mirror of
https://github.com/wheremyfoodat/Panda3DS.git
synced 2025-04-06 22:25:41 +12:00
1075 lines
No EOL
38 KiB
C++
1075 lines
No EOL
38 KiB
C++
#include "renderer_gl/renderer_gl.hpp"
|
|
|
|
#include <stb_image_write.h>
|
|
|
|
#include "PICA/float_types.hpp"
|
|
#include "PICA/gpu.hpp"
|
|
#include "PICA/regs.hpp"
|
|
|
|
using namespace Floats;
|
|
using namespace Helpers;
|
|
using namespace PICA;
|
|
|
|
const char* vertexShader = R"(
|
|
#version 410 core
|
|
|
|
layout (location = 0) in vec4 a_coords;
|
|
layout (location = 1) in vec4 a_quaternion;
|
|
layout (location = 2) in vec4 a_vertexColour;
|
|
layout (location = 3) in vec2 a_texcoord0;
|
|
layout (location = 4) in vec2 a_texcoord1;
|
|
layout (location = 5) in float a_texcoord0_w;
|
|
layout (location = 6) in vec3 a_view;
|
|
layout (location = 7) in vec2 a_texcoord2;
|
|
|
|
out vec3 v_normal;
|
|
out vec3 v_tangent;
|
|
out vec3 v_bitangent;
|
|
out vec4 v_colour;
|
|
out vec3 v_texcoord0;
|
|
out vec2 v_texcoord1;
|
|
out vec3 v_view;
|
|
out vec2 v_texcoord2;
|
|
flat out vec4 v_textureEnvColor[6];
|
|
flat out vec4 v_textureEnvBufferColor;
|
|
|
|
out float gl_ClipDistance[2];
|
|
|
|
// TEV uniforms
|
|
uniform uint u_textureEnvColor[6];
|
|
uniform uint u_picaRegs[0x200 - 0x48];
|
|
|
|
// Helper so that the implementation of u_pica_regs can be changed later
|
|
uint readPicaReg(uint reg_addr){
|
|
return u_picaRegs[reg_addr - 0x48];
|
|
}
|
|
|
|
vec4 abgr8888ToVec4(uint abgr) {
|
|
const float scale = 1.0 / 255.0;
|
|
|
|
return scale * vec4(
|
|
float(abgr & 0xffu),
|
|
float((abgr >> 8) & 0xffu),
|
|
float((abgr >> 16) & 0xffu),
|
|
float(abgr >> 24)
|
|
);
|
|
}
|
|
|
|
vec3 rotateVec3ByQuaternion(vec3 v, vec4 q){
|
|
vec3 u = q.xyz;
|
|
float s = q.w;
|
|
return 2.0 * dot(u, v) * u + (s * s - dot(u, u))* v + 2.0 * s * cross(u, v);
|
|
}
|
|
|
|
// Convert an arbitrary-width floating point literal to an f32
|
|
float decodeFP(uint hex, uint E, uint M){
|
|
uint width = M + E + 1u;
|
|
uint bias = 128u - (1u << (E - 1u));
|
|
uint exponent = (hex >> M) & ((1u << E) - 1u);
|
|
uint mantissa = hex & ((1u << M) - 1u);
|
|
uint sign = (hex >> (E + M)) << 31u;
|
|
|
|
if ((hex & ((1u << (width - 1u)) - 1u)) != 0) {
|
|
if (exponent == (1u << E) - 1u) exponent = 255u;
|
|
else exponent += bias;
|
|
hex = sign | (mantissa << (23u - M)) | (exponent << 23u);
|
|
} else {
|
|
hex = sign;
|
|
}
|
|
|
|
return uintBitsToFloat(hex);
|
|
}
|
|
|
|
void main() {
|
|
gl_Position = a_coords;
|
|
v_colour = a_vertexColour;
|
|
|
|
// Flip y axis of UVs because OpenGL uses an inverted y for texture sampling compared to the PICA
|
|
v_texcoord0 = vec3(a_texcoord0.x, 1.0 - a_texcoord0.y, a_texcoord0_w);
|
|
v_texcoord1 = vec2(a_texcoord1.x, 1.0 - a_texcoord1.y);
|
|
v_texcoord2 = vec2(a_texcoord2.x, 1.0 - a_texcoord2.y);
|
|
v_view = a_view;
|
|
|
|
v_normal = normalize(rotateVec3ByQuaternion(vec3(0.0, 0.0, 1.0), a_quaternion));
|
|
v_tangent = normalize(rotateVec3ByQuaternion(vec3(1.0, 0.0, 0.0), a_quaternion));
|
|
v_bitangent = normalize(rotateVec3ByQuaternion(vec3(0.0, 1.0, 0.0), a_quaternion));
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
v_textureEnvColor[i] = abgr8888ToVec4(u_textureEnvColor[i]);
|
|
}
|
|
|
|
v_textureEnvBufferColor = abgr8888ToVec4(readPicaReg(0xFD));
|
|
|
|
// Parse clipping plane registers
|
|
// The plane registers describe a clipping plane in the form of Ax + By + Cz + D = 0
|
|
// With n = (A, B, C) being the normal vector and D being the origin point distance
|
|
// Therefore, for the second clipping plane, we can just pass the dot product of the clip vector and the input coordinates to gl_ClipDistance[1]
|
|
vec4 clipData = vec4(
|
|
decodeFP(readPicaReg(0x48) & 0xffffffu, 7, 16),
|
|
decodeFP(readPicaReg(0x49) & 0xffffffu, 7, 16),
|
|
decodeFP(readPicaReg(0x4A) & 0xffffffu, 7, 16),
|
|
decodeFP(readPicaReg(0x4B) & 0xffffffu, 7, 16)
|
|
);
|
|
|
|
// There's also another, always-on clipping plane based on vertex z
|
|
gl_ClipDistance[0] = -a_coords.z;
|
|
gl_ClipDistance[1] = dot(clipData, a_coords);
|
|
}
|
|
)";
|
|
|
|
const char* fragmentShader = R"(
|
|
#version 410 core
|
|
|
|
in vec3 v_tangent;
|
|
in vec3 v_normal;
|
|
in vec3 v_bitangent;
|
|
in vec4 v_colour;
|
|
in vec3 v_texcoord0;
|
|
in vec2 v_texcoord1;
|
|
in vec3 v_view;
|
|
in vec2 v_texcoord2;
|
|
flat in vec4 v_textureEnvColor[6];
|
|
flat in vec4 v_textureEnvBufferColor;
|
|
|
|
out vec4 fragColour;
|
|
|
|
// TEV uniforms
|
|
uniform uint u_textureEnvSource[6];
|
|
uniform uint u_textureEnvOperand[6];
|
|
uniform uint u_textureEnvCombiner[6];
|
|
uniform uint u_textureEnvScale[6];
|
|
|
|
// Depth control uniforms
|
|
uniform float u_depthScale;
|
|
uniform float u_depthOffset;
|
|
uniform bool u_depthmapEnable;
|
|
|
|
uniform sampler2D u_tex0;
|
|
uniform sampler2D u_tex1;
|
|
uniform sampler2D u_tex2;
|
|
uniform sampler1DArray u_tex_lighting_lut;
|
|
|
|
uniform uint u_picaRegs[0x200 - 0x48];
|
|
|
|
// Helper so that the implementation of u_pica_regs can be changed later
|
|
uint readPicaReg(uint reg_addr){
|
|
return u_picaRegs[reg_addr - 0x48];
|
|
}
|
|
|
|
vec4 tevSources[16];
|
|
vec4 tevNextPreviousBuffer;
|
|
bool tevUnimplementedSourceFlag = false;
|
|
|
|
// OpenGL ES 1.1 reference pages for TEVs (this is what the PICA200 implements):
|
|
// https://registry.khronos.org/OpenGL-Refpages/es1.1/xhtml/glTexEnv.xml
|
|
|
|
vec4 tevFetchSource(uint src_id) {
|
|
if (src_id >= 6u && src_id < 13u) {
|
|
tevUnimplementedSourceFlag = true;
|
|
}
|
|
|
|
return tevSources[src_id];
|
|
}
|
|
|
|
vec4 tevGetColorAndAlphaSource(int tev_id, int src_id) {
|
|
vec4 result;
|
|
|
|
vec4 colorSource = tevFetchSource((u_textureEnvSource[tev_id] >> (src_id * 4)) & 15u);
|
|
vec4 alphaSource = tevFetchSource((u_textureEnvSource[tev_id] >> (src_id * 4 + 16)) & 15u);
|
|
|
|
uint colorOperand = (u_textureEnvOperand[tev_id] >> (src_id * 4)) & 15u;
|
|
uint alphaOperand = (u_textureEnvOperand[tev_id] >> (12 + src_id * 4)) & 7u;
|
|
|
|
// TODO: figure out what the undocumented values do
|
|
switch (colorOperand) {
|
|
case 0u: result.rgb = colorSource.rgb; break; // Source color
|
|
case 1u: result.rgb = 1.0 - colorSource.rgb; break; // One minus source color
|
|
case 2u: result.rgb = vec3(colorSource.a); break; // Source alpha
|
|
case 3u: result.rgb = vec3(1.0 - colorSource.a); break; // One minus source alpha
|
|
case 4u: result.rgb = vec3(colorSource.r); break; // Source red
|
|
case 5u: result.rgb = vec3(1.0 - colorSource.r); break; // One minus source red
|
|
case 8u: result.rgb = vec3(colorSource.g); break; // Source green
|
|
case 9u: result.rgb = vec3(1.0 - colorSource.g); break; // One minus source green
|
|
case 12u: result.rgb = vec3(colorSource.b); break; // Source blue
|
|
case 13u: result.rgb = vec3(1.0 - colorSource.b); break; // One minus source blue
|
|
default: break;
|
|
}
|
|
|
|
// TODO: figure out what the undocumented values do
|
|
switch (alphaOperand) {
|
|
case 0u: result.a = alphaSource.a; break; // Source alpha
|
|
case 1u: result.a = 1.0 - alphaSource.a; break; // One minus source alpha
|
|
case 2u: result.a = alphaSource.r; break; // Source red
|
|
case 3u: result.a = 1.0 - alphaSource.r; break; // One minus source red
|
|
case 4u: result.a = alphaSource.g; break; // Source green
|
|
case 5u: result.a = 1.0 - alphaSource.g; break; // One minus source green
|
|
case 6u: result.a = alphaSource.b; break; // Source blue
|
|
case 7u: result.a = 1.0 - alphaSource.b; break; // One minus source blue
|
|
default: break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
vec4 tevCalculateCombiner(int tev_id) {
|
|
vec4 source0 = tevGetColorAndAlphaSource(tev_id, 0);
|
|
vec4 source1 = tevGetColorAndAlphaSource(tev_id, 1);
|
|
vec4 source2 = tevGetColorAndAlphaSource(tev_id, 2);
|
|
|
|
uint colorCombine = u_textureEnvCombiner[tev_id] & 15u;
|
|
uint alphaCombine = (u_textureEnvCombiner[tev_id] >> 16) & 15u;
|
|
|
|
vec4 result = vec4(1.0);
|
|
|
|
// TODO: figure out what the undocumented values do
|
|
switch (colorCombine) {
|
|
case 0u: result.rgb = source0.rgb; break; // Replace
|
|
case 1u: result.rgb = source0.rgb * source1.rgb; break; // Modulate
|
|
case 2u: result.rgb = min(vec3(1.0), source0.rgb + source1.rgb); break; // Add
|
|
case 3u: result.rgb = clamp(source0.rgb + source1.rgb - 0.5, 0.0, 1.0); break; // Add signed
|
|
case 4u: result.rgb = mix(source1.rgb, source0.rgb, source2.rgb); break; // Interpolate
|
|
case 5u: result.rgb = max(source0.rgb - source1.rgb, 0.0); break; // Subtract
|
|
case 6u: result.rgb = vec3(4.0 * dot(source0.rgb - 0.5 , source1.rgb - 0.5)); break; // Dot3 RGB
|
|
case 7u: result = vec4(4.0 * dot(source0.rgb - 0.5 , source1.rgb - 0.5)); break; // Dot3 RGBA
|
|
case 8u: result.rgb = min(source0.rgb * source1.rgb + source2.rgb, 1.0); break; // Multiply then add
|
|
case 9u: result.rgb = min((source0.rgb + source1.rgb) * source2.rgb, 1.0); break; // Add then multiply
|
|
default: break;
|
|
}
|
|
|
|
if (colorCombine != 7u) { // The color combiner also writes the alpha channel in the "Dot3 RGBA" mode.
|
|
// TODO: figure out what the undocumented values do
|
|
// TODO: test if the alpha combiner supports all the same modes as the color combiner.
|
|
switch (alphaCombine) {
|
|
case 0u: result.a = source0.a; break; // Replace
|
|
case 1u: result.a = source0.a * source1.a; break; // Modulate
|
|
case 2u: result.a = min(1.0, source0.a + source1.a); break; // Add
|
|
case 3u: result.a = clamp(source0.a + source1.a - 0.5, 0.0, 1.0); break; // Add signed
|
|
case 4u: result.a = mix(source1.a, source0.a, source2.a); break; // Interpolate
|
|
case 5u: result.a = max(0.0, source0.a - source1.a); break; // Subtract
|
|
case 8u: result.a = min(1.0, source0.a * source1.a + source2.a); break; // Multiply then add
|
|
case 9u: result.a = min(1.0, (source0.a + source1.a) * source2.a); break; // Add then multiply
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
result.rgb *= float(1 << (u_textureEnvScale[tev_id] & 3u));
|
|
result.a *= float(1 << ((u_textureEnvScale[tev_id] >> 16) & 3u));
|
|
|
|
return result;
|
|
}
|
|
|
|
#define D0_LUT 0u
|
|
#define D1_LUT 1u
|
|
#define SP_LUT 2u
|
|
#define FR_LUT 3u
|
|
#define RB_LUT 4u
|
|
#define RG_LUT 5u
|
|
#define RR_LUT 6u
|
|
|
|
float lutLookup(uint lut, uint light, float value){
|
|
if (lut >= FR_LUT && lut <= RR_LUT)
|
|
lut -= 1;
|
|
if (lut==SP_LUT)
|
|
lut = light + 8;
|
|
return texture(u_tex_lighting_lut, vec2(value, lut)).r;
|
|
}
|
|
|
|
vec3 regToColor(uint reg) {
|
|
// Normalization scale to convert from [0...255] to [0.0...1.0]
|
|
const float scale = 1.0 / 255.0;
|
|
|
|
return scale * vec3(
|
|
float(bitfieldExtract(reg, 20, 8)),
|
|
float(bitfieldExtract(reg, 10, 8)),
|
|
float(bitfieldExtract(reg, 00, 8))
|
|
);
|
|
}
|
|
|
|
// Convert an arbitrary-width floating point literal to an f32
|
|
float decodeFP(uint hex, uint E, uint M){
|
|
uint width = M + E + 1u;
|
|
uint bias = 128u - (1u << (E - 1u));
|
|
uint exponent = (hex >> M) & ((1u << E) - 1u);
|
|
uint mantissa = hex & ((1u << M) - 1u);
|
|
uint sign = (hex >> (E + M)) << 31u;
|
|
|
|
if ((hex & ((1u << (width - 1u)) - 1u)) != 0) {
|
|
if (exponent == (1u << E) - 1u) exponent = 255u;
|
|
else exponent += bias;
|
|
hex = sign | (mantissa << (23u - M)) | (exponent << 23u);
|
|
} else {
|
|
hex = sign;
|
|
}
|
|
|
|
return uintBitsToFloat(hex);
|
|
}
|
|
|
|
// Implements the following algorthm: https://mathb.in/26766
|
|
void calcLighting(out vec4 primary_color, out vec4 secondary_color){
|
|
// Quaternions describe a transformation from surface-local space to eye space.
|
|
// In surface-local space, by definition (and up to permutation) the normal vector is (0,0,1),
|
|
// the tangent vector is (1,0,0), and the bitangent vector is (0,1,0).
|
|
vec3 normal = normalize(v_normal );
|
|
vec3 tangent = normalize(v_tangent );
|
|
vec3 bitangent = normalize(v_bitangent);
|
|
vec3 view = normalize(v_view);
|
|
|
|
uint GPUREG_LIGHTING_ENABLE = readPicaReg(0x008F);
|
|
if (bitfieldExtract(GPUREG_LIGHTING_ENABLE, 0, 1) == 0){
|
|
primary_color = secondary_color = vec4(1.0);
|
|
return;
|
|
}
|
|
|
|
uint GPUREG_LIGHTING_AMBIENT = readPicaReg(0x01C0);
|
|
uint GPUREG_LIGHTING_NUM_LIGHTS = (readPicaReg(0x01C2) & 0x7u) +1;
|
|
uint GPUREG_LIGHTING_LIGHT_PERMUTATION = readPicaReg(0x01D9);
|
|
|
|
primary_color = vec4(vec3(0.0),1.0);
|
|
secondary_color = vec4(vec3(0.0),1.0);
|
|
|
|
primary_color.rgb += regToColor(GPUREG_LIGHTING_AMBIENT);
|
|
|
|
uint GPUREG_LIGHTING_LUTINPUT_ABS = readPicaReg(0x01D0);
|
|
uint GPUREG_LIGHTING_LUTINPUT_SELECT = readPicaReg(0x01D1);
|
|
uint GPUREG_LIGHTING_CONFIG0 = readPicaReg(0x01C3);
|
|
uint GPUREG_LIGHTING_CONFIG1 = readPicaReg(0x01C4);
|
|
uint GPUREG_LIGHTING_LUTINPUT_SCALE = readPicaReg(0x01D2);
|
|
float d[7];
|
|
|
|
bool error_unimpl = false;
|
|
|
|
for (uint i = 0; i < GPUREG_LIGHTING_NUM_LIGHTS; i++) {
|
|
uint light_id = bitfieldExtract(GPUREG_LIGHTING_LIGHT_PERMUTATION,int(i*3),3);
|
|
|
|
uint GPUREG_LIGHTi_SPECULAR0 = readPicaReg(0x0140 + 0x10 * light_id);
|
|
uint GPUREG_LIGHTi_SPECULAR1 = readPicaReg(0x0141 + 0x10 * light_id);
|
|
uint GPUREG_LIGHTi_DIFFUSE = readPicaReg(0x0142 + 0x10 * light_id);
|
|
uint GPUREG_LIGHTi_AMBIENT = readPicaReg(0x0143 + 0x10 * light_id);
|
|
uint GPUREG_LIGHTi_VECTOR_LOW = readPicaReg(0x0144 + 0x10 * light_id);
|
|
uint GPUREG_LIGHTi_VECTOR_HIGH= readPicaReg(0x0145 + 0x10 * light_id);
|
|
uint GPUREG_LIGHTi_CONFIG = readPicaReg(0x0149 + 0x10 * light_id);
|
|
|
|
vec3 light_vector = normalize(vec3(
|
|
decodeFP(bitfieldExtract(GPUREG_LIGHTi_VECTOR_LOW, 0, 16), 5, 10),
|
|
decodeFP(bitfieldExtract(GPUREG_LIGHTi_VECTOR_LOW, 16, 16), 5, 10),
|
|
decodeFP(bitfieldExtract(GPUREG_LIGHTi_VECTOR_HIGH, 0, 16), 5, 10)
|
|
));
|
|
|
|
// Positional Light
|
|
if (bitfieldExtract(GPUREG_LIGHTi_CONFIG, 0, 1) == 0)
|
|
error_unimpl = true;
|
|
|
|
vec3 half_vector = normalize(normalize(light_vector) + view);
|
|
|
|
for (int c = 0; c < 7; c++) {
|
|
if (bitfieldExtract(GPUREG_LIGHTING_CONFIG1, 16 + c, 1) == 0){
|
|
uint scale_id = bitfieldExtract(GPUREG_LIGHTING_LUTINPUT_SCALE, c * 4, 3);
|
|
float scale = float(1u << scale_id);
|
|
if (scale_id >= 6u)
|
|
scale/=256.0;
|
|
|
|
uint input_id = bitfieldExtract(GPUREG_LIGHTING_LUTINPUT_SELECT, c * 4, 3);
|
|
if (input_id == 0u) d[c] = dot(normal,half_vector);
|
|
else if (input_id == 1u) d[c] = dot(view,half_vector);
|
|
else if (input_id == 2u) d[c] = dot(normal,view);
|
|
else if (input_id == 3u) d[c] = dot(light_vector,normal);
|
|
else if (input_id == 4u){
|
|
uint GPUREG_LIGHTi_SPOTDIR_LOW = readPicaReg(0x0146 + 0x10 * light_id);
|
|
uint GPUREG_LIGHTi_SPOTDIR_HIGH= readPicaReg(0x0147 + 0x10 * light_id);
|
|
vec3 spot_light_vector = normalize(vec3(
|
|
decodeFP(bitfieldExtract(GPUREG_LIGHTi_SPOTDIR_LOW, 0, 16), 1, 11),
|
|
decodeFP(bitfieldExtract(GPUREG_LIGHTi_SPOTDIR_LOW, 16, 16), 1, 11),
|
|
decodeFP(bitfieldExtract(GPUREG_LIGHTi_SPOTDIR_HIGH, 0, 16), 1, 11)
|
|
));
|
|
d[c] = dot(-light_vector, spot_light_vector); // -L dot P (aka Spotlight aka SP);
|
|
} else if (input_id == 5u) {
|
|
d[c] = 1.0; // TODO: cos <greek symbol> (aka CP);
|
|
error_unimpl = true;
|
|
} else {
|
|
d[c] = 1.0;
|
|
}
|
|
|
|
d[c] = lutLookup(c, light_id, d[c] * 0.5 + 0.5) * scale;
|
|
if (bitfieldExtract(GPUREG_LIGHTING_LUTINPUT_ABS, 2 * c, 1) != 0u)
|
|
d[c] = abs(d[c]);
|
|
} else {
|
|
d[c] = 1.0;
|
|
}
|
|
}
|
|
|
|
uint lookup_config = bitfieldExtract(GPUREG_LIGHTi_CONFIG,4,4);
|
|
if (lookup_config == 0) {
|
|
d[D1_LUT] = 0.0;
|
|
d[FR_LUT] = 0.0;
|
|
d[RG_LUT]= d[RB_LUT] = d[RR_LUT];
|
|
} else if (lookup_config == 1) {
|
|
d[D0_LUT] = 0.0;
|
|
d[D1_LUT] = 0.0;
|
|
d[RG_LUT] = d[RB_LUT] = d[RR_LUT];
|
|
} else if (lookup_config == 2) {
|
|
d[FR_LUT] = 0.0;
|
|
d[SP_LUT] = 0.0;
|
|
d[RG_LUT] = d[RB_LUT] = d[RR_LUT];
|
|
} else if (lookup_config == 3) {
|
|
d[SP_LUT] = 0.0;
|
|
d[RG_LUT]= d[RB_LUT] = d[RR_LUT] = 1.0;
|
|
} else if (lookup_config == 4) {
|
|
d[FR_LUT] = 0.0;
|
|
} else if (lookup_config == 5) {
|
|
d[D1_LUT] = 0.0;
|
|
} else if (lookup_config == 6) {
|
|
d[RG_LUT] = d[RB_LUT] = d[RR_LUT];
|
|
}
|
|
|
|
float distance_factor = 1.0; // a
|
|
float indirect_factor = 1.0; // fi
|
|
float shadow_factor = 1.0; // o
|
|
|
|
float NdotL = dot(normal, light_vector); //Li dot N
|
|
|
|
// Two sided diffuse
|
|
if (bitfieldExtract(GPUREG_LIGHTi_CONFIG, 1, 1) == 0) NdotL = max(0.0, NdotL);
|
|
else NdotL = abs(NdotL);
|
|
|
|
float light_factor = distance_factor*d[SP_LUT]*indirect_factor*shadow_factor;
|
|
|
|
primary_color.rgb += light_factor * (regToColor(GPUREG_LIGHTi_AMBIENT) + regToColor(GPUREG_LIGHTi_DIFFUSE)*NdotL);
|
|
secondary_color.rgb += light_factor * (
|
|
regToColor(GPUREG_LIGHTi_SPECULAR0) * d[D0_LUT] +
|
|
regToColor(GPUREG_LIGHTi_SPECULAR1) * d[D1_LUT] * vec3(d[RR_LUT], d[RG_LUT], d[RB_LUT])
|
|
);
|
|
}
|
|
uint fresnel_output1 = bitfieldExtract(GPUREG_LIGHTING_CONFIG0, 2, 1);
|
|
uint fresnel_output2 = bitfieldExtract(GPUREG_LIGHTING_CONFIG0, 3, 1);
|
|
|
|
if (fresnel_output1 == 1u) primary_color.a = d[FR_LUT];
|
|
if (fresnel_output2 == 1u) secondary_color.a = d[FR_LUT];
|
|
|
|
if (error_unimpl) {
|
|
secondary_color = primary_color = vec4(1.0,0.,1.0,1.0);
|
|
}
|
|
}
|
|
|
|
void main() {
|
|
// TODO: what do invalid sources and disabled textures read as?
|
|
// And what does the "previous combiner" source read initially?
|
|
tevSources[0] = v_colour; // Primary/vertex color
|
|
calcLighting(tevSources[1],tevSources[2]);
|
|
|
|
uint textureConfig = readPicaReg(0x80);
|
|
vec2 tex2UV = (textureConfig & (1u << 13)) != 0u ? v_texcoord1 : v_texcoord2;
|
|
|
|
if ((textureConfig & 1u) != 0u) tevSources[3] = texture(u_tex0, v_texcoord0.xy);
|
|
if ((textureConfig & 2u) != 0u) tevSources[4] = texture(u_tex1, v_texcoord1);
|
|
if ((textureConfig & 4u) != 0u) tevSources[5] = texture(u_tex2, tex2UV);
|
|
tevSources[13] = vec4(0.0); // Previous buffer
|
|
tevSources[15] = vec4(0.0); // Previous combiner
|
|
|
|
tevNextPreviousBuffer = v_textureEnvBufferColor;
|
|
uint textureEnvUpdateBuffer = readPicaReg(0xE0);
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
tevSources[14] = v_textureEnvColor[i]; // Constant color
|
|
tevSources[15] = tevCalculateCombiner(i);
|
|
tevSources[13] = tevNextPreviousBuffer;
|
|
|
|
if (i < 4) {
|
|
if ((textureEnvUpdateBuffer & (0x100u << i)) != 0u) {
|
|
tevNextPreviousBuffer.rgb = tevSources[15].rgb;
|
|
}
|
|
|
|
if ((textureEnvUpdateBuffer & (0x1000u << i)) != 0u) {
|
|
tevNextPreviousBuffer.a = tevSources[15].a;
|
|
}
|
|
}
|
|
}
|
|
|
|
fragColour = tevSources[15];
|
|
|
|
if (tevUnimplementedSourceFlag) {
|
|
// fragColour = vec4(1.0, 0.0, 1.0, 1.0);
|
|
}
|
|
// fragColour.rg = texture(u_tex_lighting_lut,vec2(gl_FragCoord.x/200.,float(int(gl_FragCoord.y/2)%24))).rr;
|
|
|
|
|
|
// Get original depth value by converting from [near, far] = [0, 1] to [-1, 1]
|
|
// We do this by converting to [0, 2] first and subtracting 1 to go to [-1, 1]
|
|
float z_over_w = gl_FragCoord.z * 2.0f - 1.0f;
|
|
float depth = z_over_w * u_depthScale + u_depthOffset;
|
|
|
|
if (!u_depthmapEnable) // Divide z by w if depthmap enable == 0 (ie using W-buffering)
|
|
depth /= gl_FragCoord.w;
|
|
|
|
// Write final fragment depth
|
|
gl_FragDepth = depth;
|
|
|
|
// Perform alpha test
|
|
uint alphaControl = readPicaReg(0x104);
|
|
if ((alphaControl & 1u) != 0u) { // Check if alpha test is on
|
|
uint func = (alphaControl >> 4u) & 7u;
|
|
float reference = float((alphaControl >> 8u) & 0xffu) / 255.0;
|
|
float alpha = fragColour.a;
|
|
|
|
switch (func) {
|
|
case 0: discard; // Never pass alpha test
|
|
case 1: break; // Always pass alpha test
|
|
case 2: // Pass if equal
|
|
if (alpha != reference)
|
|
discard;
|
|
break;
|
|
case 3: // Pass if not equal
|
|
if (alpha == reference)
|
|
discard;
|
|
break;
|
|
case 4: // Pass if less than
|
|
if (alpha >= reference)
|
|
discard;
|
|
break;
|
|
case 5: // Pass if less than or equal
|
|
if (alpha > reference)
|
|
discard;
|
|
break;
|
|
case 6: // Pass if greater than
|
|
if (alpha <= reference)
|
|
discard;
|
|
break;
|
|
case 7: // Pass if greater than or equal
|
|
if (alpha < reference)
|
|
discard;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
)";
|
|
|
|
const char* displayVertexShader = R"(
|
|
#version 410 core
|
|
out vec2 UV;
|
|
|
|
void main() {
|
|
const vec4 positions[4] = vec4[](
|
|
vec4(-1.0, 1.0, 1.0, 1.0), // Top-left
|
|
vec4(1.0, 1.0, 1.0, 1.0), // Top-right
|
|
vec4(-1.0, -1.0, 1.0, 1.0), // Bottom-left
|
|
vec4(1.0, -1.0, 1.0, 1.0) // Bottom-right
|
|
);
|
|
|
|
// The 3DS displays both screens' framebuffer rotated 90 deg counter clockwise
|
|
// So we adjust our texcoords accordingly
|
|
const vec2 texcoords[4] = vec2[](
|
|
vec2(1.0, 1.0), // Top-right
|
|
vec2(1.0, 0.0), // Bottom-right
|
|
vec2(0.0, 1.0), // Top-left
|
|
vec2(0.0, 0.0) // Bottom-left
|
|
);
|
|
|
|
gl_Position = positions[gl_VertexID];
|
|
UV = texcoords[gl_VertexID];
|
|
}
|
|
)";
|
|
|
|
const char* displayFragmentShader = R"(
|
|
#version 410 core
|
|
in vec2 UV;
|
|
out vec4 FragColor;
|
|
|
|
uniform sampler2D u_texture;
|
|
void main() {
|
|
FragColor = texture(u_texture, UV);
|
|
}
|
|
)";
|
|
|
|
void RendererGL::reset() {
|
|
depthBufferCache.reset();
|
|
colourBufferCache.reset();
|
|
textureCache.reset();
|
|
|
|
// Init the colour/depth buffer settings to some random defaults on reset
|
|
colourBufferLoc = 0;
|
|
colourBufferFormat = PICA::ColorFmt::RGBA8;
|
|
|
|
depthBufferLoc = 0;
|
|
depthBufferFormat = PICA::DepthFmt::Depth16;
|
|
|
|
if (triangleProgram.exists()) {
|
|
const auto oldProgram = OpenGL::getProgram();
|
|
|
|
gl.useProgram(triangleProgram);
|
|
|
|
oldDepthScale = -1.0; // Default depth scale to -1.0, which is what games typically use
|
|
oldDepthOffset = 0.0; // Default depth offset to 0
|
|
oldDepthmapEnable = false; // Enable w buffering
|
|
|
|
glUniform1f(depthScaleLoc, oldDepthScale);
|
|
glUniform1f(depthOffsetLoc, oldDepthOffset);
|
|
glUniform1i(depthmapEnableLoc, oldDepthmapEnable);
|
|
|
|
gl.useProgram(oldProgram); // Switch to old GL program
|
|
}
|
|
}
|
|
|
|
void RendererGL::initGraphicsContext() {
|
|
gl.reset();
|
|
|
|
OpenGL::Shader vert(vertexShader, OpenGL::Vertex);
|
|
OpenGL::Shader frag(fragmentShader, OpenGL::Fragment);
|
|
triangleProgram.create({vert, frag});
|
|
gl.useProgram(triangleProgram);
|
|
|
|
textureEnvSourceLoc = OpenGL::uniformLocation(triangleProgram, "u_textureEnvSource");
|
|
textureEnvOperandLoc = OpenGL::uniformLocation(triangleProgram, "u_textureEnvOperand");
|
|
textureEnvCombinerLoc = OpenGL::uniformLocation(triangleProgram, "u_textureEnvCombiner");
|
|
textureEnvColorLoc = OpenGL::uniformLocation(triangleProgram, "u_textureEnvColor");
|
|
textureEnvScaleLoc = OpenGL::uniformLocation(triangleProgram, "u_textureEnvScale");
|
|
|
|
depthScaleLoc = OpenGL::uniformLocation(triangleProgram, "u_depthScale");
|
|
depthOffsetLoc = OpenGL::uniformLocation(triangleProgram, "u_depthOffset");
|
|
depthmapEnableLoc = OpenGL::uniformLocation(triangleProgram, "u_depthmapEnable");
|
|
picaRegLoc = OpenGL::uniformLocation(triangleProgram, "u_picaRegs");
|
|
|
|
// Init sampler objects. Texture 0 goes in texture unit 0, texture 1 in TU 1, texture 2 in TU 2, and the light maps go in TU 3
|
|
glUniform1i(OpenGL::uniformLocation(triangleProgram, "u_tex0"), 0);
|
|
glUniform1i(OpenGL::uniformLocation(triangleProgram, "u_tex1"), 1);
|
|
glUniform1i(OpenGL::uniformLocation(triangleProgram, "u_tex2"), 2);
|
|
glUniform1i(OpenGL::uniformLocation(triangleProgram, "u_tex_lighting_lut"), 3);
|
|
|
|
OpenGL::Shader vertDisplay(displayVertexShader, OpenGL::Vertex);
|
|
OpenGL::Shader fragDisplay(displayFragmentShader, OpenGL::Fragment);
|
|
displayProgram.create({vertDisplay, fragDisplay});
|
|
|
|
gl.useProgram(displayProgram);
|
|
glUniform1i(OpenGL::uniformLocation(displayProgram, "u_texture"), 0); // Init sampler object
|
|
|
|
vbo.createFixedSize(sizeof(Vertex) * vertexBufferSize, GL_STREAM_DRAW);
|
|
gl.bindVBO(vbo);
|
|
vao.create();
|
|
gl.bindVAO(vao);
|
|
|
|
// Position (x, y, z, w) attributes
|
|
vao.setAttributeFloat<float>(0, 4, sizeof(Vertex), offsetof(Vertex, s.positions));
|
|
vao.enableAttribute(0);
|
|
// Quaternion attribute
|
|
vao.setAttributeFloat<float>(1, 4, sizeof(Vertex), offsetof(Vertex, s.quaternion));
|
|
vao.enableAttribute(1);
|
|
// Colour attribute
|
|
vao.setAttributeFloat<float>(2, 4, sizeof(Vertex), offsetof(Vertex, s.colour));
|
|
vao.enableAttribute(2);
|
|
// UV 0 attribute
|
|
vao.setAttributeFloat<float>(3, 2, sizeof(Vertex), offsetof(Vertex, s.texcoord0));
|
|
vao.enableAttribute(3);
|
|
// UV 1 attribute
|
|
vao.setAttributeFloat<float>(4, 2, sizeof(Vertex), offsetof(Vertex, s.texcoord1));
|
|
vao.enableAttribute(4);
|
|
// UV 0 W-component attribute
|
|
vao.setAttributeFloat<float>(5, 1, sizeof(Vertex), offsetof(Vertex, s.texcoord0_w));
|
|
vao.enableAttribute(5);
|
|
// View
|
|
vao.setAttributeFloat<float>(6, 3, sizeof(Vertex), offsetof(Vertex, s.view));
|
|
vao.enableAttribute(6);
|
|
// UV 2 attribute
|
|
vao.setAttributeFloat<float>(7, 2, sizeof(Vertex), offsetof(Vertex, s.texcoord2));
|
|
vao.enableAttribute(7);
|
|
|
|
dummyVBO.create();
|
|
dummyVAO.create();
|
|
|
|
// Create texture and framebuffer for the 3DS screen
|
|
const u32 screenTextureWidth = 400; // Top screen is 400 pixels wide, bottom is 320
|
|
const u32 screenTextureHeight = 2 * 240; // Both screens are 240 pixels tall
|
|
|
|
glGenTextures(1, &lightLUTTextureArray);
|
|
|
|
auto prevTexture = OpenGL::getTex2D();
|
|
screenTexture.create(screenTextureWidth, screenTextureHeight, GL_RGBA8);
|
|
screenTexture.bind();
|
|
screenTexture.setMinFilter(OpenGL::Linear);
|
|
screenTexture.setMagFilter(OpenGL::Linear);
|
|
glBindTexture(GL_TEXTURE_2D, prevTexture);
|
|
|
|
screenFramebuffer.createWithDrawTexture(screenTexture);
|
|
screenFramebuffer.bind(OpenGL::DrawAndReadFramebuffer);
|
|
|
|
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) Helpers::panic("Incomplete framebuffer");
|
|
|
|
// TODO: This should not clear the framebuffer contents. It should load them from VRAM.
|
|
GLint oldViewport[4];
|
|
glGetIntegerv(GL_VIEWPORT, oldViewport);
|
|
OpenGL::setViewport(screenTextureWidth, screenTextureHeight);
|
|
OpenGL::setClearColor(0.0, 0.0, 0.0, 1.0);
|
|
OpenGL::clearColor();
|
|
OpenGL::setViewport(oldViewport[0], oldViewport[1], oldViewport[2], oldViewport[3]);
|
|
|
|
reset();
|
|
}
|
|
|
|
// Set up the OpenGL blending context to match the emulated PICA
|
|
void RendererGL::setupBlending() {
|
|
const bool blendingEnabled = (regs[PICA::InternalRegs::ColourOperation] & (1 << 8)) != 0;
|
|
|
|
// Map of PICA blending equations to OpenGL blending equations. The unused blending equations are equivalent to equation 0 (add)
|
|
static constexpr std::array<GLenum, 8> blendingEquations = {
|
|
GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX, GL_FUNC_ADD, GL_FUNC_ADD, GL_FUNC_ADD,
|
|
};
|
|
|
|
// Map of PICA blending funcs to OpenGL blending funcs. Func = 15 is undocumented and stubbed to GL_ONE for now
|
|
static constexpr std::array<GLenum, 16> blendingFuncs = {
|
|
GL_ZERO,
|
|
GL_ONE,
|
|
GL_SRC_COLOR,
|
|
GL_ONE_MINUS_SRC_COLOR,
|
|
GL_DST_COLOR,
|
|
GL_ONE_MINUS_DST_COLOR,
|
|
GL_SRC_ALPHA,
|
|
GL_ONE_MINUS_SRC_ALPHA,
|
|
GL_DST_ALPHA,
|
|
GL_ONE_MINUS_DST_ALPHA,
|
|
GL_CONSTANT_COLOR,
|
|
GL_ONE_MINUS_CONSTANT_COLOR,
|
|
GL_CONSTANT_ALPHA,
|
|
GL_ONE_MINUS_CONSTANT_ALPHA,
|
|
GL_SRC_ALPHA_SATURATE,
|
|
GL_ONE,
|
|
};
|
|
|
|
if (!blendingEnabled) {
|
|
gl.disableBlend();
|
|
} else {
|
|
gl.enableBlend();
|
|
|
|
// Get blending equations
|
|
const u32 blendControl = regs[PICA::InternalRegs::BlendFunc];
|
|
const u32 rgbEquation = blendControl & 0x7;
|
|
const u32 alphaEquation = getBits<8, 3>(blendControl);
|
|
|
|
// Get blending functions
|
|
const u32 rgbSourceFunc = getBits<16, 4>(blendControl);
|
|
const u32 rgbDestFunc = getBits<20, 4>(blendControl);
|
|
const u32 alphaSourceFunc = getBits<24, 4>(blendControl);
|
|
const u32 alphaDestFunc = getBits<28, 4>(blendControl);
|
|
|
|
const u32 constantColor = regs[PICA::InternalRegs::BlendColour];
|
|
const u32 r = constantColor & 0xff;
|
|
const u32 g = getBits<8, 8>(constantColor);
|
|
const u32 b = getBits<16, 8>(constantColor);
|
|
const u32 a = getBits<24, 8>(constantColor);
|
|
OpenGL::setBlendColor(float(r) / 255.f, float(g) / 255.f, float(b) / 255.f, float(a) / 255.f);
|
|
|
|
// Translate equations and funcs to their GL equivalents and set them
|
|
glBlendEquationSeparate(blendingEquations[rgbEquation], blendingEquations[alphaEquation]);
|
|
glBlendFuncSeparate(blendingFuncs[rgbSourceFunc], blendingFuncs[rgbDestFunc], blendingFuncs[alphaSourceFunc], blendingFuncs[alphaDestFunc]);
|
|
}
|
|
}
|
|
|
|
void RendererGL::setupTextureEnvState() {
|
|
// TODO: Only update uniforms when the TEV config changed. Use an UBO potentially.
|
|
|
|
static constexpr std::array<u32, 6> ioBases = {
|
|
PICA::InternalRegs::TexEnv0Source, PICA::InternalRegs::TexEnv1Source, PICA::InternalRegs::TexEnv2Source,
|
|
PICA::InternalRegs::TexEnv3Source, PICA::InternalRegs::TexEnv4Source, PICA::InternalRegs::TexEnv5Source,
|
|
};
|
|
|
|
u32 textureEnvSourceRegs[6];
|
|
u32 textureEnvOperandRegs[6];
|
|
u32 textureEnvCombinerRegs[6];
|
|
u32 textureEnvColourRegs[6];
|
|
u32 textureEnvScaleRegs[6];
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
const u32 ioBase = ioBases[i];
|
|
|
|
textureEnvSourceRegs[i] = regs[ioBase];
|
|
textureEnvOperandRegs[i] = regs[ioBase + 1];
|
|
textureEnvCombinerRegs[i] = regs[ioBase + 2];
|
|
textureEnvColourRegs[i] = regs[ioBase + 3];
|
|
textureEnvScaleRegs[i] = regs[ioBase + 4];
|
|
}
|
|
|
|
glUniform1uiv(textureEnvSourceLoc, 6, textureEnvSourceRegs);
|
|
glUniform1uiv(textureEnvOperandLoc, 6, textureEnvOperandRegs);
|
|
glUniform1uiv(textureEnvCombinerLoc, 6, textureEnvCombinerRegs);
|
|
glUniform1uiv(textureEnvColorLoc, 6, textureEnvColourRegs);
|
|
glUniform1uiv(textureEnvScaleLoc, 6, textureEnvScaleRegs);
|
|
}
|
|
|
|
void RendererGL::bindTexturesToSlots() {
|
|
static constexpr std::array<u32, 3> ioBases = {
|
|
PICA::InternalRegs::Tex0BorderColor,
|
|
PICA::InternalRegs::Tex1BorderColor,
|
|
PICA::InternalRegs::Tex2BorderColor,
|
|
};
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if ((regs[PICA::InternalRegs::TexUnitCfg] & (1 << i)) == 0) {
|
|
continue;
|
|
}
|
|
|
|
const size_t ioBase = ioBases[i];
|
|
|
|
const u32 dim = regs[ioBase + 1];
|
|
const u32 config = regs[ioBase + 2];
|
|
const u32 height = dim & 0x7ff;
|
|
const u32 width = getBits<16, 11>(dim);
|
|
const u32 addr = (regs[ioBase + 4] & 0x0FFFFFFF) << 3;
|
|
u32 format = regs[ioBase + (i == 0 ? 13 : 5)] & 0xF;
|
|
|
|
glActiveTexture(GL_TEXTURE0 + i);
|
|
Texture targetTex(addr, static_cast<PICA::TextureFmt>(format), width, height, config);
|
|
OpenGL::Texture tex = getTexture(targetTex);
|
|
tex.bind();
|
|
}
|
|
|
|
glActiveTexture(GL_TEXTURE0 + 3);
|
|
glBindTexture(GL_TEXTURE_1D_ARRAY, lightLUTTextureArray);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
}
|
|
|
|
void RendererGL::updateLightingLUT() {
|
|
gpu.lightingLUTDirty = false;
|
|
std::array<u16, GPU::LightingLutSize> u16_lightinglut;
|
|
|
|
for (int i = 0; i < gpu.lightingLUT.size(); i++) {
|
|
uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
|
|
u16_lightinglut[i] = value * 65535 / 4095;
|
|
}
|
|
|
|
glActiveTexture(GL_TEXTURE0 + 3);
|
|
glBindTexture(GL_TEXTURE_1D_ARRAY, lightLUTTextureArray);
|
|
glTexImage2D(GL_TEXTURE_1D_ARRAY, 0, GL_R16, 256, Lights::LUT_Count, 0, GL_RED, GL_UNSIGNED_SHORT, u16_lightinglut.data());
|
|
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
}
|
|
|
|
void RendererGL::drawVertices(PICA::PrimType primType, std::span<const Vertex> vertices) {
|
|
// The fourth type is meant to be "Geometry primitive". TODO: Find out what that is
|
|
static constexpr std::array<OpenGL::Primitives, 4> primTypes = {
|
|
OpenGL::Triangle,
|
|
OpenGL::TriangleStrip,
|
|
OpenGL::TriangleFan,
|
|
OpenGL::Triangle,
|
|
};
|
|
|
|
const auto primitiveTopology = primTypes[static_cast<usize>(primType)];
|
|
gl.disableScissor();
|
|
gl.bindVBO(vbo);
|
|
gl.bindVAO(vao);
|
|
gl.useProgram(triangleProgram);
|
|
|
|
OpenGL::enableClipPlane(0); // Clipping plane 0 is always enabled
|
|
if (regs[PICA::InternalRegs::ClipEnable] & 1) {
|
|
OpenGL::enableClipPlane(1);
|
|
}
|
|
|
|
setupBlending();
|
|
OpenGL::Framebuffer poop = getColourFBO();
|
|
poop.bind(OpenGL::DrawAndReadFramebuffer);
|
|
|
|
const u32 depthControl = regs[PICA::InternalRegs::DepthAndColorMask];
|
|
const bool depthEnable = depthControl & 1;
|
|
const bool depthWriteEnable = getBit<12>(depthControl);
|
|
const int depthFunc = getBits<4, 3>(depthControl);
|
|
const int colourMask = getBits<8, 4>(depthControl);
|
|
gl.setColourMask(colourMask & 1, colourMask & 2, colourMask & 4, colourMask & 8);
|
|
|
|
static constexpr std::array<GLenum, 8> depthModes = {GL_NEVER, GL_ALWAYS, GL_EQUAL, GL_NOTEQUAL, GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL};
|
|
|
|
const float depthScale = f24::fromRaw(regs[PICA::InternalRegs::DepthScale] & 0xffffff).toFloat32();
|
|
const float depthOffset = f24::fromRaw(regs[PICA::InternalRegs::DepthOffset] & 0xffffff).toFloat32();
|
|
const bool depthMapEnable = regs[PICA::InternalRegs::DepthmapEnable] & 1;
|
|
|
|
// Update depth uniforms
|
|
if (oldDepthScale != depthScale) {
|
|
oldDepthScale = depthScale;
|
|
glUniform1f(depthScaleLoc, depthScale);
|
|
}
|
|
|
|
if (oldDepthOffset != depthOffset) {
|
|
oldDepthOffset = depthOffset;
|
|
glUniform1f(depthOffsetLoc, depthOffset);
|
|
}
|
|
|
|
if (oldDepthmapEnable != depthMapEnable) {
|
|
oldDepthmapEnable = depthMapEnable;
|
|
glUniform1i(depthmapEnableLoc, depthMapEnable);
|
|
}
|
|
|
|
setupTextureEnvState();
|
|
bindTexturesToSlots();
|
|
|
|
// Upload PICA Registers as a single uniform. The shader needs access to the rasterizer registers (for depth, starting from index 0x48)
|
|
// The texturing and the fragment lighting registers. Therefore we upload them all in one go to avoid multiple slow uniform updates
|
|
glUniform1uiv(picaRegLoc, 0x200 - 0x48, ®s[0x48]);
|
|
|
|
if (gpu.lightingLUTDirty) {
|
|
updateLightingLUT();
|
|
}
|
|
|
|
// TODO: Actually use this
|
|
GLsizei viewportWidth = GLsizei(f24::fromRaw(regs[PICA::InternalRegs::ViewportWidth] & 0xffffff).toFloat32() * 2.0f);
|
|
GLsizei viewportHeight = GLsizei(f24::fromRaw(regs[PICA::InternalRegs::ViewportHeight] & 0xffffff).toFloat32() * 2.0f);
|
|
OpenGL::setViewport(viewportWidth, viewportHeight);
|
|
|
|
// Note: The code below must execute after we've bound the colour buffer & its framebuffer
|
|
// Because it attaches a depth texture to the aforementioned colour buffer
|
|
if (depthEnable) {
|
|
gl.enableDepth();
|
|
gl.setDepthMask(depthWriteEnable ? GL_TRUE : GL_FALSE);
|
|
gl.setDepthFunc(depthModes[depthFunc]);
|
|
bindDepthBuffer();
|
|
} else {
|
|
if (depthWriteEnable) {
|
|
gl.enableDepth();
|
|
gl.setDepthMask(GL_TRUE);
|
|
gl.setDepthFunc(GL_ALWAYS);
|
|
bindDepthBuffer();
|
|
} else {
|
|
gl.disableDepth();
|
|
}
|
|
}
|
|
|
|
vbo.bufferVertsSub(vertices);
|
|
OpenGL::draw(primitiveTopology, GLsizei(vertices.size()));
|
|
}
|
|
|
|
constexpr u32 topScreenBuffer = 0x1f000000;
|
|
constexpr u32 bottomScreenBuffer = 0x1f05dc00;
|
|
|
|
void RendererGL::display() {
|
|
gl.disableScissor();
|
|
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
|
screenFramebuffer.bind(OpenGL::ReadFramebuffer);
|
|
glBlitFramebuffer(0, 0, 400, 480, 0, 0, 400, 480, GL_COLOR_BUFFER_BIT, GL_LINEAR);
|
|
}
|
|
|
|
void RendererGL::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
|
|
return;
|
|
log("GPU: Clear buffer\nStart: %08X End: %08X\nValue: %08X Control: %08X\n", startAddress, endAddress, value, control);
|
|
|
|
const float r = float(getBits<24, 8>(value)) / 255.0f;
|
|
const float g = float(getBits<16, 8>(value)) / 255.0f;
|
|
const float b = float(getBits<8, 8>(value)) / 255.0f;
|
|
const float a = float(value & 0xff) / 255.0f;
|
|
|
|
if (startAddress == topScreenBuffer) {
|
|
log("GPU: Cleared top screen\n");
|
|
} else if (startAddress == bottomScreenBuffer) {
|
|
log("GPU: Tried to clear bottom screen\n");
|
|
return;
|
|
} else {
|
|
log("GPU: Clearing some unknown buffer\n");
|
|
}
|
|
|
|
OpenGL::setClearColor(r, g, b, a);
|
|
OpenGL::clearColor();
|
|
}
|
|
|
|
OpenGL::Framebuffer RendererGL::getColourFBO() {
|
|
// We construct a colour buffer object and see if our cache has any matching colour buffers in it
|
|
// If not, we allocate a texture & FBO for our framebuffer and store it in the cache
|
|
ColourBuffer sampleBuffer(colourBufferLoc, colourBufferFormat, fbSize[0], fbSize[1]);
|
|
auto buffer = colourBufferCache.find(sampleBuffer);
|
|
|
|
if (buffer.has_value()) {
|
|
return buffer.value().get().fbo;
|
|
} else {
|
|
return colourBufferCache.add(sampleBuffer).fbo;
|
|
}
|
|
}
|
|
|
|
void RendererGL::bindDepthBuffer() {
|
|
// Similar logic as the getColourFBO function
|
|
DepthBuffer sampleBuffer(depthBufferLoc, depthBufferFormat, fbSize[0], fbSize[1]);
|
|
auto buffer = depthBufferCache.find(sampleBuffer);
|
|
GLuint tex;
|
|
|
|
if (buffer.has_value()) {
|
|
tex = buffer.value().get().texture.m_handle;
|
|
} else {
|
|
tex = depthBufferCache.add(sampleBuffer).texture.m_handle;
|
|
}
|
|
|
|
if (PICA::DepthFmt::Depth24Stencil8 != depthBufferFormat) {
|
|
Helpers::panicDev("TODO: Should we remove stencil attachment?");
|
|
}
|
|
auto attachment = depthBufferFormat == PICA::DepthFmt::Depth24Stencil8 ? GL_DEPTH_STENCIL_ATTACHMENT : GL_DEPTH_ATTACHMENT;
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, attachment, GL_TEXTURE_2D, tex, 0);
|
|
}
|
|
|
|
OpenGL::Texture RendererGL::getTexture(Texture& tex) {
|
|
// Similar logic as the getColourFBO/bindDepthBuffer functions
|
|
auto buffer = textureCache.find(tex);
|
|
|
|
if (buffer.has_value()) {
|
|
return buffer.value().get().texture;
|
|
} else {
|
|
const void* textureData = gpu.getPointerPhys<void*>(tex.location); // Get pointer to the texture data in 3DS memory
|
|
Texture& newTex = textureCache.add(tex);
|
|
newTex.decodeTexture(textureData);
|
|
|
|
return newTex.texture;
|
|
}
|
|
}
|
|
|
|
void RendererGL::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
|
|
const u32 inputWidth = inputSize & 0xffff;
|
|
const u32 inputGap = inputSize >> 16;
|
|
|
|
const u32 outputWidth = outputSize & 0xffff;
|
|
const u32 outputGap = outputSize >> 16;
|
|
|
|
auto framebuffer = colourBufferCache.findFromAddress(inputAddr);
|
|
// If there's a framebuffer at this address, use it. Otherwise go back to our old hack and display framebuffer 0
|
|
// Displays are hard I really don't want to try implementing them because getting a fast solution is terrible
|
|
OpenGL::Texture& tex = framebuffer.has_value() ? framebuffer.value().get().texture : colourBufferCache[0].texture;
|
|
|
|
tex.bind();
|
|
screenFramebuffer.bind(OpenGL::DrawFramebuffer);
|
|
|
|
gl.disableBlend();
|
|
gl.disableDepth();
|
|
gl.disableScissor();
|
|
gl.setColourMask(true, true, true, true);
|
|
gl.useProgram(displayProgram);
|
|
gl.bindVAO(dummyVAO);
|
|
|
|
OpenGL::disableClipPlane(0);
|
|
OpenGL::disableClipPlane(1);
|
|
|
|
// Hack: Detect whether we are writing to the top or bottom screen by checking output gap and drawing to the proper part of the output texture
|
|
// We consider output gap == 320 to mean bottom, and anything else to mean top
|
|
if (outputGap == 320) {
|
|
OpenGL::setViewport(40, 0, 320, 240); // Bottom screen viewport
|
|
} else {
|
|
OpenGL::setViewport(0, 240, 400, 240); // Top screen viewport
|
|
}
|
|
|
|
OpenGL::draw(OpenGL::TriangleStrip, 4); // Actually draw our 3DS screen
|
|
}
|
|
|
|
void RendererGL::screenshot(const std::string& name) {
|
|
constexpr uint width = 400;
|
|
constexpr uint height = 2 * 240;
|
|
|
|
std::vector<uint8_t> pixels, flippedPixels;
|
|
pixels.resize(width * height * 4);
|
|
flippedPixels.resize(pixels.size());
|
|
|
|
OpenGL::bindScreenFramebuffer();
|
|
glReadPixels(0, 0, width, height, GL_BGRA, GL_UNSIGNED_BYTE, pixels.data());
|
|
|
|
// Flip the image vertically
|
|
for (int y = 0; y < height; y++) {
|
|
memcpy(&flippedPixels[y * width * 4], &pixels[(height - y - 1) * width * 4], width * 4);
|
|
// Swap R and B channels
|
|
for (int x = 0; x < width; x++) {
|
|
std::swap(flippedPixels[y * width * 4 + x * 4 + 0], flippedPixels[y * width * 4 + x * 4 + 2]);
|
|
// Set alpha to 0xFF
|
|
flippedPixels[y * width * 4 + x * 4 + 3] = 0xFF;
|
|
}
|
|
}
|
|
|
|
stbi_write_png(name.c_str(), width, height, 4, flippedPixels.data(), 0);
|
|
} |