Panda3DS/src/core/renderer_mtl/renderer_mtl.cpp
2024-07-06 22:21:57 +02:00

620 lines
25 KiB
C++

#include "PICA/gpu.hpp"
#include "renderer_mtl/renderer_mtl.hpp"
#include "renderer_mtl/objc_helper.hpp"
#include <cmrc/cmrc.hpp>
#include <cstddef>
#include "SDL_metal.h"
using namespace PICA;
CMRC_DECLARE(RendererMTL);
const u16 LIGHT_LUT_TEXTURE_WIDTH = 256;
// HACK: redefinition...
PICA::ColorFmt ToColorFormat(u32 format) {
switch (format) {
case 2: return PICA::ColorFmt::RGB565;
case 3: return PICA::ColorFmt::RGBA5551;
default: return static_cast<PICA::ColorFmt>(format);
}
}
MTL::Library* loadLibrary(MTL::Device* device, const cmrc::file& shaderSource) {
//MTL::CompileOptions* compileOptions = MTL::CompileOptions::alloc()->init();
NS::Error* error = nullptr;
MTL::Library* library = device->newLibrary(Metal::createDispatchData(shaderSource.begin(), shaderSource.size()), &error);
//MTL::Library* library = device->newLibrary(NS::String::string(source.c_str(), NS::ASCIIStringEncoding), compileOptions, &error);
if (error) {
Helpers::panic("Error loading shaders: %s", error->description()->cString(NS::ASCIIStringEncoding));
}
return library;
}
RendererMTL::RendererMTL(GPU& gpu, const std::array<u32, regNum>& internalRegs, const std::array<u32, extRegNum>& externalRegs)
: Renderer(gpu, internalRegs, externalRegs) {}
RendererMTL::~RendererMTL() {}
void RendererMTL::reset() {
colorRenderTargetCache.reset();
depthStencilRenderTargetCache.reset();
textureCache.reset();
// TODO: implement
Helpers::warn("RendererMTL::reset not implemented");
}
void RendererMTL::display() {
CA::MetalDrawable* drawable = metalLayer->nextDrawable();
if (!drawable) {
return;
}
using namespace PICA::ExternalRegs;
// Top screen
const u32 topActiveFb = externalRegs[Framebuffer0Select] & 1;
const u32 topScreenAddr = externalRegs[topActiveFb == 0 ? Framebuffer0AFirstAddr : Framebuffer0ASecondAddr];
auto topScreen = colorRenderTargetCache.findFromAddress(topScreenAddr);
if (topScreen) {
clearColor(nullptr, topScreen->get().texture);
}
// Bottom screen
const u32 bottomActiveFb = externalRegs[Framebuffer1Select] & 1;
const u32 bottomScreenAddr = externalRegs[bottomActiveFb == 0 ? Framebuffer1AFirstAddr : Framebuffer1ASecondAddr];
auto bottomScreen = colorRenderTargetCache.findFromAddress(bottomScreenAddr);
if (bottomScreen) {
clearColor(nullptr, bottomScreen->get().texture);
}
// -------- Draw --------
MTL::RenderPassDescriptor* renderPassDescriptor = MTL::RenderPassDescriptor::alloc()->init();
MTL::RenderPassColorAttachmentDescriptor* colorAttachment = renderPassDescriptor->colorAttachments()->object(0);
colorAttachment->setTexture(drawable->texture());
colorAttachment->setLoadAction(MTL::LoadActionClear);
colorAttachment->setClearColor(MTL::ClearColor{0.0f, 0.0f, 0.0f, 1.0f});
colorAttachment->setStoreAction(MTL::StoreActionStore);
beginRenderPassIfNeeded(renderPassDescriptor, false, drawable->texture());
renderCommandEncoder->setRenderPipelineState(displayPipeline);
renderCommandEncoder->setFragmentSamplerState(nearestSampler, 0);
// Top screen
if (topScreen) {
renderCommandEncoder->setViewport(MTL::Viewport{0, 0, 400, 240, 0.0f, 1.0f});
renderCommandEncoder->setFragmentTexture(topScreen->get().texture, 0);
renderCommandEncoder->drawPrimitives(MTL::PrimitiveTypeTriangleStrip, NS::UInteger(0), NS::UInteger(4));
}
// Bottom screen
if (bottomScreen) {
renderCommandEncoder->setViewport(MTL::Viewport{40, 240, 320, 240, 0.0f, 1.0f});
renderCommandEncoder->setFragmentTexture(bottomScreen->get().texture, 0);
renderCommandEncoder->drawPrimitives(MTL::PrimitiveTypeTriangleStrip, NS::UInteger(0), NS::UInteger(4));
}
endRenderPass();
commandBuffer->presentDrawable(drawable);
commitCommandBuffer();
// Inform the vertex buffer cache that the frame ended
vertexBufferCache.endFrame();
}
void RendererMTL::initGraphicsContext(SDL_Window* window) {
// TODO: what should be the type of the view?
void* view = SDL_Metal_CreateView(window);
metalLayer = (CA::MetalLayer*)SDL_Metal_GetLayer(view);
device = MTL::CreateSystemDefaultDevice();
metalLayer->setDevice(device);
commandQueue = device->newCommandQueue();
// -------- Objects --------
// Textures
MTL::TextureDescriptor* textureDescriptor = MTL::TextureDescriptor::alloc()->init();
textureDescriptor->setTextureType(MTL::TextureType1DArray);
textureDescriptor->setPixelFormat(MTL::PixelFormatR16Uint);
textureDescriptor->setWidth(LIGHT_LUT_TEXTURE_WIDTH);
textureDescriptor->setArrayLength(Lights::LUT_Count);
textureDescriptor->setUsage(MTL::TextureUsageShaderRead | MTL::TextureUsageShaderWrite);
textureDescriptor->setStorageMode(MTL::StorageModePrivate);
lightLUTTextureArray = device->newTexture(textureDescriptor);
textureDescriptor->release();
// Samplers
MTL::SamplerDescriptor* samplerDescriptor = MTL::SamplerDescriptor::alloc()->init();
nearestSampler = device->newSamplerState(samplerDescriptor);
samplerDescriptor->setMinFilter(MTL::SamplerMinMagFilterLinear);
samplerDescriptor->setMagFilter(MTL::SamplerMinMagFilterLinear);
linearSampler = device->newSamplerState(samplerDescriptor);
samplerDescriptor->release();
// -------- Pipelines --------
// Load shaders
auto mtlResources = cmrc::RendererMTL::get_filesystem();
MTL::Library* library = loadLibrary(device, mtlResources.open("metal_shaders.metallib"));
MTL::Library* copyToLutTextureLibrary = loadLibrary(device, mtlResources.open("metal_copy_to_lut_texture.metallib"));
// Display
MTL::Function* vertexDisplayFunction = library->newFunction(NS::String::string("vertexDisplay", NS::ASCIIStringEncoding));
MTL::Function* fragmentDisplayFunction = library->newFunction(NS::String::string("fragmentDisplay", NS::ASCIIStringEncoding));
MTL::RenderPipelineDescriptor* displayPipelineDescriptor = MTL::RenderPipelineDescriptor::alloc()->init();
displayPipelineDescriptor->setVertexFunction(vertexDisplayFunction);
displayPipelineDescriptor->setFragmentFunction(fragmentDisplayFunction);
auto* displayColorAttachment = displayPipelineDescriptor->colorAttachments()->object(0);
displayColorAttachment->setPixelFormat(MTL::PixelFormat::PixelFormatBGRA8Unorm);
NS::Error* error = nullptr;
displayPipeline = device->newRenderPipelineState(displayPipelineDescriptor, &error);
if (error) {
Helpers::panic("Error creating display pipeline state: %s", error->description()->cString(NS::ASCIIStringEncoding));
}
// Blit
MTL::Function* vertexBlitFunction = library->newFunction(NS::String::string("vertexBlit", NS::ASCIIStringEncoding));
MTL::Function* fragmentBlitFunction = library->newFunction(NS::String::string("fragmentBlit", NS::ASCIIStringEncoding));
blitPipelineCache.set(device, vertexBlitFunction, fragmentBlitFunction);
// Draw
MTL::Function* vertexDrawFunction = library->newFunction(NS::String::string("vertexDraw", NS::ASCIIStringEncoding));
// -------- Vertex descriptor --------
MTL::VertexDescriptor* vertexDescriptor = MTL::VertexDescriptor::alloc()->init();
// Position
MTL::VertexAttributeDescriptor* positionAttribute = vertexDescriptor->attributes()->object(0);
positionAttribute->setFormat(MTL::VertexFormatFloat4);
positionAttribute->setOffset(offsetof(Vertex, s.positions));
positionAttribute->setBufferIndex(VERTEX_BUFFER_BINDING_INDEX);
// Quaternion
MTL::VertexAttributeDescriptor* quaternionAttribute = vertexDescriptor->attributes()->object(1);
quaternionAttribute->setFormat(MTL::VertexFormatFloat4);
quaternionAttribute->setOffset(offsetof(Vertex, s.quaternion));
quaternionAttribute->setBufferIndex(VERTEX_BUFFER_BINDING_INDEX);
// Color
MTL::VertexAttributeDescriptor* colorAttribute = vertexDescriptor->attributes()->object(2);
colorAttribute->setFormat(MTL::VertexFormatFloat4);
colorAttribute->setOffset(offsetof(Vertex, s.colour));
colorAttribute->setBufferIndex(VERTEX_BUFFER_BINDING_INDEX);
// Texture coordinate 0
MTL::VertexAttributeDescriptor* texCoord0Attribute = vertexDescriptor->attributes()->object(3);
texCoord0Attribute->setFormat(MTL::VertexFormatFloat2);
texCoord0Attribute->setOffset(offsetof(Vertex, s.texcoord0));
texCoord0Attribute->setBufferIndex(VERTEX_BUFFER_BINDING_INDEX);
// Texture coordinate 1
MTL::VertexAttributeDescriptor* texCoord1Attribute = vertexDescriptor->attributes()->object(4);
texCoord1Attribute->setFormat(MTL::VertexFormatFloat2);
texCoord1Attribute->setOffset(offsetof(Vertex, s.texcoord1));
texCoord1Attribute->setBufferIndex(VERTEX_BUFFER_BINDING_INDEX);
// Texture coordinate 0 W
MTL::VertexAttributeDescriptor* texCoord0WAttribute = vertexDescriptor->attributes()->object(5);
texCoord0WAttribute->setFormat(MTL::VertexFormatFloat);
texCoord0WAttribute->setOffset(offsetof(Vertex, s.texcoord0_w));
texCoord0WAttribute->setBufferIndex(VERTEX_BUFFER_BINDING_INDEX);
// View
MTL::VertexAttributeDescriptor* viewAttribute = vertexDescriptor->attributes()->object(6);
viewAttribute->setFormat(MTL::VertexFormatFloat3);
viewAttribute->setOffset(offsetof(Vertex, s.view));
viewAttribute->setBufferIndex(VERTEX_BUFFER_BINDING_INDEX);
// Texture coordinate 2
MTL::VertexAttributeDescriptor* texCoord2Attribute = vertexDescriptor->attributes()->object(7);
texCoord2Attribute->setFormat(MTL::VertexFormatFloat2);
texCoord2Attribute->setOffset(offsetof(Vertex, s.texcoord2));
texCoord2Attribute->setBufferIndex(VERTEX_BUFFER_BINDING_INDEX);
MTL::VertexBufferLayoutDescriptor* vertexBufferLayout = vertexDescriptor->layouts()->object(VERTEX_BUFFER_BINDING_INDEX);
vertexBufferLayout->setStride(sizeof(Vertex));
vertexBufferLayout->setStepFunction(MTL::VertexStepFunctionPerVertex);
vertexBufferLayout->setStepRate(1);
drawPipelineCache.set(device, library, vertexDrawFunction, vertexDescriptor);
// Copy to LUT texture
MTL::FunctionConstantValues* constants = MTL::FunctionConstantValues::alloc()->init();
constants->setConstantValue(&LIGHT_LUT_TEXTURE_WIDTH, MTL::DataTypeUShort, NS::UInteger(0));
error = nullptr;
MTL::Function* vertexCopyToLutTextureFunction = copyToLutTextureLibrary->newFunction(NS::String::string("vertexCopyToLutTexture", NS::ASCIIStringEncoding), constants, &error);
if (error) {
Helpers::panic("Error creating copy_to_lut_texture vertex function: %s", error->description()->cString(NS::ASCIIStringEncoding));
}
constants->release();
MTL::RenderPipelineDescriptor* copyToLutTexturePipelineDescriptor = MTL::RenderPipelineDescriptor::alloc()->init();
copyToLutTexturePipelineDescriptor->setVertexFunction(vertexCopyToLutTextureFunction);
// Disable rasterization
copyToLutTexturePipelineDescriptor->setRasterizationEnabled(false);
error = nullptr;
copyToLutTexturePipeline = device->newRenderPipelineState(copyToLutTexturePipelineDescriptor, &error);
if (error) {
Helpers::panic("Error creating copy_to_lut_texture pipeline state: %s", error->description()->cString(NS::ASCIIStringEncoding));
}
// Depth stencil cache
depthStencilCache.set(device);
// Vertex buffer cache
vertexBufferCache.set(device);
// -------- Depth stencil state --------
MTL::DepthStencilDescriptor* depthStencilDescriptor = MTL::DepthStencilDescriptor::alloc()->init();
defaultDepthStencilState = device->newDepthStencilState(depthStencilDescriptor);
}
void RendererMTL::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
const auto color = colorRenderTargetCache.findFromAddress(startAddress);
if (color) {
const float r = Helpers::getBits<24, 8>(value) / 255.0f;
const float g = Helpers::getBits<16, 8>(value) / 255.0f;
const float b = Helpers::getBits<8, 8>(value) / 255.0f;
const float a = (value & 0xff) / 255.0f;
colorClearOps[color->get().texture] = {r, g, b, a};
return;
}
const auto depth = depthStencilRenderTargetCache.findFromAddress(startAddress);
if (depth) {
float depthVal;
const auto format = depth->get().format;
if (format == DepthFmt::Depth16) {
depthVal = (value & 0xffff) / 65535.0f;
} else {
depthVal = (value & 0xffffff) / 16777215.0f;
}
depthClearOps[depth->get().texture] = depthVal;
if (format == DepthFmt::Depth24Stencil8) {
const u8 stencilVal = value >> 24;
stencilClearOps[depth->get().texture] = stencilVal;
}
return;
}
Helpers::warn("[RendererMTL::ClearBuffer] No buffer found!\n");
}
void RendererMTL::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
const u32 inputWidth = inputSize & 0xffff;
const u32 inputHeight = inputSize >> 16;
const auto inputFormat = ToColorFormat(Helpers::getBits<8, 3>(flags));
const auto outputFormat = ToColorFormat(Helpers::getBits<12, 3>(flags));
const bool verticalFlip = flags & 1;
const PICA::Scaling scaling = static_cast<PICA::Scaling>(Helpers::getBits<24, 2>(flags));
u32 outputWidth = outputSize & 0xffff;
u32 outputHeight = outputSize >> 16;
auto srcFramebuffer = getColorRenderTarget(inputAddr, inputFormat, inputWidth, outputHeight);
clearColor(nullptr, srcFramebuffer->texture);
Math::Rect<u32> srcRect = srcFramebuffer->getSubRect(inputAddr, outputWidth, outputHeight);
if (verticalFlip) {
std::swap(srcRect.bottom, srcRect.top);
}
// Apply scaling for the destination rectangle.
if (scaling == PICA::Scaling::X || scaling == PICA::Scaling::XY) {
outputWidth >>= 1;
}
if (scaling == PICA::Scaling::XY) {
outputHeight >>= 1;
}
auto destFramebuffer = getColorRenderTarget(outputAddr, outputFormat, outputWidth, outputHeight);
// TODO: clear if not blitting to the whole framebuffer
Math::Rect<u32> destRect = destFramebuffer->getSubRect(outputAddr, outputWidth, outputHeight);
if (inputWidth != outputWidth) {
// Helpers::warn("Strided display transfer is not handled correctly!\n");
}
// TODO: respect regions
MTL::RenderPassDescriptor* renderPassDescriptor = MTL::RenderPassDescriptor::alloc()->init();
MTL::RenderPassColorAttachmentDescriptor* colorAttachment = renderPassDescriptor->colorAttachments()->object(0);
colorAttachment->setTexture(destFramebuffer->texture);
colorAttachment->setLoadAction(MTL::LoadActionClear);
colorAttachment->setClearColor(MTL::ClearColor{0.0, 0.0, 0.0, 1.0});
colorAttachment->setStoreAction(MTL::StoreActionStore);
// Pipeline
Metal::BlitPipelineHash hash{destFramebuffer->format, DepthFmt::Unknown1};
auto blitPipeline = blitPipelineCache.get(hash);
beginRenderPassIfNeeded(renderPassDescriptor, false, destFramebuffer->texture);
renderCommandEncoder->setRenderPipelineState(blitPipeline);
renderCommandEncoder->setFragmentTexture(srcFramebuffer->texture, 0);
renderCommandEncoder->setFragmentSamplerState(nearestSampler, 0);
renderCommandEncoder->drawPrimitives(MTL::PrimitiveTypeTriangleStrip, NS::UInteger(0), NS::UInteger(4));
}
void RendererMTL::textureCopy(u32 inputAddr, u32 outputAddr, u32 totalBytes, u32 inputSize, u32 outputSize, u32 flags) {
// TODO: implement
Helpers::warn("RendererMTL::textureCopy not implemented");
}
void RendererMTL::drawVertices(PICA::PrimType primType, std::span<const PICA::Vertex> vertices) {
// Color
auto colorRenderTarget = getColorRenderTarget(colourBufferLoc, colourBufferFormat, fbSize[0], fbSize[1]);
// Depth stencil
const u32 depthControl = regs[PICA::InternalRegs::DepthAndColorMask];
const bool depthStencilWrite = regs[PICA::InternalRegs::DepthBufferWrite];
const bool depthEnable = depthControl & 0x1;
const bool depthWriteEnable = Helpers::getBit<12>(depthControl);
const u8 depthFunc = Helpers::getBits<4, 3>(depthControl);
const u8 colorMask = Helpers::getBits<8, 4>(depthControl);
// TODO: color mask
// gl.setColourMask(colorMask & 0x1, colorMask & 0x2, colorMask & 0x4, colorMask & 0x8);
Metal::DepthStencilHash depthStencilHash{false, 1};
depthStencilHash.stencilConfig = regs[PICA::InternalRegs::StencilTest];
depthStencilHash.stencilOpConfig = regs[PICA::InternalRegs::StencilOp];
const bool stencilEnable = Helpers::getBit<0>(depthStencilHash.stencilConfig);
std::optional<Metal::DepthStencilRenderTarget> depthStencilRenderTarget = std::nullopt;
if (depthEnable) {
depthStencilHash.depthStencilWrite = depthWriteEnable && depthStencilWrite;
depthStencilHash.depthFunc = depthFunc;
depthStencilRenderTarget = getDepthRenderTarget();
} else {
if (depthWriteEnable) {
depthStencilHash.depthStencilWrite = true;
depthStencilRenderTarget = getDepthRenderTarget();
} else if (stencilEnable) {
depthStencilRenderTarget = getDepthRenderTarget();
}
}
// Depth uniforms
struct {
float depthScale;
float depthOffset;
bool depthMapEnable;
} depthUniforms;
depthUniforms.depthScale = Floats::f24::fromRaw(regs[PICA::InternalRegs::DepthScale] & 0xffffff).toFloat32();
depthUniforms.depthOffset = Floats::f24::fromRaw(regs[PICA::InternalRegs::DepthOffset] & 0xffffff).toFloat32();
depthUniforms.depthMapEnable = regs[PICA::InternalRegs::DepthmapEnable] & 1;
// -------- Pipeline --------
Metal::DrawPipelineHash pipelineHash{colorRenderTarget->format, DepthFmt::Unknown1};
if (depthStencilRenderTarget) {
pipelineHash.depthFmt = depthStencilRenderTarget->format;
}
pipelineHash.lightingEnabled = regs[0x008F] & 1;
pipelineHash.lightingNumLights = regs[0x01C2] & 0x7;
pipelineHash.lightingConfig1 = regs[0x01C4u] >> 16; // Last 16 bits are unused, so skip them
pipelineHash.alphaControl = regs[0x104];
// Blending and logic op
pipelineHash.blendEnabled = (regs[PICA::InternalRegs::ColourOperation] & (1 << 8)) != 0;
u8 logicOp = 3; // Copy, which doesn't do anything
if (pipelineHash.blendEnabled) {
pipelineHash.blendControl = regs[PICA::InternalRegs::BlendFunc];
// TODO: constant color
//pipelineHash.constantColor = regs[PICA::InternalRegs::BlendColour];
//const u8 r = pipelineHash.constantColor & 0xff;
//const u8 g = Helpers::getBits<8, 8>(pipelineHash.constantColor);
//const u8 b = Helpers::getBits<16, 8>(pipelineHash.constantColor);
//const u8 a = Helpers::getBits<24, 8>(pipelineHash.constantColor);
} else {
logicOp = Helpers::getBits<0, 4>(regs[PICA::InternalRegs::LogicOp]);
}
MTL::RenderPipelineState* pipeline = drawPipelineCache.get(pipelineHash);
// Depth stencil state
MTL::DepthStencilState* depthStencilState = depthStencilCache.get(depthStencilHash);
// -------- Render --------
MTL::RenderPassDescriptor* renderPassDescriptor = MTL::RenderPassDescriptor::alloc()->init();
bool doesClear = clearColor(renderPassDescriptor, colorRenderTarget->texture);
if (depthStencilRenderTarget) {
if (clearDepth(renderPassDescriptor, depthStencilRenderTarget->texture))
doesClear = true;
if (depthStencilRenderTarget->format == DepthFmt::Depth24Stencil8) {
if (clearStencil(renderPassDescriptor, depthStencilRenderTarget->texture))
doesClear = true;
}
}
beginRenderPassIfNeeded(renderPassDescriptor, doesClear, colorRenderTarget->texture, (depthStencilRenderTarget ? depthStencilRenderTarget->texture : nullptr));
// Update the LUT texture if necessary
if (gpu.lightingLUTDirty) {
updateLightingLUT(renderCommandEncoder);
}
renderCommandEncoder->setRenderPipelineState(pipeline);
renderCommandEncoder->setDepthStencilState(depthStencilState);
// If size is < 4KB, use inline vertex data, otherwise use a buffer
if (vertices.size_bytes() < 4 * 1024) {
renderCommandEncoder->setVertexBytes(vertices.data(), vertices.size_bytes(), VERTEX_BUFFER_BINDING_INDEX);
} else {
Metal::BufferHandle buffer = vertexBufferCache.get(vertices);
renderCommandEncoder->setVertexBuffer(buffer.buffer, buffer.offset, VERTEX_BUFFER_BINDING_INDEX);
}
// Bind resources
setupTextureEnvState(renderCommandEncoder);
bindTexturesToSlots(renderCommandEncoder);
renderCommandEncoder->setVertexBytes(&regs[0x48], (0x200 - 0x48) * sizeof(regs[0]), 0);
renderCommandEncoder->setFragmentBytes(&regs[0x48], (0x200 - 0x48) * sizeof(regs[0]), 0);
renderCommandEncoder->setVertexBytes(&depthUniforms, sizeof(depthUniforms), 2);
renderCommandEncoder->setFragmentBytes(&logicOp, sizeof(logicOp), 2);
renderCommandEncoder->drawPrimitives(toMTLPrimitiveType(primType), NS::UInteger(0), NS::UInteger(vertices.size()));
}
void RendererMTL::screenshot(const std::string& name) {
// TODO: implement
Helpers::warn("RendererMTL::screenshot not implemented");
}
void RendererMTL::deinitGraphicsContext() {
colorRenderTargetCache.reset();
depthStencilRenderTargetCache.reset();
textureCache.reset();
// TODO: implement
Helpers::warn("RendererMTL::deinitGraphicsContext not implemented");
}
std::optional<Metal::ColorRenderTarget> RendererMTL::getColorRenderTarget(
u32 addr, PICA::ColorFmt format, u32 width, u32 height, bool createIfnotFound
) {
// Try to find an already existing buffer that contains the provided address
// This is a more relaxed check compared to getColourFBO as display transfer/texcopy may refer to
// subrect of a surface and in case of texcopy we don't know the format of the surface.
auto buffer = colorRenderTargetCache.findFromAddress(addr);
if (buffer.has_value()) {
return buffer.value().get();
}
if (!createIfnotFound) {
return std::nullopt;
}
// Otherwise create and cache a new buffer.
Metal::ColorRenderTarget sampleBuffer(device, addr, format, width, height);
return colorRenderTargetCache.add(sampleBuffer);
}
Metal::DepthStencilRenderTarget& RendererMTL::getDepthRenderTarget() {
Metal::DepthStencilRenderTarget sampleBuffer(device, depthBufferLoc, depthBufferFormat, fbSize[0], fbSize[1]);
auto buffer = depthStencilRenderTargetCache.find(sampleBuffer);
if (buffer.has_value()) {
return buffer.value().get();
} else {
return depthStencilRenderTargetCache.add(sampleBuffer);
}
}
Metal::Texture& RendererMTL::getTexture(Metal::Texture& tex) {
auto buffer = textureCache.find(tex);
if (buffer.has_value()) {
return buffer.value().get();
} else {
const auto textureData = std::span{gpu.getPointerPhys<u8>(tex.location), tex.sizeInBytes()}; // Get pointer to the texture data in 3DS memory
Metal::Texture& newTex = textureCache.add(tex);
newTex.decodeTexture(textureData);
return newTex;
}
}
void RendererMTL::setupTextureEnvState(MTL::RenderCommandEncoder* encoder) {
static constexpr std::array<u32, 6> ioBases = {
PICA::InternalRegs::TexEnv0Source, PICA::InternalRegs::TexEnv1Source, PICA::InternalRegs::TexEnv2Source,
PICA::InternalRegs::TexEnv3Source, PICA::InternalRegs::TexEnv4Source, PICA::InternalRegs::TexEnv5Source,
};
struct {
u32 textureEnvSourceRegs[6];
u32 textureEnvOperandRegs[6];
u32 textureEnvCombinerRegs[6];
u32 textureEnvScaleRegs[6];
} envState;
u32 textureEnvColourRegs[6];
for (int i = 0; i < 6; i++) {
const u32 ioBase = ioBases[i];
envState.textureEnvSourceRegs[i] = regs[ioBase];
envState.textureEnvOperandRegs[i] = regs[ioBase + 1];
envState.textureEnvCombinerRegs[i] = regs[ioBase + 2];
textureEnvColourRegs[i] = regs[ioBase + 3];
envState.textureEnvScaleRegs[i] = regs[ioBase + 4];
}
encoder->setVertexBytes(&textureEnvColourRegs, sizeof(textureEnvColourRegs), 1);
encoder->setFragmentBytes(&envState, sizeof(envState), 1);
}
void RendererMTL::bindTexturesToSlots(MTL::RenderCommandEncoder* encoder) {
static constexpr std::array<u32, 3> ioBases = {
PICA::InternalRegs::Tex0BorderColor,
PICA::InternalRegs::Tex1BorderColor,
PICA::InternalRegs::Tex2BorderColor,
};
for (int i = 0; i < 3; i++) {
if ((regs[PICA::InternalRegs::TexUnitCfg] & (1 << i)) == 0) {
continue;
}
const size_t ioBase = ioBases[i];
const u32 dim = regs[ioBase + 1];
const u32 config = regs[ioBase + 2];
const u32 height = dim & 0x7ff;
const u32 width = Helpers::getBits<16, 11>(dim);
const u32 addr = (regs[ioBase + 4] & 0x0FFFFFFF) << 3;
u32 format = regs[ioBase + (i == 0 ? 13 : 5)] & 0xF;
if (addr != 0) [[likely]] {
Metal::Texture targetTex(device, addr, static_cast<PICA::TextureFmt>(format), width, height, config);
auto tex = getTexture(targetTex);
encoder->setFragmentTexture(tex.texture, i);
encoder->setFragmentSamplerState(tex.sampler ? tex.sampler : nearestSampler, i);
} else {
// TODO: bind a dummy texture?
}
}
// LUT texture
encoder->setFragmentTexture(lightLUTTextureArray, 3);
encoder->setFragmentSamplerState(linearSampler, 3);
}
void RendererMTL::updateLightingLUT(MTL::RenderCommandEncoder* encoder) {
gpu.lightingLUTDirty = false;
std::array<u16, GPU::LightingLutSize> u16_lightinglut;
for (int i = 0; i < gpu.lightingLUT.size(); i++) {
uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
u16_lightinglut[i] = value * 65535 / 4095;
}
//for (int i = 0; i < Lights::LUT_Count; i++) {
// lightLUTTextureArray->replaceRegion(MTL::Region(0, 0, LIGHT_LUT_TEXTURE_WIDTH, 1), 0, i, u16_lightinglut.data() + LIGHT_LUT_TEXTURE_WIDTH * i, 0, 0);
//}
renderCommandEncoder->setRenderPipelineState(copyToLutTexturePipeline);
renderCommandEncoder->setDepthStencilState(defaultDepthStencilState);
renderCommandEncoder->setVertexTexture(lightLUTTextureArray, 0);
renderCommandEncoder->setVertexBytes(u16_lightinglut.data(), sizeof(u16_lightinglut), 0);
renderCommandEncoder->drawPrimitives(MTL::PrimitiveTypeTriangle, NS::UInteger(0), GPU::LightingLutSize);
}