Panda3DS/include/PICA/dynapica/shader_rec_emitter_x64.hpp
2024-07-16 22:14:01 +03:00

159 lines
No EOL
7.3 KiB
C++

#pragma once
// Only do anything if we're on an x64 target with JIT support enabled
#if defined(PANDA3DS_DYNAPICA_SUPPORTED) && defined(PANDA3DS_X64_HOST)
#include <vector>
#include "PICA/shader.hpp"
#include "helpers.hpp"
#include "logger.hpp"
#include "x64_regs.hpp"
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
class ShaderEmitter : public Xbyak::CodeGenerator {
static constexpr size_t executableMemorySize = PICAShader::maxInstructionCount * 96; // How much executable memory to alloc for each shader
// Allocate some extra space as padding for security purposes in the extremely unlikely occasion we manage to overflow the above size
static constexpr size_t allocSize = executableMemorySize + 0x1000;
// If the swizzle field is this value then the swizzle pattern is .xyzw so we don't need a shuffle
static constexpr uint noSwizzle = 0x1B;
using f24 = Floats::f24;
using vec4f = std::array<f24, 4>;
// An array of labels (incl pointers) to each compiled (to x64) PICA instruction
std::array<Xbyak::Label, PICAShader::maxInstructionCount> instructionLabels;
// A vector of PCs that can potentially return based on the state of the PICA callstack.
// Filled before compiling a shader by scanning the code for call instructions
std::vector<u32> returnPCs;
// Vector value of (-0.0, -0.0, -0.0, -0.0) for negating vectors via pxor
Label negateVector;
// Vector value of (1.0, 1.0, 1.0, 1.0) for SLT(i)/SGE(i)
Label onesVector;
// Vector value of (0xFF, 0xFF, 0xFF, 0) for setting the w component to 0 in DP3
Label dp3Vector;
u32 recompilerPC = 0; // PC the recompiler is currently recompiling @
u32 loopLevel = 0; // The current loop nesting level (0 = not in a loop)
bool haveSSE4_1 = false; // Shows if the CPU supports SSE4.1
bool haveAVX = false; // Shows if the CPU supports AVX (NOT AVX2, NOT AVX512. Regular AVX)
bool haveFMA3 = false; // Shows if the CPU supports FMA3
// Shows whether the loaded shader has any log2 and exp2 instructions
bool codeHasLog2 = false;
bool codeHasExp2 = false;
// Whether to compile this shader using accurate, safe, non-IEEE multiplication (slow) or faster but less accurate mul
bool useSafeMUL = false;
Xbyak::Label log2Func, exp2Func;
Xbyak::Label emitLog2Func();
Xbyak::Label emitExp2Func();
Xbyak::util::Cpu cpuCaps;
// Emit a PICA200-compliant multiplication that handles "0 * inf = 0"
void emitSafeMUL(Xbyak::Xmm src1, Xbyak::Xmm src2, Xbyak::Xmm scratch);
// Compile all instructions from [current recompiler PC, end)
void compileUntil(const PICAShader& shaderUnit, u32 endPC);
// Compile instruction "instr"
void compileInstruction(const PICAShader& shaderUnit);
bool isCall(u32 instruction) {
const u32 opcode = instruction >> 26;
return (opcode == ShaderOpcodes::CALL) || (opcode == ShaderOpcodes::CALLC) || (opcode == ShaderOpcodes::CALLU);
}
// Scan the shader code for call instructions to fill up the returnPCs vector before starting compilation
// We also scan for log2/exp2 instructions to see whether to emit the relevant functions
void scanCode(const PICAShader& shaderUnit);
// Load register with number "srcReg" indexed by index "idx" into the xmm register "reg"
template <int sourceIndex>
void loadRegister(Xmm dest, const PICAShader& shader, u32 src, u32 idx, u32 operandDescriptor);
void storeRegister(Xmm source, const PICAShader& shader, u32 dest, u32 operandDescriptor);
const vec4f& getSourceRef(const PICAShader& shader, u32 src);
const vec4f& getDestRef(const PICAShader& shader, u32 dest);
// Check the value of the cmp register for instructions like ifc and callc
// Result is returned in the zero flag. If the comparison is true then zero == 1, else zero == 0
void checkCmpRegister(const PICAShader& shader, u32 instruction);
// Check the value of the bool uniform for instructions like ifu and callu
// Result is returned in the zero flag. If the comparison is true then zero == 0, else zero == 1 (Opposite of checkCmpRegister)
void checkBoolUniform(const PICAShader& shader, u32 instruction);
// Prints a log. This is not meant to be used outside of debugging so it is very slow with our internal ABI.
void emitPrintLog(const PICAShader& shaderUnit);
static void printLog(const PICAShader& shaderUnit);
// Instruction recompilation functions
void recADD(const PICAShader& shader, u32 instruction);
void recCALL(const PICAShader& shader, u32 instruction);
void recCALLC(const PICAShader& shader, u32 instruction);
void recCALLU(const PICAShader& shader, u32 instruction);
void recCMP(const PICAShader& shader, u32 instruction);
void recDP3(const PICAShader& shader, u32 instruction);
void recDP4(const PICAShader& shader, u32 instruction);
void recDPH(const PICAShader& shader, u32 instruction);
void recEMIT(const PICAShader& shader, u32 instruction);
void recEND(const PICAShader& shader, u32 instruction);
void recEX2(const PICAShader& shader, u32 instruction);
void recFLR(const PICAShader& shader, u32 instruction);
void recIFC(const PICAShader& shader, u32 instruction);
void recIFU(const PICAShader& shader, u32 instruction);
void recJMPC(const PICAShader& shader, u32 instruction);
void recJMPU(const PICAShader& shader, u32 instruction);
void recLG2(const PICAShader& shader, u32 instruction);
void recLOOP(const PICAShader& shader, u32 instruction);
void recMAD(const PICAShader& shader, u32 instruction);
void recMAX(const PICAShader& shader, u32 instruction);
void recMIN(const PICAShader& shader, u32 instruction);
void recMOVA(const PICAShader& shader, u32 instruction);
void recMOV(const PICAShader& shader, u32 instruction);
void recMUL(const PICAShader& shader, u32 instruction);
void recRCP(const PICAShader& shader, u32 instruction);
void recRSQ(const PICAShader& shader, u32 instruction);
void recSETEMIT(const PICAShader& shader, u32 instruction);
void recSGE(const PICAShader& shader, u32 instruction);
void recSLT(const PICAShader& shader, u32 instruction);
MAKE_LOG_FUNCTION(log, shaderJITLogger)
public:
// Callback type used for instructions
using InstructionCallback = const void (*)(PICAShader& shaderUnit);
// Callback type used for the JIT prologue. This is what the caller will call
using PrologueCallback = const void (*)(PICAShader& shaderUnit, InstructionCallback cb);
PrologueCallback prologueCb = nullptr;
// Initialize our emitter with "allocSize" bytes of RWX memory
ShaderEmitter(bool useSafeMUL) : Xbyak::CodeGenerator(allocSize), useSafeMUL(useSafeMUL) {
cpuCaps = Xbyak::util::Cpu();
haveSSE4_1 = cpuCaps.has(Xbyak::util::Cpu::tSSE41);
haveAVX = cpuCaps.has(Xbyak::util::Cpu::tAVX);
haveFMA3 = cpuCaps.has(Xbyak::util::Cpu::tFMA);
if (!cpuCaps.has(Xbyak::util::Cpu::tSSE3)) {
Helpers::panic("This CPU does not support SSE3. Please use the shader interpreter instead");
}
}
void compile(const PICAShader& shaderUnit);
// PC must be a valid entrypoint here. It doesn't have that much overhead in this case, so we use std::array<>::at() to assert it does
InstructionCallback getInstructionCallback(u32 pc) {
// Cast away the constness because casting to a function pointer is hard otherwise. Legal as long as we don't write to *ptr
uint8_t* ptr = const_cast<uint8_t*>(instructionLabels.at(pc).getAddress());
return reinterpret_cast<InstructionCallback>(ptr);
}
PrologueCallback getPrologueCallback() { return prologueCb; }
};
#endif // x64 recompiler check