[arm64 shader JIT] Booting OoT now

This commit is contained in:
wheremyfoodat 2024-01-04 23:25:46 +02:00
parent fe01df588b
commit 6c2e0be07d
3 changed files with 406 additions and 26 deletions

View file

@ -30,8 +30,6 @@ class ShaderEmitter : private oaknut::CodeBlock, public oaknut::CodeGenerator {
// An array of 128-bit masks for blending registers together to perform masked writes.
// Eg for writing only the x and y components, the mask is 0x00000000'00000000'FFFFFFFF'FFFF
oaknut::Label blendMasks;
// Vector value of (1.0, 1.0, 1.0, 1.0) for SLT(i)/SGE(i)
oaknut::Label onesVector;
u32 recompilerPC = 0; // PC the recompiler is currently recompiling @
u32 loopLevel = 0; // The current loop nesting level (0 = not in a loop)

View file

@ -14,6 +14,7 @@ static constexpr QReg scratch2 = Q1;
static constexpr QReg src1_vec = Q2;
static constexpr QReg src2_vec = Q3;
static constexpr QReg src3_vec = Q4;
static constexpr QReg onesVector = Q5;
static constexpr XReg arg1 = X0;
static constexpr XReg arg2 = X1;
@ -43,6 +44,15 @@ void ShaderEmitter::compile(const PICAShader& shaderUnit) {
// Set state pointer to the proper pointer
// state pointer is volatile, no need to preserve it
MOV(statePointer, arg1);
// Generate a vector of all 1.0s for SLT/SGE/RCP/RSQ
FMOV(onesVector.S4(), FImm8(0x70));
// Push a return guard on the stack. This happens due to the way we handle the PICA callstack, by pushing the return PC to stack
// By pushing -1, we make it impossible for a return check to erroneously pass
MOV(arg1, 0xffffffffffffffffll);
// Backup link register (X30) and push return guard
STP(arg1, X30, SP, PRE_INDEXED, -16);
// Jump to code with a tail call
BR(arg2);
@ -100,7 +110,15 @@ void ShaderEmitter::compileInstruction(const PICAShader& shaderUnit) {
// See if PC is a possible return PC and emit the proper code if so
if (std::binary_search(returnPCs.begin(), returnPCs.end(), recompilerPC)) {
Helpers::panic("Unimplemented return address for call instruction");
Label skipReturn;
LDP(X0, XZR, SP); // W0 = Next return address
MOV(W1, recompilerPC); // W1 = Current PC
CMP(W0, W1); // If they're equal, execute a RET, otherwise skip it
B(NE, skipReturn);
RET();
l(skipReturn);
}
// Fetch instruction and inc PC
@ -109,11 +127,11 @@ void ShaderEmitter::compileInstruction(const PICAShader& shaderUnit) {
switch (opcode) {
case ShaderOpcodes::ADD: recADD(shaderUnit, instruction); break;
// case ShaderOpcodes::CALL: recCALL(shaderUnit, instruction); break;
case ShaderOpcodes::CALL: recCALL(shaderUnit, instruction); break;
// case ShaderOpcodes::CALLC: recCALLC(shaderUnit, instruction); break;
// case ShaderOpcodes::CALLU: recCALLU(shaderUnit, instruction); break;
// case ShaderOpcodes::CMP1:
// case ShaderOpcodes::CMP2: recCMP(shaderUnit, instruction); break;
case ShaderOpcodes::CMP1:
case ShaderOpcodes::CMP2: recCMP(shaderUnit, instruction); break;
case ShaderOpcodes::DP3: recDP3(shaderUnit, instruction); break;
case ShaderOpcodes::DP4: recDP4(shaderUnit, instruction); break;
// case ShaderOpcodes::DPH:
@ -121,19 +139,19 @@ void ShaderEmitter::compileInstruction(const PICAShader& shaderUnit) {
case ShaderOpcodes::END: recEND(shaderUnit, instruction); break;
// case ShaderOpcodes::EX2: recEX2(shaderUnit, instruction); break;
// case ShaderOpcodes::FLR: recFLR(shaderUnit, instruction); break;
// case ShaderOpcodes::IFC: recIFC(shaderUnit, instruction); break;
// case ShaderOpcodes::IFU: recIFU(shaderUnit, instruction); break;
// case ShaderOpcodes::JMPC: recJMPC(shaderUnit, instruction); break;
case ShaderOpcodes::IFC: recIFC(shaderUnit, instruction); break;
case ShaderOpcodes::IFU: recIFU(shaderUnit, instruction); break;
case ShaderOpcodes::JMPC: recJMPC(shaderUnit, instruction); break;
// case ShaderOpcodes::JMPU: recJMPU(shaderUnit, instruction); break;
// case ShaderOpcodes::LG2: recLG2(shaderUnit, instruction); break;
// case ShaderOpcodes::LOOP: recLOOP(shaderUnit, instruction); break;
case ShaderOpcodes::MOV: recMOV(shaderUnit, instruction); break;
// case ShaderOpcodes::MOVA: recMOVA(shaderUnit, instruction); break;
case ShaderOpcodes::MOVA: recMOVA(shaderUnit, instruction); break;
case ShaderOpcodes::MAX: recMAX(shaderUnit, instruction); break;
case ShaderOpcodes::MIN: recMIN(shaderUnit, instruction); break;
case ShaderOpcodes::MUL: recMUL(shaderUnit, instruction); break;
case ShaderOpcodes::NOP: break;
// case ShaderOpcodes::RCP: recRCP(shaderUnit, instruction); break;
case ShaderOpcodes::RCP: recRCP(shaderUnit, instruction); break;
case ShaderOpcodes::RSQ: recRSQ(shaderUnit, instruction); break;
// Unimplemented opcodes that don't seem to actually be used but exist in the binary
@ -216,6 +234,8 @@ void ShaderEmitter::loadRegister(QReg dest, const PICAShader& shader, u32 src, u
compSwizzle = getBits<23, 8>(operandDescriptor);
}
// TODO: Do indexes get applied if src < 0x20?
switch (index) {
case 0:
[[likely]] { // Keep src as is, no need to offset it
@ -228,8 +248,39 @@ void ShaderEmitter::loadRegister(QReg dest, const PICAShader& shader, u32 src, u
case 0x0: DUP(dest.S4(), dest.Selem()[0]); break; // .xxxx
case 0x55: DUP(dest.S4(), dest.Selem()[1]); break; // .yyyy
case 0xAA: DUP(dest.S4(), dest.Selem()[2]); break; // .zzzz
case 0xFF: DUP(dest.S4(), dest.Selem()[3]); break; // .wwww
default: Helpers::panic("Unimplemented swizzle pattern for loading");
case 0xFF:
DUP(dest.S4(), dest.Selem()[3]);
break; // .wwww
// Some of these cases may still be optimizable
default: {
MOV(scratch1.B16(), dest.B16()); // Make a copy of the register
const auto newX = getBits<6, 2>(compSwizzle);
const auto newY = getBits<4, 2>(compSwizzle);
const auto newZ = getBits<2, 2>(compSwizzle);
const auto newW = getBits<0, 2>(compSwizzle);
// If the lane swizzled into the new x component is NOT the current x component, swizzle the correct lane with a mov
// Repeat for each component of the vector
if (newX != 0) {
MOV(dest.Selem()[0], scratch1.Selem()[newX]);
}
if (newY != 1) {
MOV(dest.Selem()[1], scratch1.Selem()[newY]);
}
if (newZ != 2) {
MOV(dest.Selem()[2], scratch1.Selem()[newZ]);
}
if (newW != 3) {
MOV(dest.Selem()[3], scratch1.Selem()[newW]);
}
break;
}
}
// Negate the register if necessary
@ -239,10 +290,117 @@ void ShaderEmitter::loadRegister(QReg dest, const PICAShader& shader, u32 src, u
return; // Return. Rest of the function handles indexing which is not used if index == 0
}
case 1: {
const uintptr_t addrXOffset = uintptr_t(&shader.addrRegister[0]) - uintptr_t(&shader);
LDRSW(X0, statePointer, addrXOffset); // X0 = address register X
break;
}
case 2: {
const uintptr_t addrYOffset = uintptr_t(&shader.addrRegister[1]) - uintptr_t(&shader);
LDRSW(X0, statePointer, addrYOffset); // X0 = address register Y
break;
}
case 3: {
const uintptr_t loopCounterOffset = uintptr_t(&shader.loopCounter) - uintptr_t(&shader);
LDR(W0, statePointer, loopCounterOffset); // X0 = loop counter
break;
}
default: Helpers::panic("[ShaderJIT]: Unimplemented source index type %d", index);
}
Helpers::panic("Unimplemented indexed register load");
// Swizzle and load register into dest, from [state pointer + X1 + offset] and apply the relevant swizzle. Thrashes X2
auto swizzleAndLoadReg = [this, &dest, &compSwizzle](size_t offset) {
MOV(X2, offset);
ADD(X1, X1, X2);
LDR(dest, statePointer, X1);
switch (compSwizzle) {
case noSwizzle: break; // .xyzw
case 0x0: DUP(dest.S4(), dest.Selem()[0]); break; // .xxxx
case 0x55: DUP(dest.S4(), dest.Selem()[1]); break; // .yyyy
case 0xAA: DUP(dest.S4(), dest.Selem()[2]); break; // .zzzz
case 0xFF:
DUP(dest.S4(), dest.Selem()[3]);
break; // .wwww
// Some of these cases may still be optimizable
default: {
MOV(scratch1.B16(), dest.B16()); // Make a copy of the register
const auto newX = getBits<6, 2>(compSwizzle);
const auto newY = getBits<4, 2>(compSwizzle);
const auto newZ = getBits<2, 2>(compSwizzle);
const auto newW = getBits<0, 2>(compSwizzle);
// If the lane swizzled into the new x component is NOT the current x component, swizzle the correct lane with a mov
// Repeat for each component of the vector
if (newX != 0) {
MOV(dest.Selem()[0], scratch1.Selem()[newX]);
}
if (newY != 1) {
MOV(dest.Selem()[1], scratch1.Selem()[newY]);
}
if (newZ != 2) {
MOV(dest.Selem()[2], scratch1.Selem()[newZ]);
}
if (newW != 3) {
MOV(dest.Selem()[3], scratch1.Selem()[newW]);
}
break;
}
}
};
// Here we handle what happens when using indexed addressing & we can't predict what register will be read at compile time
// The index of the access is assumed to be in X0
// Add source register (src) and index (X0) to form the final register
ADD(X0, X0, src);
Label maybeTemp, maybeUniform, unknownReg, end;
const uintptr_t inputOffset = uintptr_t(&shader.inputs[0]) - uintptr_t(&shader);
const uintptr_t tempOffset = uintptr_t(&shader.tempRegisters[0]) - uintptr_t(&shader);
const uintptr_t uniformOffset = uintptr_t(&shader.floatUniforms[0]) - uintptr_t(&shader);
// If reg < 0x10, return inputRegisters[reg]
CMP(X0, 0x10);
B(HS, maybeTemp);
LSL(X1, X0, 4);
swizzleAndLoadReg(inputOffset);
B(end);
// If (reg < 0x1F) return tempRegisters[reg - 0x10]
l(maybeTemp);
CMP(X0, 0x20);
B(HS, maybeUniform);
SUB(X1, X0, 0x10);
LSL(X1, X1, 4);
swizzleAndLoadReg(tempOffset);
B(end);
// If (reg < 0x80) return floatUniforms[reg - 0x20]
l(maybeUniform);
CMP(X0, 0x80);
B(HS, unknownReg);
SUB(X1, X0, 0x20);
LSL(X1, X1, 4);
swizzleAndLoadReg(uniformOffset);
B(end);
l(unknownReg);
MOVI(dest.S4(), 0); // Set dest to 0 if we're reading from a garbage register
l(end);
// Negate the register if necessary
if (negate) {
FNEG(dest.S4(), dest.S4());
}
}
void ShaderEmitter::storeRegister(QReg source, const PICAShader& shader, u32 dest, u32 operandDescriptor) {
@ -262,6 +420,45 @@ void ShaderEmitter::storeRegister(QReg source, const PICAShader& shader, u32 des
}
}
void ShaderEmitter::recMOV(const PICAShader& shader, u32 instruction) {
const u32 operandDescriptor = shader.operandDescriptors[instruction & 0x7f];
const u32 src = getBits<12, 7>(instruction);
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
loadRegister<1>(src1_vec, shader, src, idx, operandDescriptor); // Load source 1 into scratch1
storeRegister(src1_vec, shader, dest, operandDescriptor);
}
void ShaderEmitter::recMOVA(const PICAShader& shader, u32 instruction) {
const u32 operandDescriptor = shader.operandDescriptors[instruction & 0x7f];
const u32 src = getBits<12, 7>(instruction);
const u32 idx = getBits<19, 2>(instruction);
const bool writeX = getBit<3>(operandDescriptor); // Should we write the x component of the address register?
const bool writeY = getBit<2>(operandDescriptor);
static_assert(sizeof(shader.addrRegister) == 2 * sizeof(s32)); // Assert that the address register is 2 s32s
const uintptr_t addrRegisterOffset = uintptr_t(&shader.addrRegister[0]) - uintptr_t(&shader);
const uintptr_t addrRegisterYOffset = addrRegisterOffset + sizeof(shader.addrRegister[0]);
// If no register is being written to then it is a nop. Probably not common but whatever
if (!writeX && !writeY) return;
loadRegister<1>(src1_vec, shader, src, idx, operandDescriptor);
FCVTZS(src1_vec.S4(), src1_vec.S4()); // Convert src1 from floats to s32s with truncation
// Write both together
if (writeX && writeY) {
STR(src1_vec.toD(), statePointer, addrRegisterOffset);
} else if (writeX) {
STR(src1_vec.toS(), statePointer, addrRegisterOffset);
} else if (writeY) {
MOV(W0, src1_vec.Selem()[1]); // W0 = Y component
STR(W0, statePointer, addrRegisterYOffset);
}
}
void ShaderEmitter::recDP3(const PICAShader& shader, u32 instruction) {
const u32 operandDescriptor = shader.operandDescriptors[instruction & 0x7f];
const u32 src1 = getBits<12, 7>(instruction);
@ -364,13 +561,32 @@ void ShaderEmitter::recMUL(const PICAShader& shader, u32 instruction) {
storeRegister(src1_vec, shader, dest, operandDescriptor);
}
void ShaderEmitter::recRCP(const PICAShader& shader, u32 instruction) {
const u32 operandDescriptor = shader.operandDescriptors[instruction & 0x7f];
const u32 src = getBits<12, 7>(instruction);
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
const u32 writeMask = operandDescriptor & 0xf;
loadRegister<1>(src1_vec, shader, src, idx, operandDescriptor); // Load source 1 into scratch1
FDIV(src1_vec.toS(), onesVector.toS(), src1_vec.toS()); // src1 = 1.0 / src1
// If we only write back the x component to the result, we needn't perform a shuffle to do res = res.xxxx
// Otherwise we do
if (writeMask != 0x8) { // Copy bottom lane to all lanes if we're not simply writing back x
DUP(src1_vec.S4(), src1_vec.Selem()[0]); // src1_vec = src1_vec.xxxx
}
storeRegister(src1_vec, shader, dest, operandDescriptor);
}
void ShaderEmitter::recRSQ(const PICAShader& shader, u32 instruction) {
const u32 operandDescriptor = shader.operandDescriptors[instruction & 0x7f];
const u32 src = getBits<12, 7>(instruction);
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
const u32 writeMask = operandDescriptor & 0xf;
constexpr bool useAccurateRSQ = false;
constexpr bool useAccurateRSQ = true;
loadRegister<1>(src1_vec, shader, src, idx, operandDescriptor); // Load source 1 into scratch1
@ -378,11 +594,10 @@ void ShaderEmitter::recRSQ(const PICAShader& shader, u32 instruction) {
// TODO: Should this use frsqte or fsqrt+div? The former is faster but less accurate
// PICA RSQ uses f24 precision though, so it'll be inherently innacurate, and it's likely using an inaccurate approximation too, seeing as
// It doesn't have regular sqrt/div instructions.
// For now, we default to inaccurate inverse square root
// For now, we default to accurate inverse square root
if constexpr (useAccurateRSQ) {
FMOV(scratch1.S4(), FImm8(0x70)); // scratch1 = vec4(1.0f)
FSQRT(src1_vec.toS(), src1_vec.toS()); // src1 = sqrt(src1), scalar
FDIV(src1_vec.toS(), scratch1.toS(), src1_vec.toS()); // Now invert src1
FSQRT(src1_vec.toS(), src1_vec.toS()); // src1 = sqrt(src1), scalar
FDIV(src1_vec.toS(), onesVector.toS(), src1_vec.toS()); // Now invert src1
} else {
FRSQRTE(src1_vec.toS(), src1_vec.toS()); // Much nicer
}
@ -415,16 +630,181 @@ void ShaderEmitter::recMAD(const PICAShader& shader, u32 instruction) {
storeRegister(src3_vec, shader, dest, operandDescriptor);
}
void ShaderEmitter::recMOV(const PICAShader& shader, u32 instruction) {
void ShaderEmitter::recCMP(const PICAShader& shader, u32 instruction) {
const u32 operandDescriptor = shader.operandDescriptors[instruction & 0x7f];
const u32 src = getBits<12, 7>(instruction);
const u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
const u32 cmpY = getBits<21, 3>(instruction);
const u32 cmpX = getBits<24, 3>(instruction);
loadRegister<1>(src1_vec, shader, src, idx, operandDescriptor); // Load source 1 into scratch1
storeRegister(src1_vec, shader, dest, operandDescriptor);
loadRegister<1>(src1_vec, shader, src1, idx, operandDescriptor);
loadRegister<2>(src2_vec, shader, src2, 0, operandDescriptor);
// Map from PICA condition codes (used as index) to x86 condition codes
// We treat invalid condition codes as "always" as suggested by 3DBrew
static constexpr std::array<oaknut::Cond, 8> conditionCodes = {
oaknut::util::EQ, oaknut::util::NE, oaknut::util::LT, oaknut::util::LE,
oaknut::util::GT, oaknut::util::GE, oaknut::util::AL, oaknut::util::AL,
};
static_assert(sizeof(shader.cmpRegister[0]) == 1 && sizeof(shader.cmpRegister) == 2); // The code below relies on bool being 1 byte exactly
const size_t cmpRegXOffset = uintptr_t(&shader.cmpRegister[0]) - uintptr_t(&shader);
// NEON doesn't have SIMD comparisons to do fun stuff with like on x64
FCMP(src1_vec.toS(), src2_vec.toS());
CSET(W0, conditionCodes[cmpX]);
// Compare Y components, which annoyingly enough can't be done without moving
MOV(scratch1.toS(), src1_vec.Selem()[1]);
MOV(scratch2.toS(), src2_vec.Selem()[1]);
FCMP(scratch1.toS(), scratch2.toS());
CSET(W1, conditionCodes[cmpY]);
// Merge the booleans and write them back in one STRh
ORR(W0, W0, W1, LogShift::LSL, 8);
STRH(W0, statePointer, cmpRegXOffset);
}
void ShaderEmitter::recEND(const PICAShader& shader, u32 instruction) { RET(); }
void ShaderEmitter::checkBoolUniform(const PICAShader& shader, u32 instruction) {
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
const uintptr_t boolUniformOffset = uintptr_t(&shader.boolUniform) - uintptr_t(&shader);
LDRH(W0, statePointer, boolUniformOffset); // Load bool uniform into w0
TST(W0, 1 << bit); // Check if bit is set
}
void ShaderEmitter::checkCmpRegister(const PICAShader& shader, u32 instruction) {
static_assert(sizeof(bool) == 1 && sizeof(shader.cmpRegister) == 2); // The code below relies on bool being 1 byte exactly
const size_t cmpRegXOffset = uintptr_t(&shader.cmpRegister[0]) - uintptr_t(&shader);
const size_t cmpRegYOffset = cmpRegXOffset + sizeof(bool);
const u32 condition = getBits<22, 2>(instruction);
const uint refY = getBit<24>(instruction);
const uint refX = getBit<25>(instruction);
// refX in the bottom byte, refY in the top byte. This is done for condition codes 0 and 1 which check both x and y, so we can emit a single
// instruction that checks both
const u16 refX_refY_merged = refX | (refY << 8);
switch (condition) {
case 0: // Either cmp register matches
LDRB(W0, statePointer, cmpRegXOffset);
LDRB(W1, statePointer, cmpRegYOffset);
// Check if x matches refX
CMP(W0, refX);
CSET(W0, EQ);
// Check if y matches refY
CMP(W1, refY);
CSET(W1, EQ);
// Set Z to 1 if at least one of them matches
ORR(W0, W0, W1);
CMP(W0, 1);
break;
case 1: // Both cmp registers match
LDRH(W0, statePointer, cmpRegXOffset);
// If ref fits in 8 bits, use a single CMP, otherwise move into register and then CMP
if (refX_refY_merged <= 0xff) {
CMP(W0, refX_refY_merged);
} else {
MOV(W1, refX_refY_merged);
CMP(W0, W1);
}
break;
case 2: // At least cmp.x matches
LDRB(W0, statePointer, cmpRegXOffset);
CMP(W0, refX);
break;
default: // At least cmp.y matches
LDRB(W0, statePointer, cmpRegYOffset);
CMP(W0, refY);
break;
}
}
void ShaderEmitter::recCALL(const PICAShader& shader, u32 instruction) {
const u32 num = instruction & 0xff;
const u32 dest = getBits<10, 12>(instruction);
// Push return PC as stack parameter. This is a decently fast solution and Citra does the same but we should probably switch to a proper PICA-like
// Callstack, because it's not great to have an infinitely expanding call stack
MOV(X0, dest + num);
// Push return PC + current link register so that we'll be able to return later
STP(X0, X30, SP, PRE_INDEXED, -16);
// Call subroutine, Oaknut will update the label if it hasn't been initialized yet
BL(instructionLabels[dest]);
// Fetch original LR and return. This also restores SP to its original value, discarding the return guard into XZR
LDP(XZR, X30, SP, POST_INDEXED, 16);
}
void ShaderEmitter::recIFC(const PICAShader& shader, u32 instruction) {
// z is 1 if true, else 0
checkCmpRegister(shader, instruction);
const u32 num = instruction & 0xff;
const u32 dest = getBits<10, 12>(instruction);
if (dest < recompilerPC) {
Helpers::warn("Shader JIT: IFC instruction with dest < current PC\n");
}
Label elseBlock, endIf;
// Jump to else block if z is 0
B(NE, elseBlock);
compileUntil(shader, dest);
if (num == 0) { // Else block is empty,
l(elseBlock);
} else { // Else block is NOT empty
B(endIf); // Skip executing the else branch if the if branch was ran
l(elseBlock);
compileUntil(shader, dest + num);
l(endIf);
}
}
void ShaderEmitter::recIFU(const PICAShader& shader, u32 instruction) {
// z is 0 if true, else 1
checkBoolUniform(shader, instruction);
const u32 num = instruction & 0xff;
const u32 dest = getBits<10, 12>(instruction);
if (dest < recompilerPC) {
Helpers::warn("Shader JIT: IFC instruction with dest < current PC\n");
}
Label elseBlock, endIf;
// Jump to else block if z is 1
B(EQ, elseBlock);
compileUntil(shader, dest);
if (num == 0) { // Else block is empty,
l(elseBlock);
} else { // Else block is NOT empty
B(endIf); // Skip executing the else branch if the if branch was ran
l(elseBlock);
compileUntil(shader, dest + num);
l(endIf);
}
}
void ShaderEmitter::recJMPC(const PICAShader& shader, u32 instruction) {
const u32 dest = getBits<10, 12>(instruction);
Label& l = instructionLabels[dest];
// Z is 1 if the comparison is true
checkCmpRegister(shader, instruction);
B(EQ, l);
}
void ShaderEmitter::recEND(const PICAShader& shader, u32 instruction) {
// Fetch original LR and return. This also restores SP to its original value, discarding the return guard into XZR
LDP(XZR, X30, SP, POST_INDEXED, 16);
RET();
}
#endif

View file

@ -235,6 +235,8 @@ void ShaderEmitter::loadRegister(Xmm dest, const PICAShader& shader, u32 src, u3
compSwizzle = getBits<23, 8>(operandDescriptor);
}
// TODO: Do indexes get applied if src < 0x20?
// PICA has the swizzle descriptor inverted in comparison to x86. For the PICA, the descriptor is (lowest to highest bits) wzyx while it's xyzw for x86
u32 convertedSwizzle = ((compSwizzle >> 6) & 0b11) | (((compSwizzle >> 4) & 0b11) << 2) | (((compSwizzle >> 2) & 0b11) << 4) | ((compSwizzle & 0b11) << 6);
@ -838,7 +840,7 @@ void ShaderEmitter::recCALL(const PICAShader& shader, u32 instruction) {
const u32 dest = getBits<10, 12>(instruction);
// Push return PC as stack parameter. This is a decently fast solution and Citra does the same but we should probably switch to a proper PICA-like
// Callstack, because it's not great to have an infinitely expanding call stack where popping from empty stack is undefined as hell
// Callstack, because it's not great to have an infinitely expanding call stack where popping from empty stack is undefined
push(qword, dest + num);
// Call subroutine, Xbyak will update the label if it hasn't been initialized yet
call(instructionLabels[dest]);