mirror of
https://github.com/wheremyfoodat/Panda3DS.git
synced 2025-04-07 06:35:40 +12:00
365 lines
13 KiB
C++
365 lines
13 KiB
C++
#include "PICA/gpu.hpp"
|
|
|
|
#include <array>
|
|
#include <bitset>
|
|
#include <cstddef>
|
|
#include <cstdio>
|
|
|
|
#include "PICA/float_types.hpp"
|
|
#include "PICA/regs.hpp"
|
|
#include "renderer_null/renderer_null.hpp"
|
|
#include "renderer_sw/renderer_sw.hpp"
|
|
#ifdef PANDA3DS_ENABLE_OPENGL
|
|
#include "renderer_gl/renderer_gl.hpp"
|
|
#endif
|
|
|
|
using namespace Floats;
|
|
|
|
// Note: For when we have multiple backends, the GL state manager can stay here and have the constructor for the Vulkan-or-whatever renderer ignore it
|
|
// Thus, our GLStateManager being here does not negatively impact renderer-agnosticness
|
|
GPU::GPU(Memory& mem, EmulatorConfig& config) : mem(mem), config(config) {
|
|
vram = new u8[vramSize];
|
|
mem.setVRAM(vram); // Give the bus a pointer to our VRAM
|
|
|
|
switch (config.rendererType) {
|
|
case RendererType::Null: {
|
|
renderer.reset(new RendererNull(*this, regs));
|
|
break;
|
|
}
|
|
|
|
case RendererType::Software: {
|
|
renderer.reset(new RendererSw(*this, regs));
|
|
break;
|
|
}
|
|
|
|
#ifdef PANDA3DS_ENABLE_OPENGL
|
|
case RendererType::OpenGL: {
|
|
renderer.reset(new RendererGL(*this, regs));
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
case RendererType::Vulkan: {
|
|
Helpers::panic("Vulkan is not supported yet, please pick another renderer");
|
|
}
|
|
|
|
default: {
|
|
Helpers::panic("Rendering backend not supported: %s", Renderer::typeToString(config.rendererType));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GPU::reset() {
|
|
regs.fill(0);
|
|
shaderUnit.reset();
|
|
shaderJIT.reset();
|
|
std::memset(vram, 0, vramSize);
|
|
lightingLUT.fill(0);
|
|
lightingLUTDirty = true;
|
|
|
|
totalAttribCount = 0;
|
|
fixedAttribMask = 0;
|
|
fixedAttribIndex = 0;
|
|
fixedAttribCount = 0;
|
|
immediateModeAttrIndex = 0;
|
|
immediateModeVertIndex = 0;
|
|
|
|
fixedAttrBuff.fill(0);
|
|
|
|
for (auto& e : attributeInfo) {
|
|
e.offset = 0;
|
|
e.size = 0;
|
|
e.config1 = 0;
|
|
e.config2 = 0;
|
|
}
|
|
|
|
renderer->reset();
|
|
}
|
|
|
|
// Call the correct version of drawArrays based on whether this is an indexed draw (first template parameter)
|
|
// And whether we are going to use the shader JIT (second template parameter)
|
|
void GPU::drawArrays(bool indexed) {
|
|
const bool shaderJITEnabled = ShaderJIT::isAvailable() && config.shaderJitEnabled;
|
|
|
|
if (indexed) {
|
|
if (shaderJITEnabled)
|
|
drawArrays<true, true>();
|
|
else
|
|
drawArrays<true, false>();
|
|
} else {
|
|
if (shaderJITEnabled)
|
|
drawArrays<false, true>();
|
|
else
|
|
drawArrays<false, false>();
|
|
}
|
|
}
|
|
|
|
static std::array<PICA::Vertex, Renderer::vertexBufferSize> vertices;
|
|
|
|
template <bool indexed, bool useShaderJIT>
|
|
void GPU::drawArrays() {
|
|
if constexpr (useShaderJIT) {
|
|
shaderJIT.prepare(shaderUnit.vs);
|
|
}
|
|
|
|
// Base address for vertex attributes
|
|
// The vertex base is always on a quadword boundary because the PICA does weird alignment shit any time possible
|
|
const u32 vertexBase = ((regs[PICA::InternalRegs::VertexAttribLoc] >> 1) & 0xfffffff) * 16;
|
|
const u32 vertexCount = regs[PICA::InternalRegs::VertexCountReg]; // Total # of vertices to transfer
|
|
|
|
// Configures the type of primitive and the number of vertex shader outputs
|
|
const u32 primConfig = regs[PICA::InternalRegs::PrimitiveConfig];
|
|
const PICA::PrimType primType = static_cast<PICA::PrimType>(Helpers::getBits<8, 2>(primConfig));
|
|
if (vertexCount > Renderer::vertexBufferSize) Helpers::panic("[PICA] vertexCount > vertexBufferSize");
|
|
|
|
if ((primType == PICA::PrimType::TriangleList && vertexCount % 3) || (primType == PICA::PrimType::TriangleStrip && vertexCount < 3) ||
|
|
(primType == PICA::PrimType::TriangleFan && vertexCount < 3)) {
|
|
Helpers::panic("Invalid vertex count for primitive. Type: %d, vert count: %d\n", primType, vertexCount);
|
|
}
|
|
|
|
// Get the configuration for the index buffer, used only for indexed drawing
|
|
u32 indexBufferConfig = regs[PICA::InternalRegs::IndexBufferConfig];
|
|
u32 indexBufferPointer = vertexBase + (indexBufferConfig & 0xfffffff);
|
|
bool shortIndex = Helpers::getBit<31>(indexBufferConfig); // Indicates whether vert indices are 16-bit or 8-bit
|
|
|
|
// Stuff the global attribute config registers in one u64 to make attr parsing easier
|
|
// TODO: Cache this when the vertex attribute format registers are written to
|
|
u64 vertexCfg = u64(regs[PICA::InternalRegs::AttribFormatLow]) | (u64(regs[PICA::InternalRegs::AttribFormatHigh]) << 32);
|
|
|
|
if constexpr (!indexed) {
|
|
u32 offset = regs[PICA::InternalRegs::VertexOffsetReg];
|
|
log("PICA::DrawArrays(vertex count = %d, vertexOffset = %d)\n", vertexCount, offset);
|
|
} else {
|
|
log("PICA::DrawElements(vertex count = %d, index buffer config = %08X)\n", vertexCount, indexBufferConfig);
|
|
}
|
|
|
|
// Total number of input attributes to shader. Differs between GS and VS. Currently stubbed to the VS one, as we don't have geometry shaders.
|
|
const u32 inputAttrCount = (regs[PICA::InternalRegs::VertexShaderInputBufferCfg] & 0xf) + 1;
|
|
const u64 inputAttrCfg = getVertexShaderInputConfig();
|
|
|
|
// When doing indexed rendering, we have a cache of vertices to avoid processing attributes and shaders for a single vertex many times
|
|
constexpr bool vertexCacheEnabled = true;
|
|
constexpr size_t vertexCacheSize = 64;
|
|
|
|
struct {
|
|
std::bitset<vertexCacheSize> validBits{0}; // Shows which tags are valid. If the corresponding bit is 1, then there's an entry
|
|
std::array<u32, vertexCacheSize> ids; // IDs (ie indices of the cached vertices in the 3DS vertex buffer)
|
|
std::array<u32, vertexCacheSize> bufferPositions; // Positions of the cached vertices in our own vertex buffer
|
|
} vertexCache;
|
|
|
|
for (u32 i = 0; i < vertexCount; i++) {
|
|
u32 vertexIndex; // Index of the vertex in the VBO for indexed rendering
|
|
|
|
if constexpr (!indexed) {
|
|
vertexIndex = i + regs[PICA::InternalRegs::VertexOffsetReg];
|
|
} else {
|
|
if (shortIndex) {
|
|
auto ptr = getPointerPhys<u16>(indexBufferPointer);
|
|
vertexIndex = *ptr; // TODO: This is very unsafe
|
|
indexBufferPointer += 2;
|
|
} else {
|
|
auto ptr = getPointerPhys<u8>(indexBufferPointer);
|
|
vertexIndex = *ptr; // TODO: This is also very unsafe
|
|
indexBufferPointer += 1;
|
|
}
|
|
}
|
|
|
|
// Check if the vertex corresponding to the index is in cache
|
|
if constexpr (indexed && vertexCacheEnabled) {
|
|
auto& cache = vertexCache;
|
|
size_t tag = vertexIndex % vertexCacheSize;
|
|
// Cache hit
|
|
if (cache.validBits[tag] && cache.ids[tag] == vertexIndex) {
|
|
vertices[i] = vertices[cache.bufferPositions[tag]];
|
|
continue;
|
|
}
|
|
|
|
// Cache miss. Set cache entry, fetch attributes and run shaders as normal
|
|
else {
|
|
cache.validBits[tag] = true;
|
|
cache.ids[tag] = vertexIndex;
|
|
cache.bufferPositions[tag] = i;
|
|
}
|
|
}
|
|
|
|
int attrCount = 0;
|
|
int buffer = 0; // Vertex buffer index for non-fixed attributes
|
|
|
|
while (attrCount < totalAttribCount) {
|
|
// Check if attribute is fixed or not
|
|
if (fixedAttribMask & (1 << attrCount)) { // Fixed attribute
|
|
vec4f& fixedAttr = shaderUnit.vs.fixedAttributes[attrCount]; // TODO: Is this how it works?
|
|
vec4f& inputAttr = currentAttributes[attrCount];
|
|
std::memcpy(&inputAttr, &fixedAttr, sizeof(vec4f)); // Copy fixed attr to input attr
|
|
attrCount++;
|
|
} else { // Non-fixed attribute
|
|
auto& attr = attributeInfo[buffer]; // Get information for this attribute
|
|
u64 attrCfg = attr.getConfigFull(); // Get config1 | (config2 << 32)
|
|
u32 attrAddress = vertexBase + attr.offset + (vertexIndex * attr.size);
|
|
|
|
for (int j = 0; j < attr.componentCount; j++) {
|
|
uint index = (attrCfg >> (j * 4)) & 0xf; // Get index of attribute in vertexCfg
|
|
|
|
// Vertex attributes used as padding
|
|
// 12, 13, 14 and 15 are equivalent to 4, 8, 12 and 16 bytes of padding respectively
|
|
if (index >= 12) [[unlikely]] {
|
|
// Align attribute address up to a 4 byte boundary
|
|
attrAddress = (attrAddress + 3) & -4;
|
|
attrAddress += (index - 11) << 2;
|
|
continue;
|
|
}
|
|
|
|
u32 attribInfo = (vertexCfg >> (index * 4)) & 0xf;
|
|
u32 attribType = attribInfo & 0x3; // Type of attribute(sbyte/ubyte/short/float)
|
|
u32 size = (attribInfo >> 2) + 1; // Total number of components
|
|
|
|
// printf("vertex_attribute_strides[%d] = %d\n", attrCount, attr.size);
|
|
vec4f& attribute = currentAttributes[attrCount];
|
|
uint component; // Current component
|
|
|
|
switch (attribType) {
|
|
case 0: { // Signed byte
|
|
s8* ptr = getPointerPhys<s8>(attrAddress);
|
|
for (component = 0; component < size; component++) {
|
|
float val = static_cast<float>(*ptr++);
|
|
attribute[component] = f24::fromFloat32(val);
|
|
}
|
|
attrAddress += size * sizeof(s8);
|
|
break;
|
|
}
|
|
|
|
case 1: { // Unsigned byte
|
|
u8* ptr = getPointerPhys<u8>(attrAddress);
|
|
for (component = 0; component < size; component++) {
|
|
float val = static_cast<float>(*ptr++);
|
|
attribute[component] = f24::fromFloat32(val);
|
|
}
|
|
attrAddress += size * sizeof(u8);
|
|
break;
|
|
}
|
|
|
|
case 2: { // Short
|
|
s16* ptr = getPointerPhys<s16>(attrAddress);
|
|
for (component = 0; component < size; component++) {
|
|
float val = static_cast<float>(*ptr++);
|
|
attribute[component] = f24::fromFloat32(val);
|
|
}
|
|
attrAddress += size * sizeof(s16);
|
|
break;
|
|
}
|
|
|
|
case 3: { // Float
|
|
float* ptr = getPointerPhys<float>(attrAddress);
|
|
for (component = 0; component < size; component++) {
|
|
float val = *ptr++;
|
|
attribute[component] = f24::fromFloat32(val);
|
|
}
|
|
attrAddress += size * sizeof(float);
|
|
break;
|
|
}
|
|
|
|
default: Helpers::panic("[PICA] Unimplemented attribute type %d", attribType);
|
|
}
|
|
|
|
// Fill the remaining attribute lanes with default parameters (1.0 for alpha/w, 0.0) for everything else
|
|
// Corgi does this although I'm not sure if it's actually needed for anything.
|
|
// TODO: Find out
|
|
while (component < 4) {
|
|
attribute[component] = (component == 3) ? f24::fromFloat32(1.0) : f24::fromFloat32(0.0);
|
|
component++;
|
|
}
|
|
|
|
attrCount++;
|
|
}
|
|
buffer++;
|
|
}
|
|
}
|
|
|
|
// Before running the shader, the PICA maps the fetched attributes from the attribute registers to the shader input registers
|
|
// Based on the SH_ATTRIBUTES_PERMUTATION registers.
|
|
// Ie it might attribute #0 to v2, #1 to v7, etc
|
|
for (int j = 0; j < totalAttribCount; j++) {
|
|
const u32 mapping = (inputAttrCfg >> (j * 4)) & 0xf;
|
|
std::memcpy(&shaderUnit.vs.inputs[mapping], ¤tAttributes[j], sizeof(vec4f));
|
|
}
|
|
|
|
if constexpr (useShaderJIT) {
|
|
shaderJIT.run(shaderUnit.vs);
|
|
} else {
|
|
shaderUnit.vs.run();
|
|
}
|
|
|
|
PICA::Vertex& out = vertices[i];
|
|
// Map shader outputs to fixed function properties
|
|
const u32 totalShaderOutputs = regs[PICA::InternalRegs::ShaderOutputCount] & 7;
|
|
for (int i = 0; i < totalShaderOutputs; i++) {
|
|
const u32 config = regs[PICA::InternalRegs::ShaderOutmap0 + i];
|
|
|
|
for (int j = 0; j < 4; j++) { // pls unroll
|
|
const u32 mapping = (config >> (j * 8)) & 0x1F;
|
|
out.raw[mapping] = shaderUnit.vs.outputs[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
renderer->drawVertices(primType, std::span(vertices).first(vertexCount));
|
|
}
|
|
|
|
PICA::Vertex GPU::getImmediateModeVertex() {
|
|
PICA::Vertex v;
|
|
const int totalAttrCount = (regs[PICA::InternalRegs::VertexShaderAttrNum] & 0xf) + 1;
|
|
|
|
// Copy immediate mode attributes to vertex shader unit
|
|
for (int i = 0; i < totalAttrCount; i++) {
|
|
shaderUnit.vs.inputs[i] = immediateModeAttributes[i];
|
|
}
|
|
|
|
// Run VS and return vertex data. TODO: Don't hardcode offsets for each attribute
|
|
shaderUnit.vs.run();
|
|
std::memcpy(&v.s.positions, &shaderUnit.vs.outputs[0], sizeof(vec4f));
|
|
std::memcpy(&v.s.colour, &shaderUnit.vs.outputs[1], sizeof(vec4f));
|
|
std::memcpy(&v.s.texcoord0, &shaderUnit.vs.outputs[2], 2 * sizeof(f24));
|
|
|
|
printf(
|
|
"(x, y, z, w) = (%f, %f, %f, %f)\n", (double)v.s.positions[0], (double)v.s.positions[1], (double)v.s.positions[2], (double)v.s.positions[3]
|
|
);
|
|
printf("(r, g, b, a) = (%f, %f, %f, %f)\n", (double)v.s.colour[0], (double)v.s.colour[1], (double)v.s.colour[2], (double)v.s.colour[3]);
|
|
printf("(u, v ) = (%f, %f)\n", (double)v.s.texcoord0[0], (double)v.s.texcoord0[1]);
|
|
|
|
return v;
|
|
}
|
|
|
|
void GPU::fireDMA(u32 dest, u32 source, u32 size) {
|
|
log("[GPU] DMA of %08X bytes from %08X to %08X\n", size, source, dest);
|
|
constexpr u32 vramStart = VirtualAddrs::VramStart;
|
|
constexpr u32 vramSize = VirtualAddrs::VramSize;
|
|
|
|
const u32 fcramStart = mem.getLinearHeapVaddr();
|
|
constexpr u32 fcramSize = VirtualAddrs::FcramTotalSize;
|
|
|
|
// Shows whether this transfer is an FCRAM->VRAM transfer that's trivially optimizable
|
|
bool cpuToVRAM = true;
|
|
|
|
if (dest - vramStart >= vramSize || size > (vramSize - (dest - vramStart))) [[unlikely]] {
|
|
cpuToVRAM = false;
|
|
Helpers::panic("GPU DMA does not target VRAM");
|
|
}
|
|
|
|
if (source - fcramStart >= fcramSize || size > (fcramSize - (dest - fcramStart))) [[unlikely]] {
|
|
cpuToVRAM = false;
|
|
// Helpers::panic("GPU DMA does not have FCRAM as its source");
|
|
}
|
|
|
|
if (cpuToVRAM) [[likely]] {
|
|
// Valid, optimized FCRAM->VRAM DMA. TODO: Is VRAM->VRAM DMA allowed?
|
|
u8* fcram = mem.getFCRAM();
|
|
std::memcpy(&vram[dest - vramStart], &fcram[source - fcramStart], size);
|
|
} else {
|
|
printf("Non-trivially optimizable GPU DMA. Falling back to byte-by-byte transfer\n");
|
|
|
|
for (u32 i = 0; i < size; i++) {
|
|
mem.write8(dest + i, mem.read8(source + i));
|
|
}
|
|
}
|
|
}
|