Panda3DS/include/PICA/shader.hpp
2022-09-27 02:27:41 +03:00

228 lines
No EOL
7 KiB
C++

#pragma once
#include <algorithm>
#include <array>
#include <cstring>
#include "helpers.hpp"
#include "opengl.hpp"
#include "PICA/float_types.hpp"
enum class ShaderType {
Vertex, Geometry
};
namespace ShaderOpcodes {
enum : u32 {
ADD = 0x00,
DP3 = 0x01,
DP4 = 0x02,
MUL = 0x08,
MIN = 0x0D,
RSQ = 0x0F,
MOVA = 0x12,
MOV = 0x13,
NOP = 0x21,
END = 0x22,
CALLU = 0x26,
IFU = 0x27,
IFC = 0x28,
LOOP = 0x29,
CMP1 = 0x2E, // Both of these instructions are CMP
CMP2 = 0x2F,
MAD = 0x38 // Everything between 0x38-0x3F is a MAD but fuck it
};
}
class PICAShader {
using f24 = Floats::f24;
using vec4f = OpenGL::Vector<f24, 4>;
struct Loop {
u32 startingPC; // PC at the start of the loop
u32 endingPC; // PC at the end of the loop
u32 iterations; // How many iterations of the loop to run
u32 increment; // How much to increment the loop counter after each iteration
};
// Info for ifc/ifu stack
struct ConditionalInfo {
u32 endingPC; // PC at the end of the if block (= DST)
u32 newPC; // PC after the if block is done executing (= DST + NUM)
};
struct CallInfo {
u32 endingPC; // PC at the end of the function
u32 returnPC; // PC to return to after the function ends
};
int bufferIndex; // Index of the next instruction to overwrite for shader uploads
int opDescriptorIndex; // Index of the next operand descriptor we'll overwrite
u32 floatUniformIndex = 0; // Which float uniform are we writing to? ([0, 95] range)
u32 floatUniformWordCount = 0; // How many words have we buffered for the current uniform transfer?
bool f32UniformTransfer = false; // Are we transferring an f32 uniform or an f24 uniform?
std::array<u32, 4> floatUniformBuffer; // Buffer for temporarily caching float uniform data
std::array<u32, 128> operandDescriptors;
std::array<vec4f, 16> tempRegisters; // General purpose registers the shader can use for temp values
OpenGL::Vector<s32, 2> addrRegister; // Address register
bool cmpRegister[2]; // Comparison registers where the result of CMP is stored in
u32 loopCounter;
u32 pc = 0; // Program counter: Index of the next instruction we're going to execute
u32 loopIndex = 0; // The index of our loop stack (0 = empty, 4 = full)
u32 ifIndex = 0; // The index of our IF stack
u32 callIndex = 0; // The index of our CALL stack
std::array<Loop, 4> loopInfo;
std::array<ConditionalInfo, 8> conditionalInfo;
std::array<CallInfo, 8> callInfo;
ShaderType type;
vec4f getSource(u32 source);
vec4f& getDest(u32 dest);
// Shader opcodes
void add(u32 instruction);
void callu(u32 instruction);
void cmp(u32 instruction);
void dp3(u32 instruction);
void dp4(u32 instruction);
void ifc(u32 instruction);
void ifu(u32 instruction);
void loop(u32 instruction);
void mad(u32 instruction);
void min(u32 instruction);
void mov(u32 instruction);
void mova(u32 instruction);
void mul(u32 instruction);
void rsq(u32 instruction);
// src1, src2 and src3 have different negation & component swizzle bits in the operand descriptor
// https://problemkaputt.github.io/gbatek.htm#3dsgpushaderinstructionsetopcodesummary in the
// "Shader Operand Descriptors" section
template <int sourceIndex>
vec4f swizzle(vec4f& source, u32 opDescriptor) {
vec4f ret;
u32 compSwizzle;
bool negate;
if constexpr (sourceIndex == 1) { // SRC1
negate = ((opDescriptor >> 4) & 1) != 0;
compSwizzle = (opDescriptor >> 5) & 0xff;
} else if constexpr (sourceIndex == 2) { // SRC2
negate = ((opDescriptor >> 13) & 1) != 0;
compSwizzle = (opDescriptor >> 14) & 0xff;
} else if constexpr (sourceIndex == 3) { // SRC3
negate = ((opDescriptor >> 22) & 1) != 0;
compSwizzle = (opDescriptor >> 23) & 0xff;
}
// Iterate through every component of the swizzled vector in reverse order
// And get which source component's index to match it with
for (int comp = 0; comp < 4; comp++) {
int index = compSwizzle & 3; // Get index for this component
compSwizzle >>= 2; // Move to next component index
ret[3 - comp] = source[index];
}
// Negate result if the negate bit is set
if (negate) {
ret[0] = -ret[0];
ret[1] = -ret[1];
ret[2] = -ret[2];
ret[3] = -ret[3];
}
return ret;
}
template <int sourceIndex>
vec4f getSourceSwizzled(u32 source, u32 opDescriptor) {
vec4f srcVector = getSource(source);
srcVector = swizzle<sourceIndex>(srcVector, opDescriptor);
return srcVector;
}
u8 getIndexedSource(u32 source, u32 index);
bool isCondTrue(u32 instruction);
public:
std::array<u32, 512> loadedShader; // Currently loaded & active shader
std::array<u32, 512> bufferedShader; // Shader to be transferred when the SH_CODETRANSFER_END reg gets written to
u32 entrypoint = 0; // Initial shader PC
u32 boolUniform;
std::array<OpenGL::Vector<u8, 4>, 4> intUniforms;
std::array<vec4f, 96> floatUniforms;
std::array<vec4f, 16> fixedAttributes; // Fixed vertex attributes
std::array<vec4f, 16> attributes; // Attributes past to the shader
std::array<vec4f, 16> outputs;
PICAShader(ShaderType type) : type(type) {}
// Theese functions are in the header to be inlined more easily, though with LTO I hope I'll be able to move them
void finalize() {
std::memcpy(&loadedShader[0], &bufferedShader[0], 512 * sizeof(u32));
}
void setBufferIndex(u32 index) {
if (index != 0) Helpers::panic("Is this register 9 or 11 bit?");
bufferIndex = (index >> 2) & 0x1ff;
}
void setOpDescriptorIndex(u32 index) {
opDescriptorIndex = index & 0x7f;
}
void uploadWord(u32 word) {
bufferedShader[bufferIndex++] = word;
bufferIndex &= 0x1ff;
}
void uploadDescriptor(u32 word) {
operandDescriptors[opDescriptorIndex++] = word;
opDescriptorIndex &= 0x7f;
}
void setFloatUniformIndex(u32 word) {
floatUniformIndex = word & 0xff;
floatUniformWordCount = 0;
f32UniformTransfer = (word & 0x80000000) != 0;
}
void uploadFloatUniform(u32 word) {
floatUniformBuffer[floatUniformWordCount++] = word;
if (floatUniformIndex >= 96)
Helpers::panic("[PICA] Tried to write float uniform %d", floatUniformIndex);
if ((f32UniformTransfer && floatUniformWordCount == 4) || (!f32UniformTransfer && floatUniformWordCount == 3)) {
vec4f& uniform = floatUniforms[floatUniformIndex++];
floatUniformWordCount = 0;
if (f32UniformTransfer) {
uniform.x() = f24::fromFloat32(*(float*)&floatUniformBuffer[3]);
uniform.y() = f24::fromFloat32(*(float*)&floatUniformBuffer[2]);
uniform.z() = f24::fromFloat32(*(float*)&floatUniformBuffer[1]);
uniform.w() = f24::fromFloat32(*(float*)&floatUniformBuffer[0]);
} else {
uniform.x() = f24::fromRaw(floatUniformBuffer[2] & 0xffffff);
uniform.y() = f24::fromRaw(((floatUniformBuffer[1] & 0xffff) << 8) | (floatUniformBuffer[2] >> 24));
uniform.z() = f24::fromRaw(((floatUniformBuffer[0] & 0xff) << 16) | (floatUniformBuffer[1] >> 16));
uniform.w() = f24::fromRaw(floatUniformBuffer[0] >> 8);
}
}
}
void uploadIntUniform(int index, u32 word) {
auto& u = intUniforms[index];
u.x() = word & 0xff;
u.y() = (word >> 8) & 0xff;
u.z() = (word >> 16) & 0xff;
u.w() = (word >> 24) & 0xff;
}
void run();
void reset();
};