjectImplBase : public AlgorithmImpl<BASE, typename SCHEME_OPTIONS::AlgorithmInfo>
|
|
{
|
|
public:
|
|
typedef SCHEME_OPTIONS SchemeOptions;
|
|
typedef typename KEY::Element Element;
|
|
|
|
virtual ~DL_ObjectImplBase() {}
|
|
|
|
PrivateKey & AccessPrivateKey() {return m_key;}
|
|
PublicKey & AccessPublicKey() {return m_key;}
|
|
|
|
// KeyAccessor
|
|
const KEY & GetKey() const {return m_key;}
|
|
KEY & AccessKey() {return m_key;}
|
|
|
|
protected:
|
|
typename BASE::KeyInterface & AccessKeyInterface() {return m_key;}
|
|
const typename BASE::KeyInterface & GetKeyInterface() const {return m_key;}
|
|
|
|
// for signature scheme
|
|
HashIdentifier GetHashIdentifier() const
|
|
{
|
|
typedef typename SchemeOptions::MessageEncodingMethod::HashIdentifierLookup HashLookup;
|
|
return HashLookup::template HashIdentifierLookup2<typename SchemeOptions::HashFunction>::Lookup();
|
|
}
|
|
size_t GetDigestSize() const
|
|
{
|
|
typedef typename SchemeOptions::HashFunction H;
|
|
return H::DIGESTSIZE;
|
|
}
|
|
|
|
private:
|
|
KEY m_key;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) object implementation
|
|
/// \tparam BASE TODO
|
|
/// \tparam SCHEME_OPTIONS options for the scheme
|
|
/// \tparam KEY key used in the scheme
|
|
template <class BASE, class SCHEME_OPTIONS, class KEY>
|
|
class CRYPTOPP_NO_VTABLE DL_ObjectImpl : public DL_ObjectImplBase<BASE, SCHEME_OPTIONS, KEY>
|
|
{
|
|
public:
|
|
typedef typename KEY::Element Element;
|
|
|
|
virtual ~DL_ObjectImpl() {}
|
|
|
|
protected:
|
|
const DL_ElgamalLikeSignatureAlgorithm<Element> & GetSignatureAlgorithm() const
|
|
{return Singleton<typename SCHEME_OPTIONS::SignatureAlgorithm>().Ref();}
|
|
const DL_KeyAgreementAlgorithm<Element> & GetKeyAgreementAlgorithm() const
|
|
{return Singleton<typename SCHEME_OPTIONS::KeyAgreementAlgorithm>().Ref();}
|
|
const DL_KeyDerivationAlgorithm<Element> & GetKeyDerivationAlgorithm() const
|
|
{return Singleton<typename SCHEME_OPTIONS::KeyDerivationAlgorithm>().Ref();}
|
|
const DL_SymmetricEncryptionAlgorithm & GetSymmetricEncryptionAlgorithm() const
|
|
{return Singleton<typename SCHEME_OPTIONS::SymmetricEncryptionAlgorithm>().Ref();}
|
|
HashIdentifier GetHashIdentifier() const
|
|
{return HashIdentifier();}
|
|
const PK_SignatureMessageEncodingMethod & GetMessageEncodingInterface() const
|
|
{return Singleton<typename SCHEME_OPTIONS::MessageEncodingMethod>().Ref();}
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) signer implementation
|
|
/// \tparam SCHEME_OPTIONS options for the scheme
|
|
template <class SCHEME_OPTIONS>
|
|
class DL_SignerImpl : public DL_ObjectImpl<DL_SignerBase<typename SCHEME_OPTIONS::Element>, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PrivateKey>
|
|
{
|
|
public:
|
|
PK_MessageAccumulator * NewSignatureAccumulator(RandomNumberGenerator &rng) const
|
|
{
|
|
member_ptr<PK_MessageAccumulatorBase> p(new PK_MessageAccumulatorImpl<typename SCHEME_OPTIONS::HashFunction>);
|
|
this->RestartMessageAccumulator(rng, *p);
|
|
return p.release();
|
|
}
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) verifier implementation
|
|
/// \tparam SCHEME_OPTIONS options for the scheme
|
|
template <class SCHEME_OPTIONS>
|
|
class DL_VerifierImpl : public DL_ObjectImpl<DL_VerifierBase<typename SCHEME_OPTIONS::Element>, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PublicKey>
|
|
{
|
|
public:
|
|
PK_MessageAccumulator * NewVerificationAccumulator() const
|
|
{
|
|
return new PK_MessageAccumulatorImpl<typename SCHEME_OPTIONS::HashFunction>;
|
|
}
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) encryptor implementation
|
|
/// \tparam SCHEME_OPTIONS options for the scheme
|
|
template <class SCHEME_OPTIONS>
|
|
class DL_EncryptorImpl : public DL_ObjectImpl<DL_EncryptorBase<typename SCHEME_OPTIONS::Element>, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PublicKey>
|
|
{
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) decryptor implementation
|
|
/// \tparam SCHEME_OPTIONS options for the scheme
|
|
template <class SCHEME_OPTIONS>
|
|
class DL_DecryptorImpl : public DL_ObjectImpl<DL_DecryptorBase<typename SCHEME_OPTIONS::Element>, SCHEME_OPTIONS, typename SCHEME_OPTIONS::PrivateKey>
|
|
{
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Discrete Log (DL) simple key agreement base implementation
|
|
/// \tparam T class or type
|
|
template <class T>
|
|
class CRYPTOPP_NO_VTABLE DL_SimpleKeyAgreementDomainBase : public SimpleKeyAgreementDomain
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual ~DL_SimpleKeyAgreementDomainBase() {}
|
|
|
|
CryptoParameters & AccessCryptoParameters() {return AccessAbstractGroupParameters();}
|
|
unsigned int AgreedValueLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(false);}
|
|
unsigned int PrivateKeyLength() const {return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}
|
|
unsigned int PublicKeyLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(true);}
|
|
|
|
void GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
|
|
{
|
|
Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
|
|
x.Encode(privateKey, PrivateKeyLength());
|
|
}
|
|
|
|
void GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
|
|
{
|
|
CRYPTOPP_UNUSED(rng);
|
|
const DL_GroupParameters<T> ¶ms = GetAbstractGroupParameters();
|
|
Integer x(privateKey, PrivateKeyLength());
|
|
Element y = params.ExponentiateBase(x);
|
|
params.EncodeElement(true, y, publicKey);
|
|
}
|
|
|
|
bool Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey=true) const
|
|
{
|
|
try
|
|
{
|
|
const DL_GroupParameters<T> ¶ms = GetAbstractGroupParameters();
|
|
Integer x(privateKey, PrivateKeyLength());
|
|
Element w = params.DecodeElement(otherPublicKey, validateOtherPublicKey);
|
|
|
|
Element z = GetKeyAgreementAlgorithm().AgreeWithStaticPrivateKey(
|
|
GetAbstractGroupParameters(), w, validateOtherPublicKey, x);
|
|
params.EncodeElement(false, z, agreedValue);
|
|
}
|
|
catch (DL_BadElement &)
|
|
{
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief Retrieves a reference to the group generator
|
|
/// \return const reference to the group generator
|
|
const Element &GetGenerator() const {return GetAbstractGroupParameters().GetSubgroupGenerator();}
|
|
|
|
protected:
|
|
virtual const DL_KeyAgreementAlgorithm<Element> & GetKeyAgreementAlgorithm() const =0;
|
|
virtual DL_GroupParameters<Element> & AccessAbstractGroupParameters() =0;
|
|
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return const_cast<DL_SimpleKeyAgreementDomainBase<Element> *>(this)->AccessAbstractGroupParameters();}
|
|
};
|
|
|
|
/// \brief Methods for avoiding "Small-Subgroup" attacks on Diffie-Hellman Key Agreement
|
|
/// \details Additional methods exist and include public key validation and choice of prime p.
|
|
/// \sa <A HREF="http://tools.ietf.org/html/rfc2785">Methods for Avoiding the "Small-Subgroup" Attacks on the
|
|
/// Diffie-Hellman Key Agreement Method for S/MIME</A>
|
|
enum CofactorMultiplicationOption {
|
|
/// \brief No cofactor multiplication applied
|
|
NO_COFACTOR_MULTIPLICTION,
|
|
/// \brief Cofactor multiplication compatible with ordinary Diffie-Hellman
|
|
/// \details Modifies the computation of ZZ by including j (the cofactor) in the computations and is
|
|
/// compatible with ordinary Diffie-Hellman.
|
|
COMPATIBLE_COFACTOR_MULTIPLICTION,
|
|
/// \brief Cofactor multiplication incompatible with ordinary Diffie-Hellman
|
|
/// \details Modifies the computation of ZZ by including j (the cofactor) in the computations but is
|
|
/// not compatible with ordinary Diffie-Hellman.
|
|
INCOMPATIBLE_COFACTOR_MULTIPLICTION};
|
|
|
|
typedef EnumToType<CofactorMultiplicationOption, NO_COFACTOR_MULTIPLICTION> NoCofactorMultiplication;
|
|
typedef EnumToType<CofactorMultiplicationOption, COMPATIBLE_COFACTOR_MULTIPLICTION> CompatibleCofactorMultiplication;
|
|
typedef EnumToType<CofactorMultiplicationOption, INCOMPATIBLE_COFACTOR_MULTIPLICTION> IncompatibleCofactorMultiplication;
|
|
|
|
/// \brief Diffie-Hellman key agreement algorithm
|
|
template <class ELEMENT, class COFACTOR_OPTION>
|
|
class DL_KeyAgreementAlgorithm_DH : public DL_KeyAgreementAlgorithm<ELEMENT>
|
|
{
|
|
public:
|
|
typedef ELEMENT Element;
|
|
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName()
|
|
{return COFACTOR_OPTION::ToEnum() == INCOMPATIBLE_COFACTOR_MULTIPLICTION ? "DHC" : "DH";}
|
|
|
|
virtual ~DL_KeyAgreementAlgorithm_DH() {}
|
|
|
|
Element AgreeWithEphemeralPrivateKey(const DL_GroupParameters<Element> ¶ms, const DL_FixedBasePrecomputation<Element> &publicPrecomputation, const Integer &privateExponent) const
|
|
{
|
|
return publicPrecomputation.Exponentiate(params.GetGroupPrecomputation(),
|
|
COFACTOR_OPTION::ToEnum() == INCOMPATIBLE_COFACTOR_MULTIPLICTION ? privateExponent*params.GetCofactor() : privateExponent);
|
|
}
|
|
|
|
Element AgreeWithStaticPrivateKey(const DL_GroupParameters<Element> ¶ms, const Element &publicElement, bool validateOtherPublicKey, const Integer &privateExponent) const
|
|
{
|
|
if (COFACTOR_OPTION::ToEnum() == COMPATIBLE_COFACTOR_MULTIPLICTION)
|
|
{
|
|
const Integer &k = params.GetCofactor();
|
|
return params.ExponentiateElement(publicElement,
|
|
ModularArithmetic(params.GetSubgroupOrder()).Divide(privateExponent, k)*k);
|
|
}
|
|
else if (COFACTOR_OPTION::ToEnum() == INCOMPATIBLE_COFACTOR_MULTIPLICTION)
|
|
return params.ExponentiateElement(publicElement, privateExponent*params.GetCofactor());
|
|
else
|
|
{
|
|
CRYPTOPP_ASSERT(COFACTOR_OPTION::ToEnum() == NO_COFACTOR_MULTIPLICTION);
|
|
|
|
if (!validateOtherPublicKey)
|
|
return params.ExponentiateElement(publicElement, privateExponent);
|
|
|
|
if (params.FastSubgroupCheckAvailable())
|
|
{
|
|
if (!params.ValidateElement(2, publicElement, NULLPTR))
|
|
throw DL_BadElement();
|
|
return params.ExponentiateElement(publicElement, privateExponent);
|
|
}
|
|
else
|
|
{
|
|
const Integer e[2] = {params.GetSubgroupOrder(), privateExponent};
|
|
Element r[2];
|
|
params.SimultaneousExponentiate(r, publicElement, e, 2);
|
|
if (!params.IsIdentity(r[0]))
|
|
throw DL_BadElement();
|
|
return r[1];
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Template implementing constructors for public key algorithm classes
|
|
template <class BASE>
|
|
class CRYPTOPP_NO_VTABLE PK_FinalTemplate : public BASE
|
|
{
|
|
public:
|
|
PK_FinalTemplate() {}
|
|
|
|
PK_FinalTemplate(const CryptoMaterial &key)
|
|
{this->AccessKey().AssignFrom(key);}
|
|
|
|
PK_FinalTemplate(BufferedTransformation &bt)
|
|
{this->AccessKey().BERDecode(bt);}
|
|
|
|
PK_FinalTemplate(const AsymmetricAlgorithm &algorithm)
|
|
{this->AccessKey().AssignFrom(algorithm.GetMaterial());}
|
|
|
|
PK_FinalTemplate(const Integer &v1)
|
|
{this->AccessKey().Initialize(v1);}
|
|
|
|
template <class T1, class T2>
|
|
PK_FinalTemplate(const T1 &v1, const T2 &v2)
|
|
{this->AccessKey().Initialize(v1, v2);}
|
|
|
|
template <class T1, class T2, class T3>
|
|
PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3)
|
|
{this->AccessKey().Initialize(v1, v2, v3);}
|
|
|
|
template <class T1, class T2, class T3, class T4>
|
|
PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4);}
|
|
|
|
template <class T1, class T2, class T3, class T4, class T5>
|
|
PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4, v5);}
|
|
|
|
template <class T1, class T2, class T3, class T4, class T5, class T6>
|
|
PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6);}
|
|
|
|
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7>
|
|
PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6, v7);}
|
|
|
|
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8>
|
|
PK_FinalTemplate(const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6, v7, v8);}
|
|
|
|
template <class T1, class T2>
|
|
PK_FinalTemplate(T1 &v1, const T2 &v2)
|
|
{this->AccessKey().Initialize(v1, v2);}
|
|
|
|
template <class T1, class T2, class T3>
|
|
PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3)
|
|
{this->AccessKey().Initialize(v1, v2, v3);}
|
|
|
|
template <class T1, class T2, class T3, class T4>
|
|
PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4);}
|
|
|
|
template <class T1, class T2, class T3, class T4, class T5>
|
|
PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4, v5);}
|
|
|
|
template <class T1, class T2, class T3, class T4, class T5, class T6>
|
|
PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6);}
|
|
|
|
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7>
|
|
PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6, v7);}
|
|
|
|
template <class T1, class T2, class T3, class T4, class T5, class T6, class T7, class T8>
|
|
PK_FinalTemplate(T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8)
|
|
{this->AccessKey().Initialize(v1, v2, v3, v4, v5, v6, v7, v8);}
|
|
};
|
|
|
|
/// \brief Base class for public key encryption standard classes.
|
|
/// \details These classes are used to select from variants of algorithms.
|
|
/// Not all standards apply to all algorithms.
|
|
struct EncryptionStandard {};
|
|
|
|
/// \brief Base class for public key signature standard classes.
|
|
/// \details These classes are used to select from variants of algorithms.
|
|
/// Not all standards apply to all algorithms.
|
|
struct SignatureStandard {};
|
|
|
|
/// \brief Trapdoor Function (TF) encryption scheme
|
|
/// \tparam STANDARD standard
|
|
/// \tparam KEYS keys used in the encryption scheme
|
|
/// \tparam ALG_INFO algorithm information
|
|
template <class KEYS, class STANDARD, class ALG_INFO>
|
|
class TF_ES;
|
|
|
|
template <class KEYS, class STANDARD, class ALG_INFO = TF_ES<KEYS, STANDARD, int> >
|
|
class TF_ES : public KEYS
|
|
{
|
|
typedef typename STANDARD::EncryptionMessageEncodingMethod MessageEncodingMethod;
|
|
|
|
public:
|
|
/// see EncryptionStandard for a list of standards
|
|
typedef STANDARD Standard;
|
|
typedef TF_CryptoSchemeOptions<ALG_INFO, KEYS, MessageEncodingMethod> SchemeOptions;
|
|
|
|
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string(KEYS::StaticAlgorithmName()) + "/" + MessageEncodingMethod::StaticAlgorithmName();}
|
|
|
|
/// implements PK_Decryptor interface
|
|
typedef PK_FinalTemplate<TF_DecryptorImpl<SchemeOptions> > Decryptor;
|
|
/// implements PK_Encryptor interface
|
|
typedef PK_FinalTemplate<TF_EncryptorImpl<SchemeOptions> > Encryptor;
|
|
};
|
|
|
|
/// \brief Trapdoor Function (TF) Signature Scheme
|
|
/// \tparam STANDARD standard
|
|
/// \tparam H hash function
|
|
/// \tparam KEYS keys used in the signature scheme
|
|
/// \tparam ALG_INFO algorithm information
|
|
template <class KEYS, class STANDARD, class H, class ALG_INFO>
|
|
class TF_SS;
|
|
|
|
template <class KEYS, class STANDARD, class H, class ALG_INFO = TF_SS<KEYS, STANDARD, H, int> >
|
|
class TF_SS : public KEYS
|
|
{
|
|
public:
|
|
/// see SignatureStandard for a list of standards
|
|
typedef STANDARD Standard;
|
|
typedef typename Standard::SignatureMessageEncodingMethod MessageEncodingMethod;
|
|
typedef TF_SignatureSchemeOptions<ALG_INFO, KEYS, MessageEncodingMethod, H> SchemeOptions;
|
|
|
|
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string(KEYS::StaticAlgorithmName()) + "/" + MessageEncodingMethod::StaticAlgorithmName() + "(" + H::StaticAlgorithmName() + ")";}
|
|
|
|
/// implements PK_Signer interface
|
|
typedef PK_FinalTemplate<TF_SignerImpl<SchemeOptions> > Signer;
|
|
/// implements PK_Verifier interface
|
|
typedef PK_FinalTemplate<TF_VerifierImpl<SchemeOptions> > Verifier;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) signature scheme
|
|
/// \tparam KEYS keys used in the signature scheme
|
|
/// \tparam SA signature algorithm
|
|
/// \tparam MEM message encoding method
|
|
/// \tparam H hash function
|
|
/// \tparam ALG_INFO algorithm information
|
|
template <class KEYS, class SA, class MEM, class H, class ALG_INFO>
|
|
class DL_SS;
|
|
|
|
template <class KEYS, class SA, class MEM, class H, class ALG_INFO = DL_SS<KEYS, SA, MEM, H, int> >
|
|
class DL_SS : public KEYS
|
|
{
|
|
typedef DL_SignatureSchemeOptions<ALG_INFO, KEYS, SA, MEM, H> SchemeOptions;
|
|
|
|
public:
|
|
static std::string StaticAlgorithmName() {return SA::StaticAlgorithmName() + std::string("/EMSA1(") + H::StaticAlgorithmName() + ")";}
|
|
|
|
/// implements PK_Signer interface
|
|
typedef PK_FinalTemplate<DL_SignerImpl<SchemeOptions> > Signer;
|
|
/// implements PK_Verifier interface
|
|
typedef PK_FinalTemplate<DL_VerifierImpl<SchemeOptions> > Verifier;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) encryption scheme
|
|
/// \tparam KEYS keys used in the encryption scheme
|
|
/// \tparam AA key agreement algorithm
|
|
/// \tparam DA key derivation algorithm
|
|
/// \tparam EA encryption algorithm
|
|
/// \tparam ALG_INFO algorithm information
|
|
template <class KEYS, class AA, class DA, class EA, class ALG_INFO>
|
|
class DL_ES : public KEYS
|
|
{
|
|
typedef DL_CryptoSchemeOptions<ALG_INFO, KEYS, AA, DA, EA> SchemeOptions;
|
|
|
|
public:
|
|
/// implements PK_Decryptor interface
|
|
typedef PK_FinalTemplate<DL_DecryptorImpl<SchemeOptions> > Decryptor;
|
|
/// implements PK_Encryptor interface
|
|
typedef PK_FinalTemplate<DL_EncryptorImpl<SchemeOptions> > Encryptor;
|
|
};
|
|
|
|
NAMESPACE_END
|
|
|
|
#if CRYPTOPP_MSC_VERSION
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif
|