Panda3DS/src/core/memory.cpp
2024-11-29 23:56:29 +02:00

570 lines
No EOL
20 KiB
C++

#include "memory.hpp"
#include <cassert>
#include <chrono> // For time since epoch
#include <cmrc/cmrc.hpp>
#include <ctime>
#include "config_mem.hpp"
#include "resource_limits.hpp"
#include "services/fonts.hpp"
#include "services/ptm.hpp"
CMRC_DECLARE(ConsoleFonts);
using namespace KernelMemoryTypes;
Memory::Memory(u64& cpuTicks, const EmulatorConfig& config) : cpuTicks(cpuTicks), config(config) {
fcram = new uint8_t[FCRAM_SIZE]();
readTable.resize(totalPageCount, 0);
writeTable.resize(totalPageCount, 0);
memoryInfo.reserve(32); // Pre-allocate some room for memory allocation info to avoid dynamic allocs
#ifdef PANDA3DS_HARDWARE_FASTMEM
u8* arenaFcram = nullptr;
u8* arenaDSPRam = nullptr;
constexpr size_t BACKING_SIZE = FCRAM_SIZE + DSP_RAM_SIZE;
constexpr size_t VIRTUAL_SIZE = 4_GB; // Total size of the virtual address space we will occupy (4GB)
try {
arena.reset(new Common::HostMemory(BACKING_SIZE, VIRTUAL_SIZE));
arenaFcram = arena->BackingBasePointer() + FASTMEM_FCRAM_OFFSET;
// arenaDSPRam = arena->VirtualBasePointer() + FASTMEM_DSP_RAM_OFFSET;
useFastmem = true;
delete[] fcram;
fcram = arenaFcram;
} catch (...) {
useFastmem = false;
}
#else
useFastmem = false;
fastmemArenaBase = nullptr;
#endif
}
void Memory::reset() {
// Unallocate all memory
memoryInfo.clear();
usedFCRAMPages.reset();
usedUserMemory = u32(0_MB);
usedSystemMemory = u32(0_MB);
for (u32 i = 0; i < totalPageCount; i++) {
readTable[i] = 0;
writeTable[i] = 0;
}
// Map (32 * 4) KB of FCRAM before the stack for the TLS of each thread
std::optional<u32> tlsBaseOpt = findPaddr(32 * 4_KB);
if (!tlsBaseOpt.has_value()) { // Should be unreachable but still good to have
Helpers::panic("Failed to allocate memory for thread-local storage");
}
u32 basePaddrForTLS = tlsBaseOpt.value();
for (u32 i = 0; i < appResourceLimits.maxThreads; i++) {
u32 vaddr = VirtualAddrs::TLSBase + i * VirtualAddrs::TLSSize;
allocateMemory(vaddr, basePaddrForTLS, VirtualAddrs::TLSSize, true);
basePaddrForTLS += VirtualAddrs::TLSSize;
}
// Initialize shared memory blocks and reserve memory for them
for (auto& e : sharedMemBlocks) {
if (e.handle == KernelHandles::FontSharedMemHandle) {
// Read font size from the cmrc filesystem the font is stored in
auto fonts = cmrc::ConsoleFonts::get_filesystem();
e.size = fonts.open("SharedFontReplacement.bin").size();
}
e.mapped = false;
e.paddr = allocateSysMemory(e.size);
}
// Map DSP RAM as R/W at [0x1FF00000, 0x1FF7FFFF]
constexpr u32 dspRamPages = DSP_RAM_SIZE / pageSize; // Number of DSP RAM pages
constexpr u32 initialPage = VirtualAddrs::DSPMemStart / pageSize; // First page of DSP RAM in the virtual address space
for (u32 i = 0; i < dspRamPages; i++) {
auto pointer = uintptr_t(&dspRam[i * pageSize]);
readTable[i + initialPage] = pointer;
writeTable[i + initialPage] = pointer;
}
// addFastmemView(VirtualAddrs::DSPMemStart, FASTMEM_DSP_RAM_OFFSET, DSP_RAM_SIZE, true, false); // Allocate RW mapping for DSP RAM
// Later adjusted based on ROM header when possible
region = Regions::USA;
}
bool Memory::allocateMainThreadStack(u32 size) {
// Map stack pages as R/W
std::optional<u32> basePaddr = findPaddr(size);
if (!basePaddr.has_value()) { // Should also be unreachable but still good to have
return false;
}
const u32 stackBottom = VirtualAddrs::StackTop - size;
std::optional<u32> result = allocateMemory(stackBottom, basePaddr.value(), size, true); // Should never be nullopt
return result.has_value();
}
u8 Memory::read8(u32 vaddr) {
const u32 page = vaddr >> pageShift;
const u32 offset = vaddr & pageMask;
uintptr_t pointer = readTable[page];
if (pointer != 0) [[likely]] {
return *(u8*)(pointer + offset);
} else {
switch (vaddr) {
case ConfigMem::BatteryState: {
// Set by the PTM module
// Charger plugged: Shows whether the charger is plugged
// Charging: Shows whether the charger is plugged and the console is actually charging, ie the battery is not full
// BatteryLevel: A battery level calculated via PTM::GetBatteryLevel
// These are all assembled into a bitfield and returned via config memory
const bool chargerPlugged = config.chargerPlugged;
const bool charging = config.chargerPlugged && (config.batteryPercentage < 100);
const auto batteryLevel = static_cast<BatteryLevel>(PTMService::batteryPercentToLevel(config.batteryPercentage));
return getBatteryState(chargerPlugged, charging, batteryLevel);
}
case ConfigMem::EnvInfo: return envInfo;
case ConfigMem::HardwareType: return ConfigMem::HardwareCodes::Product;
case ConfigMem::KernelVersionMinor: return u8(kernelVersion & 0xff);
case ConfigMem::KernelVersionMajor: return u8(kernelVersion >> 8);
case ConfigMem::LedState3D: return 1; // Report the 3D LED as always off (non-zero) for now
case ConfigMem::NetworkState: return 2; // Report that we've got an internet connection
case ConfigMem::HeadphonesConnectedMaybe: return 0;
case ConfigMem::Unknown1086: return 1; // It's unknown what this is but some games want it to be 1
case ConfigMem::FirmUnknown: return firm.unk;
case ConfigMem::FirmRevision: return firm.revision;
case ConfigMem::FirmVersionMinor: return firm.minor;
case ConfigMem::FirmVersionMajor: return firm.major;
case ConfigMem::WifiLevel: return 0; // No wifi :(
case ConfigMem::WifiMac:
case ConfigMem::WifiMac + 1:
case ConfigMem::WifiMac + 2:
case ConfigMem::WifiMac + 3:
case ConfigMem::WifiMac + 4:
case ConfigMem::WifiMac + 5: return MACAddress[vaddr - ConfigMem::WifiMac];
default: Helpers::panic("Unimplemented 8-bit read, addr: %08X", vaddr);
}
}
}
u16 Memory::read16(u32 vaddr) {
const u32 page = vaddr >> pageShift;
const u32 offset = vaddr & pageMask;
uintptr_t pointer = readTable[page];
if (pointer != 0) [[likely]] {
return *(u16*)(pointer + offset);
} else {
switch (vaddr) {
case ConfigMem::WifiMac + 4: return (MACAddress[5] << 8) | MACAddress[4]; // Wifi MAC: Last 2 bytes of MAC Address
default: Helpers::panic("Unimplemented 16-bit read, addr: %08X", vaddr);
}
}
}
u32 Memory::read32(u32 vaddr) {
const u32 page = vaddr >> pageShift;
const u32 offset = vaddr & pageMask;
uintptr_t pointer = readTable[page];
if (pointer != 0) [[likely]] {
return *(u32*)(pointer + offset);
} else {
switch (vaddr) {
case 0x1FF80000: return u32(kernelVersion) << 16;
case ConfigMem::Datetime0: return u32(timeSince3DSEpoch()); // ms elapsed since Jan 1 1900, bottom 32 bits
case ConfigMem::Datetime0 + 4:
return u32(timeSince3DSEpoch() >> 32); // top 32 bits
// Ticks since time was last updated. For now we return the current tick count
case ConfigMem::Datetime0 + 8: return u32(cpuTicks);
case ConfigMem::Datetime0 + 12: return u32(cpuTicks >> 32);
case ConfigMem::Datetime0 + 16: return 0xFFB0FF0; // Unknown, set by PTM
case ConfigMem::Datetime0 + 20:
case ConfigMem::Datetime0 + 24:
case ConfigMem::Datetime0 + 28: return 0; // Set to 0 by PTM
case ConfigMem::AppMemAlloc: return appResourceLimits.maxCommit;
case ConfigMem::SyscoreVer: return 2;
case 0x1FF81000: return 0; // TODO: Figure out what this config mem address does
// Wifi MAC: First 4 bytes of MAC Address
case ConfigMem::WifiMac:
return (u32(MACAddress[3]) << 24) | (u32(MACAddress[2]) << 16) | (u32(MACAddress[1]) << 8) |
MACAddress[0];
// 3D slider. Float in range 0.0 = off, 1.0 = max.
case ConfigMem::SliderState3D: return Helpers::bit_cast<u32, float>(0.0f);
case ConfigMem::FirmUnknown:
return u32(read8(vaddr)) | (u32(read8(vaddr + 1)) << 8) | (u32(read8(vaddr + 2)) << 16) | (u32(read8(vaddr + 3)) << 24);
default:
if (vaddr >= VirtualAddrs::VramStart && vaddr < VirtualAddrs::VramStart + VirtualAddrs::VramSize) {
static int shutUpCounter = 0;
if (shutUpCounter < 5) { // Stop spamming about VRAM reads after the first 5
shutUpCounter++;
Helpers::warn("VRAM read!\n");
}
// TODO: Properly handle framebuffer readbacks and the like
return *(u32*)&vram[vaddr - VirtualAddrs::VramStart];
}
Helpers::panic("Unimplemented 32-bit read, addr: %08X", vaddr);
break;
}
}
}
u64 Memory::read64(u32 vaddr) {
u64 bottom = u64(read32(vaddr));
u64 top = u64(read32(vaddr + 4));
return (top << 32) | bottom;
}
void Memory::write8(u32 vaddr, u8 value) {
const u32 page = vaddr >> pageShift;
const u32 offset = vaddr & pageMask;
uintptr_t pointer = writeTable[page];
if (pointer != 0) [[likely]] {
*(u8*)(pointer + offset) = value;
} else {
// VRAM write
if (vaddr >= VirtualAddrs::VramStart && vaddr < VirtualAddrs::VramStart + VirtualAddrs::VramSize) {
// TODO: Invalidate renderer caches here
vram[vaddr - VirtualAddrs::VramStart] = value;
}
else {
Helpers::panic("Unimplemented 8-bit write, addr: %08X, val: %02X", vaddr, value);
}
}
}
void Memory::write16(u32 vaddr, u16 value) {
const u32 page = vaddr >> pageShift;
const u32 offset = vaddr & pageMask;
uintptr_t pointer = writeTable[page];
if (pointer != 0) [[likely]] {
*(u16*)(pointer + offset) = value;
} else {
Helpers::panic("Unimplemented 16-bit write, addr: %08X, val: %08X", vaddr, value);
}
}
void Memory::write32(u32 vaddr, u32 value) {
const u32 page = vaddr >> pageShift;
const u32 offset = vaddr & pageMask;
uintptr_t pointer = writeTable[page];
if (pointer != 0) [[likely]] {
*(u32*)(pointer + offset) = value;
} else {
Helpers::panic("Unimplemented 32-bit write, addr: %08X, val: %08X", vaddr, value);
}
}
void Memory::write64(u32 vaddr, u64 value) {
write32(vaddr, u32(value));
write32(vaddr + 4, u32(value >> 32));
}
void* Memory::getReadPointer(u32 address) {
const u32 page = address >> pageShift;
const u32 offset = address & pageMask;
uintptr_t pointer = readTable[page];
if (pointer == 0) return nullptr;
return (void*)(pointer + offset);
}
void* Memory::getWritePointer(u32 address) {
const u32 page = address >> pageShift;
const u32 offset = address & pageMask;
uintptr_t pointer = writeTable[page];
if (pointer == 0) return nullptr;
return (void*)(pointer + offset);
}
// Thank you Citra devs
std::string Memory::readString(u32 address, u32 maxSize) {
std::string string;
string.reserve(maxSize);
for (std::size_t i = 0; i < maxSize; ++i) {
char c = read8(address++);
if (c == '\0') {
break;
}
string.push_back(c);
}
string.shrink_to_fit();
return string;
}
// Return a pointer to the linear heap vaddr based on the kernel ver, because it needed to be moved
// thanks to the New 3DS having more FCRAM
u32 Memory::getLinearHeapVaddr() { return (kernelVersion < 0x22C) ? VirtualAddrs::LinearHeapStartOld : VirtualAddrs::LinearHeapStartNew; }
std::optional<u32> Memory::allocateMemory(u32 vaddr, u32 paddr, u32 size, bool linear, bool r, bool w, bool x, bool adjustAddrs, bool isMap) {
// Kernel-allocated memory & size must always be aligned to a page boundary
// Additionally assert we don't OoM and that we don't try to allocate physical FCRAM past what's available to userland
// If we're mapping there's no fear of OoM, because we're not really allocating memory, just binding vaddrs to specific paddrs
assert(isAligned(vaddr) && isAligned(paddr) && isAligned(size));
assert(size <= FCRAM_APPLICATION_SIZE || isMap);
assert(usedUserMemory + size <= FCRAM_APPLICATION_SIZE || isMap);
assert(paddr + size <= FCRAM_APPLICATION_SIZE || isMap);
// Amount of available user FCRAM pages and FCRAM pages to allocate respectively
const u32 availablePageCount = (FCRAM_APPLICATION_SIZE - usedUserMemory) / pageSize;
const u32 neededPageCount = size / pageSize;
assert(availablePageCount >= neededPageCount || isMap);
// If the paddr is 0, that means we need to select our own
// TODO: Fix. This method always tries to allocate blocks linearly.
// However, if the allocation is non-linear, the panic will trigger when it shouldn't.
// Non-linear allocation needs special handling
if (paddr == 0 && adjustAddrs) {
std::optional<u32> newPaddr = findPaddr(size);
if (!newPaddr.has_value()) {
Helpers::panic("Failed to find paddr");
}
paddr = newPaddr.value();
assert(paddr + size <= FCRAM_APPLICATION_SIZE || isMap);
}
// If the vaddr is 0 that means we need to select our own
// Depending on whether our mapping should be linear or not we allocate from one of the 2 typical heap spaces
// We don't plan on implementing freeing any time soon, so we can pick added userUserMemory to the vaddr base to
// Get the full vaddr.
// TODO: Fix this
if (vaddr == 0 && adjustAddrs) {
// Linear memory needs to be allocated in a way where you can easily get the paddr by subtracting the linear heap base
// In order to be able to easily send data to hardware like the GPU
if (linear) {
vaddr = getLinearHeapVaddr() + paddr;
} else {
vaddr = usedUserMemory + VirtualAddrs::NormalHeapStart;
}
}
if (!isMap) {
usedUserMemory += size;
}
// Do linear mapping
u32 virtualPage = vaddr >> pageShift;
u32 physPage = paddr >> pageShift; // TODO: Special handle when non-linear mapping is necessary
for (u32 i = 0; i < neededPageCount; i++) {
if (r) {
readTable[virtualPage] = uintptr_t(&fcram[physPage * pageSize]);
}
if (w) {
writeTable[virtualPage] = uintptr_t(&fcram[physPage * pageSize]);
}
// Mark FCRAM page as allocated and go on
usedFCRAMPages[physPage] = true;
// Add mapping to the fastmem arena
addFastmemView(size_t(virtualPage) * pageSize, FASTMEM_FCRAM_OFFSET + size_t(physPage) * pageSize, pageSize, w, false);
virtualPage++;
physPage++;
}
// Back up the info for this allocation in our memoryInfo vector
u32 perms = (r ? PERMISSION_R : 0) | (w ? PERMISSION_W : 0) | (x ? PERMISSION_X : 0);
memoryInfo.push_back(std::move(MemoryInfo(vaddr, size, perms, KernelMemoryTypes::Reserved)));
return vaddr;
}
// Find a paddr which we can use for allocating "size" bytes
std::optional<u32> Memory::findPaddr(u32 size) {
assert(isAligned(size));
const u32 neededPages = size / pageSize;
// The FCRAM page we're testing to see if it's appropriate to use
u32 candidatePage = 0;
// The number of linear available pages we could find starting from this candidate page.
// If this ends up >= than neededPages then the paddr is good (ie we can use the candidate page as a base address)
u32 counter = 0;
for (u32 i = 0; i < FCRAM_APPLICATION_PAGE_COUNT; i++) {
if (usedFCRAMPages[i]) { // Page is occupied already, go to new candidate
candidatePage = i + 1;
counter = 0;
} else { // The paddr we're testing has 1 more free page
counter++;
// Check if there's enough free memory to use this page
// We use == instead of >= because some software does 0-byte allocations
if (counter >= neededPages) {
return candidatePage * pageSize;
}
}
}
// Couldn't find any page :(
return std::nullopt;
}
u32 Memory::allocateSysMemory(u32 size) {
// Should never be triggered, only here as a sanity check
if (!isAligned(size)) {
Helpers::panic("Memory::allocateSysMemory: Size is not page aligned (val = %08X)", size);
}
// We use a pretty dumb allocator for OS memory since this is not really accessible to the app and is only used internally
// It works by just allocating memory linearly, starting from index 0 of OS memory and going up
// This should also be unreachable in practice and exists as a sanity check
if (size > remainingSysFCRAM()) {
Helpers::panic("Memory::allocateSysMemory: Overflowed OS FCRAM");
}
const u32 pageCount = size / pageSize; // Number of pages that will be used up
const u32 startIndex = sysFCRAMIndex() + usedSystemMemory; // Starting FCRAM index
const u32 startingPage = startIndex / pageSize;
for (u32 i = 0; i < pageCount; i++) {
if (usedFCRAMPages[startingPage + i]) // Also a theoretically unreachable panic for safety
Helpers::panic("Memory::reserveMemory: Trying to reserve already reserved memory");
usedFCRAMPages[startingPage + i] = true;
}
usedSystemMemory += size;
return startIndex;
}
// The way I understand how the kernel's QueryMemory is supposed to work is that you give it a vaddr
// And the kernel looks up the memory allocations it's performed, finds which one it belongs in and returns its info?
// TODO: Verify this
MemoryInfo Memory::queryMemory(u32 vaddr) {
// Check each allocation
for (auto& alloc : memoryInfo) {
// Check if the memory address belongs in this allocation and return the info if so
if (vaddr >= alloc.baseAddr && vaddr < alloc.end()) {
return alloc;
}
}
// Otherwise, if this vaddr was never allocated
// TODO: I think this is meant to return how much memory starting here is free as the size?
return MemoryInfo(vaddr, pageSize, 0, KernelMemoryTypes::Free);
}
u8* Memory::mapSharedMemory(Handle handle, u32 vaddr, u32 myPerms, u32 otherPerms) {
for (auto& e : sharedMemBlocks) {
if (e.handle == handle) {
// Virtual Console titles trigger this. TODO: Investigate how it should work
if (e.mapped) Helpers::warn("Allocated shared memory block twice. Is this allowed?");
const u32 paddr = e.paddr;
const u32 size = e.size;
if (myPerms == 0x10000000) {
myPerms = 3;
Helpers::panic("Memory::mapSharedMemory with DONTCARE perms");
}
bool r = myPerms & 0b001;
bool w = myPerms & 0b010;
bool x = myPerms & 0b100;
const auto result = allocateMemory(vaddr, paddr, size, true, r, w, x, false, true);
e.mapped = true;
if (!result.has_value()) {
Helpers::panic("Memory::mapSharedMemory: Failed to map shared memory block");
return nullptr;
}
return &fcram[paddr];
}
}
// This should be unreachable but better safe than sorry
Helpers::panic("Memory::mapSharedMemory: Unknown shared memory handle %08X", handle);
return nullptr;
}
void Memory::mirrorMapping(u32 destAddress, u32 sourceAddress, u32 size) {
// Should theoretically be unreachable, only here for safety purposes
assert(isAligned(destAddress) && isAligned(sourceAddress) && isAligned(size));
const u32 pageCount = size / pageSize; // How many pages we need to mirror
for (u32 i = 0; i < pageCount; i++) {
// Redo the shift here to "properly" handle wrapping around the address space instead of reading OoB
const u32 sourcePage = sourceAddress / pageSize;
const u32 destPage = destAddress / pageSize;
readTable[destPage] = readTable[sourcePage];
writeTable[destPage] = writeTable[sourcePage];
sourceAddress += pageSize;
destAddress += pageSize;
}
}
// Get the number of ms since Jan 1 1900
u64 Memory::timeSince3DSEpoch() {
using namespace std::chrono;
std::time_t rawTime = std::time(nullptr); // Get current UTC time
auto localTime = std::localtime(&rawTime); // Convert to local time
bool daylightSavings = localTime->tm_isdst > 0; // Get if time includes DST
localTime = std::gmtime(&rawTime);
// Use gmtime + mktime to calculate difference between local time and UTC
auto timezoneDifference = rawTime - std::mktime(localTime);
if (daylightSavings) {
timezoneDifference += 60ull * 60ull; // Add 1 hour (60 seconds * 60 minutes)
}
// seconds between Jan 1 1900 and Jan 1 1970
constexpr u64 offset = 2208988800ull;
milliseconds ms = duration_cast<milliseconds>(seconds(rawTime + timezoneDifference + offset));
return ms.count();
}
Regions Memory::getConsoleRegion() {
// TODO: Let the user force the console region as they want
// For now we pick one based on the ROM header
return region;
}
void Memory::copySharedFont(u8* pointer, u32 vaddr) {
auto fonts = cmrc::ConsoleFonts::get_filesystem();
auto font = fonts.open("SharedFontReplacement.bin");
std::memcpy(pointer, font.begin(), font.size());
// Relocate shared font to the address it's being loaded to
HLE::Fonts::relocateSharedFont(pointer, vaddr);
}
std::optional<u64> Memory::getProgramID() {
auto cxi = getCXI();
if (cxi) {
return cxi->programID;
}
return std::nullopt;
}