Merge pull request #98 from Wunkolo/modular-gl

Allow conditional OpenGL rendering backend
This commit is contained in:
wheremyfoodat 2023-07-16 03:48:07 +03:00 committed by GitHub
commit 786c3e8a5c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
18 changed files with 545 additions and 407 deletions

View file

@ -19,6 +19,7 @@ endif()
option(DISABLE_PANIC_DEV "Make a build with fewer and less intrusive asserts" OFF)
option(GPU_DEBUG_INFO "Enable additional GPU debugging info" OFF)
option(ENABLE_OPENGL "Enable OpenGL rendering backend" ON)
option(ENABLE_LTO "Enable link-time optimization" OFF)
option(ENABLE_USER_BUILD "Make a user-facing build. These builds have various assertions disabled, LTO, and more" OFF)
option(ENABLE_HTTP_SERVER "Enable HTTP server. Used for Discord bot support" OFF)
@ -45,7 +46,7 @@ set(SDL_STATIC ON CACHE BOOL "" FORCE)
set(SDL_SHARED OFF CACHE BOOL "" FORCE)
set(SDL_TEST OFF CACHE BOOL "" FORCE)
add_subdirectory(third_party/SDL2)
add_subdirectory(third_party/glad)
add_subdirectory(third_party/toml11)
include_directories(${SDL2_INCLUDE_DIR})
include_directories(third_party/toml11)
@ -90,9 +91,9 @@ else()
message(FATAL_ERROR "Currently unsupported CPU architecture")
endif()
set(SOURCE_FILES src/main.cpp src/emulator.cpp src/io_file.cpp src/gl_state.cpp src/config.cpp
src/core/CPU/cpu_dynarmic.cpp src/core/CPU/dynarmic_cycles.cpp src/core/memory.cpp
src/httpserver.cpp src/stb_image_write.c
set(SOURCE_FILES src/main.cpp src/emulator.cpp src/io_file.cpp src/config.cpp
src/core/CPU/cpu_dynarmic.cpp src/core/CPU/dynarmic_cycles.cpp
src/core/memory.cpp src/renderer.cpp src/httpserver.cpp src/stb_image_write.c
)
set(CRYPTO_SOURCE_FILES src/core/crypto/aes_engine.cpp)
set(KERNEL_SOURCE_FILES src/core/kernel/kernel.cpp src/core/kernel/resource_limits.cpp
@ -117,15 +118,13 @@ set(PICA_SOURCE_FILES src/core/PICA/gpu.cpp src/core/PICA/regs.cpp src/core/PICA
src/core/PICA/dynapica/shader_rec_emitter_x64.cpp src/core/PICA/pica_hash.cpp
)
set(RENDERER_GL_SOURCE_FILES src/core/renderer_gl/renderer_gl.cpp src/core/renderer_gl/textures.cpp src/core/renderer_gl/etc1.cpp)
set(LOADER_SOURCE_FILES src/core/loader/elf.cpp src/core/loader/ncsd.cpp src/core/loader/ncch.cpp src/core/loader/lz77.cpp)
set(FS_SOURCE_FILES src/core/fs/archive_self_ncch.cpp src/core/fs/archive_save_data.cpp src/core/fs/archive_sdmc.cpp
src/core/fs/archive_ext_save_data.cpp src/core/fs/archive_ncch.cpp
)
set(HEADER_FILES include/emulator.hpp include/helpers.hpp include/opengl.hpp include/termcolor.hpp
include/cpu.hpp include/cpu_dynarmic.hpp include/memory.hpp include/kernel/kernel.hpp
set(HEADER_FILES include/emulator.hpp include/helpers.hpp include/termcolor.hpp
include/cpu.hpp include/cpu_dynarmic.hpp include/memory.hpp include/renderer.hpp include/kernel/kernel.hpp
include/dynarmic_cp15.hpp include/kernel/resource_limits.hpp include/kernel/kernel_types.hpp
include/kernel/config_mem.hpp include/services/service_manager.hpp include/services/apt.hpp
include/kernel/handles.hpp include/services/hid.hpp include/services/fs.hpp
@ -136,18 +135,17 @@ set(HEADER_FILES include/emulator.hpp include/helpers.hpp include/opengl.hpp inc
include/loader/lz77.hpp include/fs/archive_base.hpp include/fs/archive_self_ncch.hpp
include/services/dsp.hpp include/services/cfg.hpp include/services/region_codes.hpp
include/fs/archive_save_data.hpp include/fs/archive_sdmc.hpp include/services/ptm.hpp
include/services/mic.hpp include/services/cecd.hpp include/renderer_gl/renderer_gl.hpp
include/renderer_gl/surfaces.hpp include/renderer_gl/surface_cache.hpp include/services/ac.hpp
include/services/mic.hpp include/services/cecd.hpp include/services/ac.hpp
include/services/am.hpp include/services/boss.hpp include/services/frd.hpp include/services/nim.hpp
include/fs/archive_ext_save_data.hpp include/services/shared_font.hpp include/fs/archive_ncch.hpp
include/renderer_gl/textures.hpp include/colour.hpp include/services/y2r.hpp include/services/cam.hpp
include/colour.hpp include/services/y2r.hpp include/services/cam.hpp
include/services/ldr_ro.hpp include/ipc.hpp include/services/act.hpp include/services/nfc.hpp
include/system_models.hpp include/services/dlp_srvr.hpp include/PICA/dynapica/pica_recs.hpp
include/PICA/dynapica/x64_regs.hpp include/PICA/dynapica/vertex_loader_rec.hpp include/PICA/dynapica/shader_rec.hpp
include/PICA/dynapica/shader_rec_emitter_x64.hpp include/PICA/pica_hash.hpp include/result/result.hpp
include/result/result_common.hpp include/result/result_fs.hpp include/result/result_fnd.hpp
include/result/result_gsp.hpp include/result/result_kernel.hpp include/result/result_os.hpp
include/crypto/aes_engine.hpp include/metaprogramming.hpp include/PICA/pica_vertex.hpp include/gl_state.hpp
include/crypto/aes_engine.hpp include/metaprogramming.hpp include/PICA/pica_vertex.hpp
include/config.hpp include/services/ir_user.hpp include/httpserver.hpp
)
@ -160,8 +158,6 @@ set(THIRD_PARTY_SOURCE_FILES third_party/imgui/imgui.cpp
third_party/cityhash/cityhash.cpp
third_party/xxhash/xxhash.c
)
source_group("Header Files\\Core" FILES ${HEADER_FILES})
source_group("Source Files\\Core" FILES ${SOURCE_FILES})
source_group("Source Files\\Core\\Crypto" FILES ${CRYPTO_SOURCE_FILES})
source_group("Source Files\\Core\\Filesystem" FILES ${FS_SOURCE_FILES})
@ -169,20 +165,52 @@ source_group("Source Files\\Core\\Kernel" FILES ${KERNEL_SOURCE_FILES})
source_group("Source Files\\Core\\Loader" FILES ${LOADER_SOURCE_FILES})
source_group("Source Files\\Core\\Services" FILES ${SERVICE_SOURCE_FILES})
source_group("Source Files\\Core\\PICA" FILES ${PICA_SOURCE_FILES})
source_group("Source Files\\Core\\OpenGL Renderer" FILES ${RENDERER_GL_SOURCE_FILES})
source_group("Source Files\\Third Party" FILES ${THIRD_PARTY_SOURCE_FILES})
add_executable(Alber ${SOURCE_FILES} ${FS_SOURCE_FILES} ${CRYPTO_SOURCE_FILES} ${KERNEL_SOURCE_FILES} ${LOADER_SOURCE_FILES} ${SERVICE_SOURCE_FILES}
${PICA_SOURCE_FILES} ${RENDERER_GL_SOURCE_FILES} ${THIRD_PARTY_SOURCE_FILES} ${HEADER_FILES})
set(RENDERER_GL_SOURCE_FILES "") # Empty by default unless we are compiling with the GL renderer
if(ENABLE_OPENGL)
add_subdirectory(third_party/glad)
set(RENDERER_GL_INCLUDE_FILES include/renderer_gl/opengl.hpp
include/renderer_gl/renderer_gl.hpp include/renderer_gl/textures.hpp
include/renderer_gl/surfaces.hpp include/renderer_gl/surface_cache.hpp
include/renderer_gl/gl_state.hpp
)
set(RENDERER_GL_SOURCE_FILES src/core/renderer_gl/renderer_gl.cpp
src/core/renderer_gl/textures.cpp src/core/renderer_gl/etc1.cpp
src/core/renderer_gl/gl_state.cpp
)
set(HEADER_FILES ${HEADER_FILES} ${RENDERER_GL_INCLUDE_FILES})
source_group("Source Files\\Core\\OpenGL Renderer" FILES ${RENDERER_GL_SOURCE_FILES})
endif()
source_group("Header Files\\Core" FILES ${HEADER_FILES})
set(ALL_SOURCES ${SOURCE_FILES} ${FS_SOURCE_FILES} ${CRYPTO_SOURCE_FILES} ${KERNEL_SOURCE_FILES} ${LOADER_SOURCE_FILES} ${SERVICE_SOURCE_FILES}
${PICA_SOURCE_FILES} ${THIRD_PARTY_SOURCE_FILES} ${HEADER_FILES})
if(ENABLE_OPENGL)
# Add the OpenGL source files to ALL_SOURCES
set(ALL_SOURCES ${ALL_SOURCES} ${RENDERER_GL_SOURCE_FILES})
endif()
add_executable(Alber ${ALL_SOURCES})
if(ENABLE_LTO OR ENABLE_USER_BUILD)
set_target_properties(Alber PROPERTIES INTERPROCEDURAL_OPTIMIZATION TRUE)
endif()
target_link_libraries(Alber PRIVATE dynarmic SDL2-static glad cryptopp)
target_link_libraries(Alber PRIVATE dynarmic SDL2-static cryptopp)
if(ENABLE_OPENGL)
target_compile_definitions(Alber PUBLIC "PANDA3DS_ENABLE_OPENGL=1")
target_link_libraries(Alber PRIVATE glad)
endif()
if(GPU_DEBUG_INFO)
target_compile_definitions(Alber PRIVATE GPU_DEBUG_INFO=1)
target_compile_definitions(Alber PRIVATE GPU_DEBUG_INFO=1)
endif()
if(ENABLE_USER_BUILD)

View file

@ -21,7 +21,7 @@ class ShaderJIT {
ShaderCache cache;
#endif
public:
public:
#ifdef PANDA3DS_SHADER_JIT_SUPPORTED
// Call this before starting to process a batch of vertices
// This will read the PICA config (uploaded shader and shader operand descriptors) and search if we've already compiled this shader
@ -29,9 +29,7 @@ public:
// The caller must make sure the entrypoint has been properly set beforehand
void prepare(PICAShader& shaderUnit);
void reset();
void run(PICAShader& shaderUnit) {
prologueCallback(shaderUnit, entrypointCallback);
}
void run(PICAShader& shaderUnit) { prologueCallback(shaderUnit, entrypointCallback); }
static constexpr bool isAvailable() { return true; }
#else
@ -44,7 +42,7 @@ public:
}
// Define dummy callback. This should never be called if the shader JIT is not supported
using Callback = void(*)(PICAShader& shaderUnit);
using Callback = void (*)(PICAShader& shaderUnit);
Callback activeShaderCallback = nullptr;
void reset() {}

View file

@ -2,17 +2,17 @@
// Only do anything if we're on an x64 target with JIT support enabled
#if defined(PANDA3DS_DYNAPICA_SUPPORTED) && defined(PANDA3DS_X64_HOST)
#include "helpers.hpp"
#include "logger.hpp"
#include "PICA/shader.hpp"
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
#include "x64_regs.hpp"
#include <vector>
#include "PICA/shader.hpp"
#include "helpers.hpp"
#include "logger.hpp"
#include "x64_regs.hpp"
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
class ShaderEmitter : public Xbyak::CodeGenerator {
static constexpr size_t executableMemorySize = PICAShader::maxInstructionCount * 96; // How much executable memory to alloc for each shader
static constexpr size_t executableMemorySize = PICAShader::maxInstructionCount * 96; // How much executable memory to alloc for each shader
// Allocate some extra space as padding for security purposes in the extremely unlikely occasion we manage to overflow the above size
static constexpr size_t allocSize = executableMemorySize + 0x1000;
@ -20,7 +20,7 @@ class ShaderEmitter : public Xbyak::CodeGenerator {
static constexpr uint noSwizzle = 0x1B;
using f24 = Floats::f24;
using vec4f = OpenGL::Vector<f24, 4>;
using vec4f = std::array<f24, 4>;
// An array of labels (incl pointers) to each compiled (to x64) PICA instruction
std::array<Xbyak::Label, PICAShader::maxInstructionCount> instructionLabels;
@ -33,8 +33,8 @@ class ShaderEmitter : public Xbyak::CodeGenerator {
// Vector value of (1.0, 1.0, 1.0, 1.0) for SLT(i)/SGE(i)
Label onesVector;
u32 recompilerPC = 0; // PC the recompiler is currently recompiling @
u32 loopLevel = 0; // The current loop nesting level (0 = not in a loop)
u32 recompilerPC = 0; // PC the recompiler is currently recompiling @
u32 loopLevel = 0; // The current loop nesting level (0 = not in a loop)
bool haveSSE4_1 = false; // Shows if the CPU supports SSE4.1
bool haveAVX = false; // Shows if the CPU supports AVX (NOT AVX2, NOT AVX512. Regular AVX)
@ -116,10 +116,12 @@ class ShaderEmitter : public Xbyak::CodeGenerator {
MAKE_LOG_FUNCTION(log, shaderJITLogger)
public:
using InstructionCallback = const void(*)(PICAShader& shaderUnit); // Callback type used for instructions
public:
// Callback type used for instructions
using InstructionCallback = const void (*)(PICAShader& shaderUnit);
// Callback type used for the JIT prologue. This is what the caller will call
using PrologueCallback = const void(*)(PICAShader& shaderUnit, InstructionCallback cb);
using PrologueCallback = const void (*)(PICAShader& shaderUnit, InstructionCallback cb);
PrologueCallback prologueCb = nullptr;
// Initialize our emitter with "allocSize" bytes of RWX memory
@ -134,7 +136,7 @@ public:
Helpers::panic("This CPU does not support SSE3. Please use the shader interpreter instead");
}
}
void compile(const PICAShader& shaderUnit);
// PC must be a valid entrypoint here. It doesn't have that much overhead in this case, so we use std::array<>::at() to assert it does
@ -144,9 +146,7 @@ public:
return reinterpret_cast<InstructionCallback>(ptr);
}
PrologueCallback getPrologueCallback() {
return prologueCb;
}
PrologueCallback getPrologueCallback() { return prologueCb; }
};
#endif // x64 recompiler check
#endif // x64 recompiler check

View file

@ -1,39 +1,39 @@
#pragma once
#include <array>
#include "PICA/dynapica/shader_rec.hpp"
#include "PICA/float_types.hpp"
#include "PICA/pica_vertex.hpp"
#include "PICA/regs.hpp"
#include "PICA/shader_unit.hpp"
#include "config.hpp"
#include "helpers.hpp"
#include "logger.hpp"
#include "memory.hpp"
#include "PICA/float_types.hpp"
#include "PICA/regs.hpp"
#include "PICA/shader_unit.hpp"
#include "PICA/dynapica/shader_rec.hpp"
#include "renderer_gl/renderer_gl.hpp"
#include "PICA/pica_vertex.hpp"
#include "renderer.hpp"
class GPU {
static constexpr u32 regNum = 0x300;
using vec4f = OpenGL::Vector<Floats::f24, 4>;
using vec4f = std::array<Floats::f24, 4>;
using Registers = std::array<u32, regNum>;
Memory& mem;
EmulatorConfig& config;
ShaderUnit shaderUnit;
ShaderJIT shaderJIT; // Doesn't do anything if JIT is disabled or not supported
ShaderJIT shaderJIT; // Doesn't do anything if JIT is disabled or not supported
u8* vram = nullptr;
MAKE_LOG_FUNCTION(log, gpuLogger)
static constexpr u32 maxAttribCount = 12; // Up to 12 vertex attributes
static constexpr u32 maxAttribCount = 12; // Up to 12 vertex attributes
static constexpr u32 vramSize = u32(6_MB);
Registers regs; // GPU internal registers
std::array<vec4f, 16> currentAttributes; // Vertex attributes before being passed to the shader
Registers regs; // GPU internal registers
std::array<vec4f, 16> currentAttributes; // Vertex attributes before being passed to the shader
std::array<vec4f, 16> immediateModeAttributes; // Vertex attributes uploaded via immediate mode submission
std::array<vec4f, 16> immediateModeAttributes; // Vertex attributes uploaded via immediate mode submission
std::array<PICA::Vertex, 3> immediateModeVertices;
uint immediateModeVertIndex;
uint immediateModeAttrIndex; // Index of the immediate mode attribute we're uploading
uint immediateModeAttrIndex; // Index of the immediate mode attribute we're uploading
template <bool indexed, bool useShaderJIT>
void drawArrays();
@ -42,35 +42,33 @@ class GPU {
void drawArrays(bool indexed);
struct AttribInfo {
u32 offset = 0; // Offset from base vertex array
int size = 0; // Bytes per vertex
u32 offset = 0; // Offset from base vertex array
int size = 0; // Bytes per vertex
u32 config1 = 0;
u32 config2 = 0;
u32 componentCount = 0; // Number of components for the attribute
u32 componentCount = 0; // Number of components for the attribute
u64 getConfigFull() {
return u64(config1) | (u64(config2) << 32);
}
u64 getConfigFull() { return u64(config1) | (u64(config2) << 32); }
};
u64 getVertexShaderInputConfig() {
return u64(regs[PICA::InternalRegs::VertexShaderInputCfgLow]) | (u64(regs[PICA::InternalRegs::VertexShaderInputCfgHigh]) << 32);
}
std::array<AttribInfo, maxAttribCount> attributeInfo; // Info for each of the 12 attributes
u32 totalAttribCount = 0; // Number of vertex attributes to send to VS
u32 fixedAttribMask = 0; // Which attributes are fixed?
u32 fixedAttribIndex = 0; // Which fixed attribute are we writing to ([0, 11] range)
u32 fixedAttribCount = 0; // How many attribute components have we written? When we get to 4 the attr will actually get submitted
std::array<u32, 3> fixedAttrBuff; // Buffer to hold fixed attributes in until they get submitted
std::array<AttribInfo, maxAttribCount> attributeInfo; // Info for each of the 12 attributes
u32 totalAttribCount = 0; // Number of vertex attributes to send to VS
u32 fixedAttribMask = 0; // Which attributes are fixed?
u32 fixedAttribIndex = 0; // Which fixed attribute are we writing to ([0, 11] range)
u32 fixedAttribCount = 0; // How many attribute components have we written? When we get to 4 the attr will actually get submitted
std::array<u32, 3> fixedAttrBuff; // Buffer to hold fixed attributes in until they get submitted
// Command processor pointers for GPU command lists
u32* cmdBuffStart = nullptr;
u32* cmdBuffEnd = nullptr;
u32* cmdBuffCurr = nullptr;
Renderer renderer;
std::unique_ptr<Renderer> renderer;
PICA::Vertex getImmediateModeVertex();
public:
@ -84,11 +82,10 @@ class GPU {
// Set to false by the renderer when the lighting_lut is uploaded ot the GPU
bool lightingLUTDirty = false;
GPU(Memory& mem, GLStateManager& gl, EmulatorConfig& config);
void initGraphicsContext() { renderer.initGraphicsContext(); }
void getGraphicsContext() { renderer.getGraphicsContext(); }
void display() { renderer.display(); }
void screenshot(const std::string& name) { renderer.screenshot(name); }
GPU(Memory& mem, EmulatorConfig& config);
void initGraphicsContext() { renderer->initGraphicsContext(); }
void display() { renderer->display(); }
void screenshot(const std::string& name) { renderer->screenshot(name); }
void fireDMA(u32 dest, u32 source, u32 size);
void reset();
@ -107,13 +104,13 @@ class GPU {
// TODO: Emulate the transfer engine & its registers
// Then this can be emulated by just writing the appropriate values there
void clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
renderer.clearBuffer(startAddress, endAddress, value, control);
renderer->clearBuffer(startAddress, endAddress, value, control);
}
// TODO: Emulate the transfer engine & its registers
// Then this can be emulated by just writing the appropriate values there
void displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
renderer.displayTransfer(inputAddr, outputAddr, inputSize, outputSize, flags);
renderer->displayTransfer(inputAddr, outputAddr, inputSize, outputSize, flags);
}
// Read a value of type T from physical address paddr

View file

@ -2,13 +2,14 @@
#include <algorithm>
#include <array>
#include <cstring>
#include "helpers.hpp"
#include "opengl.hpp"
#include "PICA/float_types.hpp"
#include "PICA/pica_hash.hpp"
#include "helpers.hpp"
enum class ShaderType {
Vertex, Geometry
Vertex,
Geometry,
};
namespace ShaderOpcodes {
@ -46,66 +47,66 @@ namespace ShaderOpcodes {
SETEMIT = 0x2B,
JMPC = 0x2C,
JMPU = 0x2D,
CMP1 = 0x2E, // Both of these instructions are CMP
CMP1 = 0x2E, // Both of these instructions are CMP
CMP2 = 0x2F,
MAD = 0x38 // Everything between 0x38-0x3F is a MAD but fuck it
MAD = 0x38 // Everything between 0x38-0x3F is a MAD but fuck it
};
}
// Note: All PICA f24 vec4 registers must have the alignas(16) specifier to make them easier to access in SSE/NEON code in the JIT
class PICAShader {
using f24 = Floats::f24;
using vec4f = OpenGL::Vector<f24, 4>;
using vec4f = std::array<f24, 4>;
struct Loop {
u32 startingPC; // PC at the start of the loop
u32 endingPC; // PC at the end of the loop
u32 iterations; // How many iterations of the loop to run
u32 increment; // How much to increment the loop counter after each iteration
u32 startingPC; // PC at the start of the loop
u32 endingPC; // PC at the end of the loop
u32 iterations; // How many iterations of the loop to run
u32 increment; // How much to increment the loop counter after each iteration
};
// Info for ifc/ifu stack
struct ConditionalInfo {
u32 endingPC; // PC at the end of the if block (= DST)
u32 newPC; // PC after the if block is done executing (= DST + NUM)
u32 endingPC; // PC at the end of the if block (= DST)
u32 newPC; // PC after the if block is done executing (= DST + NUM)
};
struct CallInfo {
u32 endingPC; // PC at the end of the function
u32 returnPC; // PC to return to after the function ends
u32 endingPC; // PC at the end of the function
u32 returnPC; // PC to return to after the function ends
};
int bufferIndex; // Index of the next instruction to overwrite for shader uploads
int opDescriptorIndex; // Index of the next operand descriptor we'll overwrite
u32 floatUniformIndex = 0; // Which float uniform are we writing to? ([0, 95] range)
u32 floatUniformWordCount = 0; // How many words have we buffered for the current uniform transfer?
bool f32UniformTransfer = false; // Are we transferring an f32 uniform or an f24 uniform?
int bufferIndex; // Index of the next instruction to overwrite for shader uploads
int opDescriptorIndex; // Index of the next operand descriptor we'll overwrite
u32 floatUniformIndex = 0; // Which float uniform are we writing to? ([0, 95] range)
u32 floatUniformWordCount = 0; // How many words have we buffered for the current uniform transfer?
bool f32UniformTransfer = false; // Are we transferring an f32 uniform or an f24 uniform?
std::array<u32, 4> floatUniformBuffer; // Buffer for temporarily caching float uniform data
std::array<u32, 4> floatUniformBuffer; // Buffer for temporarily caching float uniform data
public:
public:
// These are placed close to the temp registers and co because it helps the JIT generate better code
u32 entrypoint = 0; // Initial shader PC
u32 entrypoint = 0; // Initial shader PC
u32 boolUniform;
std::array<OpenGL::Vector<u8, 4>, 4> intUniforms;
std::array<std::array<u8, 4>, 4> intUniforms;
alignas(16) std::array<vec4f, 96> floatUniforms;
alignas(16) std::array<vec4f, 16> fixedAttributes; // Fixed vertex attributes
alignas(16) std::array<vec4f, 16> inputs; // Attributes passed to the shader
alignas(16) std::array<vec4f, 16> fixedAttributes; // Fixed vertex attributes
alignas(16) std::array<vec4f, 16> inputs; // Attributes passed to the shader
alignas(16) std::array<vec4f, 16> outputs;
alignas(16) vec4f dummy = vec4f({ f24::zero(), f24::zero(), f24::zero(), f24::zero() }); // Dummy register used by the JIT
alignas(16) vec4f dummy = vec4f({f24::zero(), f24::zero(), f24::zero(), f24::zero()}); // Dummy register used by the JIT
protected:
protected:
std::array<u32, 128> operandDescriptors;
alignas(16) std::array<vec4f, 16> tempRegisters; // General purpose registers the shader can use for temp values
OpenGL::Vector<s32, 2> addrRegister; // Address register
bool cmpRegister[2]; // Comparison registers where the result of CMP is stored in
alignas(16) std::array<vec4f, 16> tempRegisters; // General purpose registers the shader can use for temp values
std::array<s32, 2> addrRegister; // Address register
bool cmpRegister[2]; // Comparison registers where the result of CMP is stored in
u32 loopCounter;
u32 pc = 0; // Program counter: Index of the next instruction we're going to execute
u32 loopIndex = 0; // The index of our loop stack (0 = empty, 4 = full)
u32 ifIndex = 0; // The index of our IF stack
u32 callIndex = 0; // The index of our CALL stack
u32 pc = 0; // Program counter: Index of the next instruction we're going to execute
u32 loopIndex = 0; // The index of our loop stack (0 = empty, 4 = full)
u32 ifIndex = 0; // The index of our IF stack
u32 callIndex = 0; // The index of our CALL stack
std::array<Loop, 4> loopInfo;
std::array<ConditionalInfo, 8> conditionalInfo;
@ -117,7 +118,7 @@ protected:
// Ideally we want to be able to support multiple different types of hash depending on compilation settings, but let's get this working first
using Hash = PICAHash::HashType;
Hash lastCodeHash = 0; // Last hash computed for the shader code (Used for the JIT caching mechanism)
Hash lastCodeHash = 0; // Last hash computed for the shader code (Used for the JIT caching mechanism)
Hash lastOpdescHash = 0; // Last hash computed for the operand descriptors (Also used for the JIT)
bool codeHashDirty = false;
@ -130,7 +131,7 @@ protected:
vec4f getSource(u32 source);
vec4f& getDest(u32 dest);
private:
private:
// Interpreter functions for the various shader functions
void add(u32 instruction);
void call(u32 instruction);
@ -171,13 +172,13 @@ private:
bool negate;
using namespace Helpers;
if constexpr (sourceIndex == 1) { // SRC1
if constexpr (sourceIndex == 1) { // SRC1
negate = (getBit<4>(opDescriptor)) != 0;
compSwizzle = getBits<5, 8>(opDescriptor);
} else if constexpr (sourceIndex == 2) { // SRC2
} else if constexpr (sourceIndex == 2) { // SRC2
negate = (getBit<13>(opDescriptor)) != 0;
compSwizzle = getBits<14, 8>(opDescriptor);
} else if constexpr (sourceIndex == 3) { // SRC3
} else if constexpr (sourceIndex == 3) { // SRC3
negate = (getBit<22>(opDescriptor)) != 0;
compSwizzle = getBits<23, 8>(opDescriptor);
}
@ -185,8 +186,8 @@ private:
// Iterate through every component of the swizzled vector in reverse order
// And get which source component's index to match it with
for (int comp = 0; comp < 4; comp++) {
int index = compSwizzle & 3; // Get index for this component
compSwizzle >>= 2; // Move to next component index
int index = compSwizzle & 3; // Get index for this component
compSwizzle >>= 2; // Move to next component index
ret[3 - comp] = source[index];
}
@ -212,39 +213,35 @@ private:
u8 getIndexedSource(u32 source, u32 index);
bool isCondTrue(u32 instruction);
public:
public:
static constexpr size_t maxInstructionCount = 4096;
std::array<u32, maxInstructionCount> loadedShader; // Currently loaded & active shader
std::array<u32, maxInstructionCount> bufferedShader; // Shader to be transferred when the SH_CODETRANSFER_END reg gets written to
std::array<u32, maxInstructionCount> loadedShader; // Currently loaded & active shader
std::array<u32, maxInstructionCount> bufferedShader; // Shader to be transferred when the SH_CODETRANSFER_END reg gets written to
PICAShader(ShaderType type) : type(type) {}
// Theese functions are in the header to be inlined more easily, though with LTO I hope I'll be able to move them
void finalize() {
std::memcpy(&loadedShader[0], &bufferedShader[0], 4096 * sizeof(u32));
}
void finalize() { std::memcpy(&loadedShader[0], &bufferedShader[0], 4096 * sizeof(u32)); }
void setBufferIndex(u32 index) {
bufferIndex = index & 0xfff;
}
void setOpDescriptorIndex(u32 index) {
opDescriptorIndex = index & 0x7f;
}
void setBufferIndex(u32 index) { bufferIndex = index & 0xfff; }
void setOpDescriptorIndex(u32 index) { opDescriptorIndex = index & 0x7f; }
void uploadWord(u32 word) {
if (bufferIndex >= 4095) Helpers::panic("o no, shader upload overflew");
if (bufferIndex >= 4095) {
Helpers::panic("o no, shader upload overflew");
}
bufferedShader[bufferIndex++] = word;
bufferIndex &= 0xfff;
codeHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
codeHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
}
void uploadDescriptor(u32 word) {
operandDescriptors[opDescriptorIndex++] = word;
opDescriptorIndex &= 0x7f;
opdescHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
opdescHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
}
void setFloatUniformIndex(u32 word) {
@ -255,23 +252,24 @@ public:
void uploadFloatUniform(u32 word) {
floatUniformBuffer[floatUniformWordCount++] = word;
if (floatUniformIndex >= 96)
if (floatUniformIndex >= 96) {
Helpers::panic("[PICA] Tried to write float uniform %d", floatUniformIndex);
}
if ((f32UniformTransfer && floatUniformWordCount >= 4) || (!f32UniformTransfer && floatUniformWordCount >= 3)) {
vec4f& uniform = floatUniforms[floatUniformIndex++];
floatUniformWordCount = 0;
if (f32UniformTransfer) {
uniform.x() = f24::fromFloat32(*(float*)&floatUniformBuffer[3]);
uniform.y() = f24::fromFloat32(*(float*)&floatUniformBuffer[2]);
uniform.z() = f24::fromFloat32(*(float*)&floatUniformBuffer[1]);
uniform.w() = f24::fromFloat32(*(float*)&floatUniformBuffer[0]);
uniform[0] = f24::fromFloat32(*(float*)&floatUniformBuffer[3]);
uniform[1] = f24::fromFloat32(*(float*)&floatUniformBuffer[2]);
uniform[2] = f24::fromFloat32(*(float*)&floatUniformBuffer[1]);
uniform[3] = f24::fromFloat32(*(float*)&floatUniformBuffer[0]);
} else {
uniform.x() = f24::fromRaw(floatUniformBuffer[2] & 0xffffff);
uniform.y() = f24::fromRaw(((floatUniformBuffer[1] & 0xffff) << 8) | (floatUniformBuffer[2] >> 24));
uniform.z() = f24::fromRaw(((floatUniformBuffer[0] & 0xff) << 16) | (floatUniformBuffer[1] >> 16));
uniform.w() = f24::fromRaw(floatUniformBuffer[0] >> 8);
uniform[0] = f24::fromRaw(floatUniformBuffer[2] & 0xffffff);
uniform[1] = f24::fromRaw(((floatUniformBuffer[1] & 0xffff) << 8) | (floatUniformBuffer[2] >> 24));
uniform[2] = f24::fromRaw(((floatUniformBuffer[0] & 0xff) << 16) | (floatUniformBuffer[1] >> 16));
uniform[3] = f24::fromRaw(floatUniformBuffer[0] >> 8);
}
}
}
@ -280,10 +278,10 @@ public:
using namespace Helpers;
auto& u = intUniforms[index];
u.x() = word & 0xff;
u.y() = getBits<8, 8>(word);
u.z() = getBits<16, 8>(word);
u.w() = getBits<24, 8>(word);
u[0] = word & 0xff;
u[1] = getBits<8, 8>(word);
u[2] = getBits<16, 8>(word);
u[3] = getBits<24, 8>(word);
}
void run();

View file

@ -1,24 +1,28 @@
#pragma once
#include <SDL.h>
#include <glad/gl.h>
#include <filesystem>
#include <fstream>
#include <optional>
#include "PICA/gpu.hpp"
#include "cpu.hpp"
#include "config.hpp"
#include "cpu.hpp"
#include "crypto/aes_engine.hpp"
#include "io_file.hpp"
#include "memory.hpp"
#include "gl_state.hpp"
#ifdef PANDA3DS_ENABLE_HTTP_SERVER
#include "httpserver.hpp"
#endif
enum class ROMType { None, ELF, NCSD, CXI };
enum class ROMType {
None,
ELF,
NCSD,
CXI,
};
class Emulator {
CPU cpu;
@ -27,10 +31,13 @@ class Emulator {
Kernel kernel;
Crypto::AESEngine aesEngine;
GLStateManager gl;
EmulatorConfig config;
SDL_Window* window;
#ifdef PANDA3DS_ENABLE_OPENGL
SDL_GLContext glContext;
#endif
SDL_GameController* gameController = nullptr;
int gameControllerID;

56
include/renderer.hpp Normal file
View file

@ -0,0 +1,56 @@
#pragma once
#include <array>
#include <span>
#include "PICA/pica_vertex.hpp"
#include "PICA/regs.hpp"
#include "helpers.hpp"
class GPU;
class Renderer {
protected:
GPU& gpu;
static constexpr u32 regNum = 0x300; // Number of internal PICA registers
const std::array<u32, regNum>& regs;
std::array<u32, 2> fbSize; // The size of the framebuffer (ie both the colour and depth buffer)'
u32 colourBufferLoc; // Location in 3DS VRAM for the colour buffer
PICA::ColorFmt colourBufferFormat; // Format of the colours stored in the colour buffer
// Same for the depth/stencil buffer
u32 depthBufferLoc;
PICA::DepthFmt depthBufferFormat;
public:
Renderer(GPU& gpu, const std::array<u32, regNum>& internalRegs);
virtual ~Renderer();
static constexpr u32 vertexBufferSize = 0x10000;
virtual void reset() = 0;
virtual void display() = 0; // Display the 3DS screen contents to the window
virtual void initGraphicsContext() = 0; // Initialize graphics context
virtual void clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) = 0; // Clear a GPU buffer in VRAM
virtual void displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) = 0; // Perform display transfer
virtual void drawVertices(PICA::PrimType primType, std::span<const PICA::Vertex> vertices) = 0; // Draw the given vertices
virtual void screenshot(const std::string& name) = 0;
void setFBSize(u32 width, u32 height) {
fbSize[0] = width;
fbSize[1] = height;
}
void setColourFormat(PICA::ColorFmt format) { colourBufferFormat = format; }
void setDepthFormat(PICA::DepthFmt format) {
if (format == PICA::DepthFmt::Unknown1) {
Helpers::panic("[PICA] Undocumented depth-stencil mode!");
}
depthBufferFormat = format;
}
void setColourBufferLoc(u32 loc) { colourBufferLoc = loc; }
void setDepthBufferLoc(u32 loc) { depthBufferLoc = loc; }
};

View file

@ -1,23 +1,23 @@
#pragma once
#include <array>
#include <span>
#include <stb_image_write.h>
#include "PICA/float_types.hpp"
#include "PICA/pica_vertex.hpp"
#include "PICA/regs.hpp"
#include "gl_state.hpp"
#include "helpers.hpp"
#include "logger.hpp"
#include "renderer.hpp"
#include "surface_cache.hpp"
#include "textures.hpp"
#include "PICA/regs.hpp"
#include "PICA/pica_vertex.hpp"
// More circular dependencies!
class GPU;
class Renderer {
GPU& gpu;
GLStateManager& gl;
class RendererGL final : public Renderer {
GLStateManager gl = {};
OpenGL::Program triangleProgram;
OpenGL::Program displayProgram;
@ -31,7 +31,7 @@ class Renderer {
GLint textureEnvCombinerLoc = -1;
GLint textureEnvColorLoc = -1;
GLint textureEnvScaleLoc = -1;
// Uniform of PICA registers
GLint picaRegLoc = -1;
@ -48,22 +48,10 @@ class Renderer {
SurfaceCache<ColourBuffer, 10, true> colourBufferCache;
SurfaceCache<Texture, 256, true> textureCache;
OpenGL::uvec2 fbSize; // The size of the framebuffer (ie both the colour and depth buffer)'
u32 colourBufferLoc; // Location in 3DS VRAM for the colour buffer
PICA::ColorFmt colourBufferFormat; // Format of the colours stored in the colour buffer
// Same for the depth/stencil buffer
u32 depthBufferLoc;
PICA::DepthFmt depthBufferFormat;
// Dummy VAO/VBO for blitting the final output
OpenGL::VertexArray dummyVAO;
OpenGL::VertexBuffer dummyVBO;
static constexpr u32 regNum = 0x300; // Number of internal PICA registers
const std::array<u32, regNum>& regs;
OpenGL::Texture screenTexture;
GLuint lightLUTTextureArray;
OpenGL::Framebuffer screenFramebuffer;
@ -79,34 +67,15 @@ class Renderer {
void updateLightingLUT();
public:
Renderer(GPU& gpu, GLStateManager& gl, const std::array<u32, regNum>& internalRegs) : gpu(gpu), gl(gl), regs(internalRegs) {}
RendererGL(GPU& gpu, const std::array<u32, regNum>& internalRegs) : Renderer(gpu, internalRegs) {}
void reset();
void display(); // Display the 3DS screen contents to the window
void initGraphicsContext(); // Initialize graphics context
void getGraphicsContext(); // Set up graphics context for rendering
void clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control); // Clear a GPU buffer in VRAM
void displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags); // Perform display transfer
void drawVertices(PICA::PrimType primType, std::span<const PICA::Vertex> vertices); // Draw the given vertices
void reset() override;
void display() override; // Display the 3DS screen contents to the window
void initGraphicsContext() override; // Initialize graphics context
void clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) override; // Clear a GPU buffer in VRAM
void displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) override; // Perform display transfer
void drawVertices(PICA::PrimType primType, std::span<const PICA::Vertex> vertices) override; // Draw the given vertices
// Take a screenshot of the screen and store it in a file
void screenshot(const std::string& name);
void setFBSize(u32 width, u32 height) {
fbSize.x() = width;
fbSize.y() = height;
}
void setColourFormat(PICA::ColorFmt format) { colourBufferFormat = format; }
void setDepthFormat(PICA::DepthFmt format) {
if (format == PICA::DepthFmt::Unknown1) {
Helpers::panic("[PICA] Undocumented depth-stencil mode!");
}
depthBufferFormat = format;
}
void setColourBufferLoc(u32 loc) { colourBufferLoc = loc; }
void setDepthBufferLoc(u32 loc) { depthBufferLoc = loc; }
static constexpr u32 vertexBufferSize = 0x10000;
void screenshot(const std::string& name) override;
};

View file

@ -2,19 +2,28 @@
#include <array>
#include <bitset>
#include <cstdio>
#include <cstddef>
#include <cstdio>
#include "PICA/float_types.hpp"
#include "PICA/regs.hpp"
#ifdef PANDA3DS_ENABLE_OPENGL
#include "renderer_gl/renderer_gl.hpp"
#endif
using namespace Floats;
// Note: For when we have multiple backends, the GL state manager can stay here and have the constructor for the Vulkan-or-whatever renderer ignore it
// Thus, our GLStateManager being here does not negatively impact renderer-agnosticness
GPU::GPU(Memory& mem, GLStateManager& gl, EmulatorConfig& config) : mem(mem), renderer(*this, gl, regs), config(config) {
GPU::GPU(Memory& mem, EmulatorConfig& config) : mem(mem), config(config) {
vram = new u8[vramSize];
mem.setVRAM(vram); // Give the bus a pointer to our VRAM
mem.setVRAM(vram); // Give the bus a pointer to our VRAM
// TODO: Configurable backend
#ifdef PANDA3DS_ENABLE_OPENGL
renderer.reset(new RendererGL(*this, regs));
#endif
}
void GPU::reset() {
@ -41,7 +50,7 @@ void GPU::reset() {
e.config2 = 0;
}
renderer.reset();
renderer->reset();
}
// Call the correct version of drawArrays based on whether this is an indexed draw (first template parameter)
@ -73,15 +82,14 @@ void GPU::drawArrays() {
// Base address for vertex attributes
// The vertex base is always on a quadword boundary because the PICA does weird alignment shit any time possible
const u32 vertexBase = ((regs[PICA::InternalRegs::VertexAttribLoc] >> 1) & 0xfffffff) * 16;
const u32 vertexCount = regs[PICA::InternalRegs::VertexCountReg]; // Total # of vertices to transfer
const u32 vertexCount = regs[PICA::InternalRegs::VertexCountReg]; // Total # of vertices to transfer
// Configures the type of primitive and the number of vertex shader outputs
const u32 primConfig = regs[PICA::InternalRegs::PrimitiveConfig];
const PICA::PrimType primType = static_cast<PICA::PrimType>(Helpers::getBits<8, 2>(primConfig));
if (vertexCount > Renderer::vertexBufferSize) Helpers::panic("[PICA] vertexCount > vertexBufferSize");
if ((primType == PICA::PrimType::TriangleList && vertexCount % 3) ||
(primType == PICA::PrimType::TriangleStrip && vertexCount < 3) ||
if ((primType == PICA::PrimType::TriangleList && vertexCount % 3) || (primType == PICA::PrimType::TriangleStrip && vertexCount < 3) ||
(primType == PICA::PrimType::TriangleFan && vertexCount < 3)) {
Helpers::panic("Invalid vertex count for primitive. Type: %d, vert count: %d\n", primType, vertexCount);
}
@ -89,10 +97,10 @@ void GPU::drawArrays() {
// Get the configuration for the index buffer, used only for indexed drawing
u32 indexBufferConfig = regs[PICA::InternalRegs::IndexBufferConfig];
u32 indexBufferPointer = vertexBase + (indexBufferConfig & 0xfffffff);
bool shortIndex = Helpers::getBit<31>(indexBufferConfig); // Indicates whether vert indices are 16-bit or 8-bit
bool shortIndex = Helpers::getBit<31>(indexBufferConfig); // Indicates whether vert indices are 16-bit or 8-bit
// Stuff the global attribute config registers in one u64 to make attr parsing easier
// TODO: Cache this when the vertex attribute format registers are written to
// TODO: Cache this when the vertex attribute format registers are written to
u64 vertexCfg = u64(regs[PICA::InternalRegs::AttribFormatLow]) | (u64(regs[PICA::InternalRegs::AttribFormatHigh]) << 32);
if constexpr (!indexed) {
@ -111,24 +119,24 @@ void GPU::drawArrays() {
constexpr size_t vertexCacheSize = 64;
struct {
std::bitset<vertexCacheSize> validBits{0}; // Shows which tags are valid. If the corresponding bit is 1, then there's an entry
std::array<u32, vertexCacheSize> ids; // IDs (ie indices of the cached vertices in the 3DS vertex buffer)
std::array<u32, vertexCacheSize> bufferPositions; // Positions of the cached vertices in our own vertex buffer
std::bitset<vertexCacheSize> validBits{0}; // Shows which tags are valid. If the corresponding bit is 1, then there's an entry
std::array<u32, vertexCacheSize> ids; // IDs (ie indices of the cached vertices in the 3DS vertex buffer)
std::array<u32, vertexCacheSize> bufferPositions; // Positions of the cached vertices in our own vertex buffer
} vertexCache;
for (u32 i = 0; i < vertexCount; i++) {
u32 vertexIndex; // Index of the vertex in the VBO for indexed rendering
u32 vertexIndex; // Index of the vertex in the VBO for indexed rendering
if constexpr (!indexed) {
vertexIndex = i + regs[PICA::InternalRegs::VertexOffsetReg];
} else {
if (shortIndex) {
auto ptr = getPointerPhys<u16>(indexBufferPointer);
vertexIndex = *ptr; // TODO: This is very unsafe
vertexIndex = *ptr; // TODO: This is very unsafe
indexBufferPointer += 2;
} else {
auto ptr = getPointerPhys<u8>(indexBufferPointer);
vertexIndex = *ptr; // TODO: This is also very unsafe
vertexIndex = *ptr; // TODO: This is also very unsafe
indexBufferPointer += 1;
}
}
@ -152,22 +160,22 @@ void GPU::drawArrays() {
}
int attrCount = 0;
int buffer = 0; // Vertex buffer index for non-fixed attributes
int buffer = 0; // Vertex buffer index for non-fixed attributes
while (attrCount < totalAttribCount) {
// Check if attribute is fixed or not
if (fixedAttribMask & (1 << attrCount)) { // Fixed attribute
vec4f& fixedAttr = shaderUnit.vs.fixedAttributes[attrCount]; // TODO: Is this how it works?
if (fixedAttribMask & (1 << attrCount)) { // Fixed attribute
vec4f& fixedAttr = shaderUnit.vs.fixedAttributes[attrCount]; // TODO: Is this how it works?
vec4f& inputAttr = currentAttributes[attrCount];
std::memcpy(&inputAttr, &fixedAttr, sizeof(vec4f)); // Copy fixed attr to input attr
std::memcpy(&inputAttr, &fixedAttr, sizeof(vec4f)); // Copy fixed attr to input attr
attrCount++;
} else { // Non-fixed attribute
auto& attr = attributeInfo[buffer]; // Get information for this attribute
u64 attrCfg = attr.getConfigFull(); // Get config1 | (config2 << 32)
} else { // Non-fixed attribute
auto& attr = attributeInfo[buffer]; // Get information for this attribute
u64 attrCfg = attr.getConfigFull(); // Get config1 | (config2 << 32)
u32 attrAddress = vertexBase + attr.offset + (vertexIndex * attr.size);
for (int j = 0; j < attr.componentCount; j++) {
uint index = (attrCfg >> (j * 4)) & 0xf; // Get index of attribute in vertexCfg
uint index = (attrCfg >> (j * 4)) & 0xf; // Get index of attribute in vertexCfg
// Vertex attributes used as padding
// 12, 13, 14 and 15 are equivalent to 4, 8, 12 and 16 bytes of padding respectively
@ -179,15 +187,15 @@ void GPU::drawArrays() {
}
u32 attribInfo = (vertexCfg >> (index * 4)) & 0xf;
u32 attribType = attribInfo & 0x3; // Type of attribute(sbyte/ubyte/short/float)
u32 size = (attribInfo >> 2) + 1; // Total number of components
u32 attribType = attribInfo & 0x3; // Type of attribute(sbyte/ubyte/short/float)
u32 size = (attribInfo >> 2) + 1; // Total number of components
//printf("vertex_attribute_strides[%d] = %d\n", attrCount, attr.size);
// printf("vertex_attribute_strides[%d] = %d\n", attrCount, attr.size);
vec4f& attribute = currentAttributes[attrCount];
uint component; // Current component
uint component; // Current component
switch (attribType) {
case 0: { // Signed byte
case 0: { // Signed byte
s8* ptr = getPointerPhys<s8>(attrAddress);
for (component = 0; component < size; component++) {
float val = static_cast<float>(*ptr++);
@ -197,7 +205,7 @@ void GPU::drawArrays() {
break;
}
case 1: { // Unsigned byte
case 1: { // Unsigned byte
u8* ptr = getPointerPhys<u8>(attrAddress);
for (component = 0; component < size; component++) {
float val = static_cast<float>(*ptr++);
@ -207,7 +215,7 @@ void GPU::drawArrays() {
break;
}
case 2: { // Short
case 2: { // Short
s16* ptr = getPointerPhys<s16>(attrAddress);
for (component = 0; component < size; component++) {
float val = static_cast<float>(*ptr++);
@ -217,7 +225,7 @@ void GPU::drawArrays() {
break;
}
case 3: { // Float
case 3: { // Float
float* ptr = getPointerPhys<float>(attrAddress);
for (component = 0; component < size; component++) {
float val = *ptr++;
@ -251,8 +259,8 @@ void GPU::drawArrays() {
const u32 mapping = (inputAttrCfg >> (j * 4)) & 0xf;
std::memcpy(&shaderUnit.vs.inputs[mapping], &currentAttributes[j], sizeof(vec4f));
}
if constexpr (useShaderJIT) {
if constexpr (useShaderJIT) {
shaderJIT.run(shaderUnit.vs);
} else {
shaderUnit.vs.run();
@ -264,14 +272,14 @@ void GPU::drawArrays() {
for (int i = 0; i < totalShaderOutputs; i++) {
const u32 config = regs[PICA::InternalRegs::ShaderOutmap0 + i];
for (int j = 0; j < 4; j++) { // pls unroll
for (int j = 0; j < 4; j++) { // pls unroll
const u32 mapping = (config >> (j * 8)) & 0x1F;
out.raw[mapping] = shaderUnit.vs.outputs[i][j];
}
}
}
renderer.drawVertices(primType, std::span(vertices).first(vertexCount));
renderer->drawVertices(primType, std::span(vertices).first(vertexCount));
}
PICA::Vertex GPU::getImmediateModeVertex() {
@ -289,7 +297,9 @@ PICA::Vertex GPU::getImmediateModeVertex() {
std::memcpy(&v.s.colour, &shaderUnit.vs.outputs[1], sizeof(vec4f));
std::memcpy(&v.s.texcoord0, &shaderUnit.vs.outputs[2], 2 * sizeof(f24));
printf("(x, y, z, w) = (%f, %f, %f, %f)\n", (double)v.s.positions[0], (double)v.s.positions[1], (double)v.s.positions[2], (double)v.s.positions[3]);
printf(
"(x, y, z, w) = (%f, %f, %f, %f)\n", (double)v.s.positions[0], (double)v.s.positions[1], (double)v.s.positions[2], (double)v.s.positions[3]
);
printf("(r, g, b, a) = (%f, %f, %f, %f)\n", (double)v.s.colour[0], (double)v.s.colour[1], (double)v.s.colour[2], (double)v.s.colour[3]);
printf("(u, v ) = (%f, %f)\n", (double)v.s.texcoord0[0], (double)v.s.texcoord0[1]);

View file

@ -1,11 +1,12 @@
#include "PICA/gpu.hpp"
#include "PICA/regs.hpp"
#include "PICA/gpu.hpp"
using namespace Floats;
using namespace Helpers;
u32 GPU::readReg(u32 address) {
if (address >= 0x1EF01000 && address < 0x1EF01C00) { // Internal registers
if (address >= 0x1EF01000 && address < 0x1EF01C00) { // Internal registers
const u32 index = (address - 0x1EF01000) / sizeof(u32);
return readInternalReg(index);
} else {
@ -15,7 +16,7 @@ u32 GPU::readReg(u32 address) {
}
void GPU::writeReg(u32 address, u32 value) {
if (address >= 0x1EF01000 && address < 0x1EF01C00) { // Internal registers
if (address >= 0x1EF01000 && address < 0x1EF01C00) { // Internal registers
const u32 index = (address - 0x1EF01000) / sizeof(u32);
writeInternalReg(index, value, 0xffffffff);
} else {
@ -59,7 +60,7 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
}
u32 currentValue = regs[index];
u32 newValue = (currentValue & ~mask) | (value & mask); // Only overwrite the bits specified by "mask"
u32 newValue = (currentValue & ~mask) | (value & mask); // Only overwrite the bits specified by "mask"
regs[index] = newValue;
// TODO: Figure out if things like the shader index use the unmasked value or the masked one
@ -74,38 +75,38 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
break;
case AttribFormatHigh:
totalAttribCount = (value >> 28) + 1; // Total number of vertex attributes
fixedAttribMask = getBits<16, 12>(value); // Determines which vertex attributes are fixed for all vertices
totalAttribCount = (value >> 28) + 1; // Total number of vertex attributes
fixedAttribMask = getBits<16, 12>(value); // Determines which vertex attributes are fixed for all vertices
break;
case ColourBufferLoc: {
u32 loc = (value & 0x0fffffff) << 3;
renderer.setColourBufferLoc(loc);
renderer->setColourBufferLoc(loc);
break;
};
case ColourBufferFormat: {
u32 format = getBits<16, 3>(value);
renderer.setColourFormat(static_cast<PICA::ColorFmt>(format));
renderer->setColourFormat(static_cast<PICA::ColorFmt>(format));
break;
}
case DepthBufferLoc: {
u32 loc = (value & 0x0fffffff) << 3;
renderer.setDepthBufferLoc(loc);
renderer->setDepthBufferLoc(loc);
break;
}
case DepthBufferFormat: {
u32 format = value & 0x3;
renderer.setDepthFormat(static_cast<PICA::DepthFmt>(format));
renderer->setDepthFormat(static_cast<PICA::DepthFmt>(format));
break;
}
case FramebufferSize: {
const u32 width = value & 0x7ff;
const u32 height = getBits<12, 10>(value) + 1;
renderer.setFBSize(width, height);
renderer->setFBSize(width, height);
break;
}
@ -116,7 +117,7 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
case LightingLUTData4:
case LightingLUTData5:
case LightingLUTData6:
case LightingLUTData7:{
case LightingLUTData7: {
const uint32_t index = regs[LightingLUTIndex]; // Get full LUT index register
const uint32_t lutID = getBits<8, 5>(index); // Get which LUT we're actually writing to
uint32_t lutIndex = getBits<0, 8>(index); // And get the index inside the LUT we're writing to
@ -133,15 +134,22 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
break;
}
case VertexFloatUniformIndex:
case VertexFloatUniformIndex: {
shaderUnit.vs.setFloatUniformIndex(value);
break;
}
case VertexFloatUniformData0: case VertexFloatUniformData1: case VertexFloatUniformData2:
case VertexFloatUniformData3: case VertexFloatUniformData4: case VertexFloatUniformData5:
case VertexFloatUniformData6: case VertexFloatUniformData7:
case VertexFloatUniformData0:
case VertexFloatUniformData1:
case VertexFloatUniformData2:
case VertexFloatUniformData3:
case VertexFloatUniformData4:
case VertexFloatUniformData5:
case VertexFloatUniformData6:
case VertexFloatUniformData7: {
shaderUnit.vs.uploadFloatUniform(value);
break;
}
case FixedAttribIndex:
fixedAttribCount = 0;
@ -162,7 +170,9 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
}
break;
case FixedAttribData0: case FixedAttribData1: case FixedAttribData2:
case FixedAttribData0:
case FixedAttribData1:
case FixedAttribData2:
fixedAttrBuff[fixedAttribCount++] = value;
if (fixedAttribCount == 3) {
@ -170,15 +180,15 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
vec4f attr;
// These are stored in the reverse order anyone would expect them to be in
attr.x() = f24::fromRaw(fixedAttrBuff[2] & 0xffffff);
attr.y() = f24::fromRaw(((fixedAttrBuff[1] & 0xffff) << 8) | (fixedAttrBuff[2] >> 24));
attr.z() = f24::fromRaw(((fixedAttrBuff[0] & 0xff) << 16) | (fixedAttrBuff[1] >> 16));
attr.w() = f24::fromRaw(fixedAttrBuff[0] >> 8);
attr[0] = f24::fromRaw(fixedAttrBuff[2] & 0xffffff);
attr[1] = f24::fromRaw(((fixedAttrBuff[1] & 0xffff) << 8) | (fixedAttrBuff[2] >> 24));
attr[2] = f24::fromRaw(((fixedAttrBuff[0] & 0xff) << 16) | (fixedAttrBuff[1] >> 16));
attr[3] = f24::fromRaw(fixedAttrBuff[0] >> 8);
// If the fixed attribute index is < 12, we're just writing to one of the fixed attributes
if (fixedAttribIndex < 12) [[likely]] {
shaderUnit.vs.fixedAttributes[fixedAttribIndex++] = attr;
} else if (fixedAttribIndex == 15) { // Otherwise if it's 15, we're submitting an immediate mode vertex
} else if (fixedAttribIndex == 15) { // Otherwise if it's 15, we're submitting an immediate mode vertex
const uint totalAttrCount = (regs[PICA::InternalRegs::VertexShaderAttrNum] & 0xf) + 1;
if (totalAttrCount <= immediateModeAttrIndex) {
printf("Broken state in the immediate mode vertex submission pipeline. Failing silently\n");
@ -199,13 +209,15 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
// If we've reached 3 verts, issue a draw call
// Handle rendering depending on the primitive type
if (immediateModeVertIndex == 3) {
renderer.drawVertices(PICA::PrimType::TriangleList, immediateModeVertices);
renderer->drawVertices(PICA::PrimType::TriangleList, immediateModeVertices);
switch (primType) {
// Triangle or geometry primitive. Draw a triangle and discard all vertices
case 0: case 3:
case 0:
case 3: {
immediateModeVertIndex = 0;
break;
}
// Triangle strip. Draw triangle, discard first vertex and keep the last 2
case 1:
@ -223,54 +235,72 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
}
}
}
} else { // Writing to fixed attributes 13 and 14 probably does nothing, but we'll see
} else { // Writing to fixed attributes 13 and 14 probably does nothing, but we'll see
log("Wrote to invalid fixed vertex attribute %d\n", fixedAttribIndex);
}
}
break;
case VertexShaderOpDescriptorIndex:
case VertexShaderOpDescriptorIndex: {
shaderUnit.vs.setOpDescriptorIndex(value);
break;
}
case VertexShaderOpDescriptorData0: case VertexShaderOpDescriptorData1: case VertexShaderOpDescriptorData2:
case VertexShaderOpDescriptorData3: case VertexShaderOpDescriptorData4: case VertexShaderOpDescriptorData5:
case VertexShaderOpDescriptorData6: case VertexShaderOpDescriptorData7:
case VertexShaderOpDescriptorData0:
case VertexShaderOpDescriptorData1:
case VertexShaderOpDescriptorData2:
case VertexShaderOpDescriptorData3:
case VertexShaderOpDescriptorData4:
case VertexShaderOpDescriptorData5:
case VertexShaderOpDescriptorData6:
case VertexShaderOpDescriptorData7: {
shaderUnit.vs.uploadDescriptor(value);
break;
}
case VertexBoolUniform:
case VertexBoolUniform: {
shaderUnit.vs.boolUniform = value & 0xffff;
break;
}
case VertexIntUniform0: case VertexIntUniform1: case VertexIntUniform2: case VertexIntUniform3:
case VertexIntUniform0:
case VertexIntUniform1:
case VertexIntUniform2:
case VertexIntUniform3: {
shaderUnit.vs.uploadIntUniform(index - VertexIntUniform0, value);
break;
}
case VertexShaderData0: case VertexShaderData1: case VertexShaderData2: case VertexShaderData3:
case VertexShaderData4: case VertexShaderData5: case VertexShaderData6: case VertexShaderData7:
case VertexShaderData0:
case VertexShaderData1:
case VertexShaderData2:
case VertexShaderData3:
case VertexShaderData4:
case VertexShaderData5:
case VertexShaderData6:
case VertexShaderData7: {
shaderUnit.vs.uploadWord(value);
break;
}
case VertexShaderEntrypoint:
case VertexShaderEntrypoint: {
shaderUnit.vs.entrypoint = value & 0xffff;
break;
}
case VertexShaderTransferEnd:
if (value != 0) shaderUnit.vs.finalize();
break;
case VertexShaderTransferIndex:
shaderUnit.vs.setBufferIndex(value);
break;
case VertexShaderTransferIndex: shaderUnit.vs.setBufferIndex(value); break;
// Command lists can write to the command processor registers and change the command list stream
// Several games are known to do this, including New Super Mario Bros 2 and Super Mario 3D Land
case CmdBufTrigger0:
case CmdBufTrigger1: {
if (value != 0) { // A non-zero value triggers command list processing
int bufferIndex = index - CmdBufTrigger0; // Index of the command buffer to execute (0 or 1)
if (value != 0) { // A non-zero value triggers command list processing
int bufferIndex = index - CmdBufTrigger0; // Index of the command buffer to execute (0 or 1)
u32 addr = (regs[CmdBufAddr0 + bufferIndex] & 0xfffffff) << 3;
u32 size = (regs[CmdBufSize0 + bufferIndex] & 0xfffff) << 3;
@ -285,15 +315,13 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
default:
// Vertex attribute registers
if (index >= AttribInfoStart && index <= AttribInfoEnd) {
uint attributeIndex = (index - AttribInfoStart) / 3; // Which attribute are we writing to
uint reg = (index - AttribInfoStart) % 3; // Which of this attribute's registers are we writing to?
uint attributeIndex = (index - AttribInfoStart) / 3; // Which attribute are we writing to
uint reg = (index - AttribInfoStart) % 3; // Which of this attribute's registers are we writing to?
auto& attr = attributeInfo[attributeIndex];
switch (reg) {
case 0: attr.offset = value & 0xfffffff; break; // Attribute offset
case 1:
attr.config1 = value;
break;
case 0: attr.offset = value & 0xfffffff; break; // Attribute offset
case 1: attr.config1 = value; break;
case 2:
attr.config2 = value;
attr.size = getBits<16, 8>(value);
@ -339,13 +367,13 @@ void GPU::startCommandList(u32 addr, u32 size) {
u32 id = header & 0xffff;
u32 paramMaskIndex = getBits<16, 4>(header);
u32 paramCount = getBits<20, 8>(header); // Number of additional parameters
u32 paramCount = getBits<20, 8>(header); // Number of additional parameters
// Bit 31 tells us whether this command is going to write to multiple sequential registers (if the bit is 1)
// Or if all written values will go to the same register (If the bit is 0). It's essentially the value that
// gets added to the "id" field after each register write
bool consecutiveWritingMode = (header >> 31) != 0;
u32 mask = maskLUT[paramMaskIndex]; // Actual parameter mask
u32 mask = maskLUT[paramMaskIndex]; // Actual parameter mask
// Increment the ID by 1 after each write if we're in consecutive mode, or 0 otherwise
u32 idIncrement = (consecutiveWritingMode) ? 1 : 0;

View file

@ -1,6 +1,7 @@
#include "PICA/shader.hpp"
#include <cmath>
#include "PICA/shader.hpp"
using namespace Helpers;
void PICAShader::run() {
@ -11,20 +12,23 @@ void PICAShader::run() {
while (true) {
const u32 instruction = loadedShader[pc++];
const u32 opcode = instruction >> 26; // Top 6 bits are the opcode
const u32 opcode = instruction >> 26; // Top 6 bits are the opcode
switch (opcode) {
case ShaderOpcodes::ADD: add(instruction); break;
case ShaderOpcodes::CALL: call(instruction); break;
case ShaderOpcodes::CALLC: callc(instruction); break;
case ShaderOpcodes::CALLU: callu(instruction); break;
case ShaderOpcodes::CMP1: case ShaderOpcodes::CMP2:
case ShaderOpcodes::CMP1:
case ShaderOpcodes::CMP2: {
cmp(instruction);
break;
}
case ShaderOpcodes::DP3: dp3(instruction); break;
case ShaderOpcodes::DP4: dp4(instruction); break;
case ShaderOpcodes::DPHI: dphi(instruction); break;
case ShaderOpcodes::END: return; // Stop running shader
case ShaderOpcodes::END: return; // Stop running shader
case ShaderOpcodes::EX2: ex2(instruction); break;
case ShaderOpcodes::FLR: flr(instruction); break;
case ShaderOpcodes::IFC: ifc(instruction); break;
@ -38,31 +42,47 @@ void PICAShader::run() {
case ShaderOpcodes::MOV: mov(instruction); break;
case ShaderOpcodes::MOVA: mova(instruction); break;
case ShaderOpcodes::MUL: mul(instruction); break;
case ShaderOpcodes::NOP: break; // Do nothing
case ShaderOpcodes::NOP: break; // Do nothing
case ShaderOpcodes::RCP: rcp(instruction); break;
case ShaderOpcodes::RSQ: rsq(instruction); break;
case ShaderOpcodes::SGEI: sgei(instruction); break;
case ShaderOpcodes::SLT: slt(instruction); break;
case ShaderOpcodes::SLTI: slti(instruction); break;
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37: {
madi(instruction);
break;
}
case 0x38: case 0x39: case 0x3A: case 0x3B: case 0x3C: case 0x3D: case 0x3E: case 0x3F:
case 0x38:
case 0x39:
case 0x3A:
case 0x3B:
case 0x3C:
case 0x3D:
case 0x3E:
case 0x3F: {
mad(instruction);
break;
}
default:Helpers::panic("Unimplemented PICA instruction %08X (Opcode = %02X)", instruction, opcode);
default: Helpers::panic("Unimplemented PICA instruction %08X (Opcode = %02X)", instruction, opcode);
}
// Handle control flow statements. The ordering is important as the priority goes: LOOP > IF > CALL
// Handle loop
if (loopIndex != 0) {
auto& loop = loopInfo[loopIndex - 1];
if (pc == loop.endingPC) { // Check if the loop needs to start over
if (pc == loop.endingPC) { // Check if the loop needs to start over
loop.iterations -= 1;
if (loop.iterations == 0) // If the loop ended, go one level down on the loop stack
if (loop.iterations == 0) // If the loop ended, go one level down on the loop stack
loopIndex -= 1;
loopCounter += loop.increment;
@ -73,7 +93,7 @@ void PICAShader::run() {
// Handle ifs
if (ifIndex != 0) {
auto& info = conditionalInfo[ifIndex - 1];
if (pc == info.endingPC) { // Check if the IF block ended
if (pc == info.endingPC) { // Check if the IF block ended
pc = info.newPC;
ifIndex -= 1;
}
@ -82,7 +102,7 @@ void PICAShader::run() {
// Handle calls
if (callIndex != 0) {
auto& info = callInfo[callIndex - 1];
if (pc == info.endingPC) { // Check if the CALL block ended
if (pc == info.endingPC) { // Check if the CALL block ended
pc = info.returnPC;
callIndex -= 1;
}
@ -92,15 +112,15 @@ void PICAShader::run() {
// Calculate the actual source value using an instruction's source field and it's respective index value
// The index value is used to apply relative addressing when index != 0 by adding one of the 3 addr registers to the
// source field, but only with the original source field is pointing at a vector uniform register
// source field, but only with the original source field is pointing at a vector uniform register
u8 PICAShader::getIndexedSource(u32 source, u32 index) {
if (source < 0x20) // No offset is applied if the source isn't pointing to a vector uniform reg
if (source < 0x20) // No offset is applied if the source isn't pointing to a vector uniform reg
return source;
switch (index) {
case 0: [[likely]] return u8(source); // No offset applied
case 1: return u8(source + addrRegister.x());
case 2: return u8(source + addrRegister.y());
case 0: [[likely]] return u8(source); // No offset applied
case 1: return u8(source + addrRegister[0]);
case 2: return u8(source + addrRegister[1]);
case 3: return u8(source + loopCounter);
}
@ -117,7 +137,7 @@ PICAShader::vec4f PICAShader::getSource(u32 source) {
return floatUniforms[source - 0x20];
else {
Helpers::warn("[PICA] Unimplemented source value: %X\n", source);
return vec4f({ f24::zero(), f24::zero(), f24::zero(), f24::zero() });
return vec4f({f24::zero(), f24::zero(), f24::zero(), f24::zero()});
}
}
@ -136,13 +156,13 @@ bool PICAShader::isCondTrue(u32 instruction) {
bool refX = (getBit<25>(instruction)) != 0;
switch (condition) {
case 0: // Either cmp register matches
case 0: // Either cmp register matches
return cmpRegister[0] == refX || cmpRegister[1] == refY;
case 1: // Both cmp registers match
case 1: // Both cmp registers match
return cmpRegister[0] == refX && cmpRegister[1] == refY;
case 2: // At least cmp.x matches
case 2: // At least cmp.x matches
return cmpRegister[0] == refX;
default: // At least cmp.y matches
default: // At least cmp.y matches
return cmpRegister[1] == refY;
}
}
@ -150,7 +170,7 @@ bool PICAShader::isCondTrue(u32 instruction) {
void PICAShader::add(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -171,7 +191,7 @@ void PICAShader::add(u32 instruction) {
void PICAShader::mul(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -210,7 +230,7 @@ void PICAShader::flr(u32 instruction) {
void PICAShader::max(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
const u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -232,7 +252,7 @@ void PICAShader::max(u32 instruction) {
void PICAShader::min(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
const u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -278,16 +298,16 @@ void PICAShader::mova(u32 instruction) {
vec4f srcVector = getSourceSwizzled<1>(src, operandDescriptor);
u32 componentMask = operandDescriptor & 0xf;
if (componentMask & 0b1000) // x component
addrRegister.x() = static_cast<s32>(srcVector.x().toFloat32());
if (componentMask & 0b0100) // y component
addrRegister.y() = static_cast<s32>(srcVector.y().toFloat32());
if (componentMask & 0b1000) // x component
addrRegister[0] = static_cast<s32>(srcVector[0].toFloat32());
if (componentMask & 0b0100) // y component
addrRegister[1] = static_cast<s32>(srcVector[1].toFloat32());
}
void PICAShader::dp3(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -309,7 +329,7 @@ void PICAShader::dp3(u32 instruction) {
void PICAShader::dp4(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -480,7 +500,7 @@ void PICAShader::madi(u32 instruction) {
void PICAShader::slt(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -542,11 +562,11 @@ void PICAShader::slti(u32 instruction) {
void PICAShader::cmp(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
const u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 cmpY = getBits<21, 3>(instruction);
const u32 cmpX = getBits<24, 3>(instruction);
const u32 cmpOperations[2] = { cmpX, cmpY };
const u32 cmpOperations[2] = {cmpX, cmpY};
if (idx) Helpers::panic("[PICA] CMP: idx != 0");
vec4f srcVec1 = getSourceSwizzled<1>(src1, operandDescriptor);
@ -554,33 +574,34 @@ void PICAShader::cmp(u32 instruction) {
for (int i = 0; i < 2; i++) {
switch (cmpOperations[i]) {
case 0: // Equal
case 0: // Equal
cmpRegister[i] = srcVec1[i] == srcVec2[i];
break;
case 1: // Not equal
case 1: // Not equal
cmpRegister[i] = srcVec1[i] != srcVec2[i];
break;
case 2: // Less than
case 2: // Less than
cmpRegister[i] = srcVec1[i] < srcVec2[i];
break;
case 3: // Less than or equal
case 3: // Less than or equal
cmpRegister[i] = srcVec1[i] <= srcVec2[i];
break;
case 4: // Greater than
case 4: // Greater than
cmpRegister[i] = srcVec1[i] > srcVec2[i];
break;
case 5: // Greater than or equal
case 5: // Greater than or equal
cmpRegister[i] = srcVec1[i] >= srcVec2[i];
break;
default:
default: {
cmpRegister[i] = true;
break;
}
}
}
}
@ -604,7 +625,7 @@ void PICAShader::ifc(u32 instruction) {
void PICAShader::ifu(u32 instruction) {
const u32 dest = getBits<10, 12>(instruction);
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
if (boolUniform & (1 << bit)) {
if (ifIndex >= 8) [[unlikely]]
@ -615,8 +636,7 @@ void PICAShader::ifu(u32 instruction) {
auto& block = conditionalInfo[ifIndex++];
block.endingPC = dest;
block.newPC = dest + num;
}
else {
} else {
pc = dest;
}
}
@ -637,12 +657,12 @@ void PICAShader::call(u32 instruction) {
void PICAShader::callc(u32 instruction) {
if (isCondTrue(instruction)) {
call(instruction); // Pls inline
call(instruction); // Pls inline
}
}
void PICAShader::callu(u32 instruction) {
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
if (boolUniform & (1 << bit)) {
if (callIndex >= 4) [[unlikely]]
@ -664,26 +684,27 @@ void PICAShader::loop(u32 instruction) {
Helpers::panic("[PICA] Overflowed loop stack");
u32 dest = getBits<10, 12>(instruction);
auto& uniform = intUniforms[getBits<22, 2>(instruction)]; // The uniform we'll get loop info from
loopCounter = uniform.y();
auto& uniform = intUniforms[getBits<22, 2>(instruction)]; // The uniform we'll get loop info from
loopCounter = uniform[1];
auto& loop = loopInfo[loopIndex++];
loop.startingPC = pc;
loop.endingPC = dest + 1; // Loop is inclusive so we need + 1 here
loop.iterations = uniform.x() + 1;
loop.increment = uniform.z();
loop.endingPC = dest + 1; // Loop is inclusive so we need + 1 here
loop.iterations = uniform[0] + 1;
loop.increment = uniform[2];
}
void PICAShader::jmpc(u32 instruction) {
if (isCondTrue(instruction))
if (isCondTrue(instruction)) {
pc = getBits<10, 12>(instruction);
}
}
void PICAShader::jmpu(u32 instruction) {
const u32 test = (instruction & 1) ^ 1; // If the LSB is 0 we want to compare to true, otherwise compare to false
const u32 test = (instruction & 1) ^ 1; // If the LSB is 0 we want to compare to true, otherwise compare to false
const u32 dest = getBits<10, 12>(instruction);
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
if (((boolUniform >> bit) & 1) == test) // Jump if the bool uniform is the value we want
if (((boolUniform >> bit) & 1) == test) // Jump if the bool uniform is the value we want
pc = dest;
}

View file

@ -1,4 +1,5 @@
#include "PICA/shader_unit.hpp"
#include "cityhash.hpp"
void ShaderUnit::reset() {
@ -18,18 +19,18 @@ void PICAShader::reset() {
opDescriptorIndex = 0;
f32UniformTransfer = false;
const vec4f zero = vec4f({ f24::zero(), f24::zero(), f24::zero(), f24::zero() });
const vec4f zero = vec4f({f24::zero(), f24::zero(), f24::zero(), f24::zero()});
inputs.fill(zero);
floatUniforms.fill(zero);
outputs.fill(zero);
tempRegisters.fill(zero);
for (auto& e : intUniforms) {
e.x() = e.y() = e.z() = e.w() = 0;
e[0] = e[1] = e[2] = e[3] = 0;
}
addrRegister.x() = 0;
addrRegister.y() = 0;
addrRegister[0] = 0;
addrRegister[1] = 0;
loopCounter = 0;
codeHashDirty = true;

View file

@ -1,4 +1,4 @@
#include "gl_state.hpp"
#include "renderer_gl/gl_state.hpp"
void GLStateManager::resetBlend() {
blendEnabled = false;

View file

@ -1,4 +1,7 @@
#include "renderer_gl/renderer_gl.hpp"
#include <stb_image_write.h>
#include "PICA/float_types.hpp"
#include "PICA/gpu.hpp"
#include "PICA/regs.hpp"
@ -576,7 +579,7 @@ const char* displayFragmentShader = R"(
}
)";
void Renderer::reset() {
void RendererGL::reset() {
depthBufferCache.reset();
colourBufferCache.reset();
textureCache.reset();
@ -592,10 +595,10 @@ void Renderer::reset() {
const auto oldProgram = OpenGL::getProgram();
gl.useProgram(triangleProgram);
oldDepthScale = -1.0; // Default depth scale to -1.0, which is what games typically use
oldDepthOffset = 0.0; // Default depth offset to 0
oldDepthmapEnable = false; // Enable w buffering
oldDepthScale = -1.0; // Default depth scale to -1.0, which is what games typically use
oldDepthOffset = 0.0; // Default depth offset to 0
oldDepthmapEnable = false; // Enable w buffering
glUniform1f(depthScaleLoc, oldDepthScale);
glUniform1f(depthOffsetLoc, oldDepthOffset);
@ -605,10 +608,12 @@ void Renderer::reset() {
}
}
void Renderer::initGraphicsContext() {
void RendererGL::initGraphicsContext() {
gl.reset();
OpenGL::Shader vert(vertexShader, OpenGL::Vertex);
OpenGL::Shader frag(fragmentShader, OpenGL::Fragment);
triangleProgram.create({ vert, frag });
triangleProgram.create({vert, frag});
gl.useProgram(triangleProgram);
textureEnvSourceLoc = OpenGL::uniformLocation(triangleProgram, "u_textureEnvSource");
@ -630,10 +635,10 @@ void Renderer::initGraphicsContext() {
OpenGL::Shader vertDisplay(displayVertexShader, OpenGL::Vertex);
OpenGL::Shader fragDisplay(displayFragmentShader, OpenGL::Fragment);
displayProgram.create({ vertDisplay, fragDisplay });
displayProgram.create({vertDisplay, fragDisplay});
gl.useProgram(displayProgram);
glUniform1i(OpenGL::uniformLocation(displayProgram, "u_texture"), 0); // Init sampler object
glUniform1i(OpenGL::uniformLocation(displayProgram, "u_texture"), 0); // Init sampler object
vbo.createFixedSize(sizeof(Vertex) * vertexBufferSize, GL_STREAM_DRAW);
gl.bindVBO(vbo);
@ -669,10 +674,10 @@ void Renderer::initGraphicsContext() {
dummyVAO.create();
// Create texture and framebuffer for the 3DS screen
const u32 screenTextureWidth = 400; // Top screen is 400 pixels wide, bottom is 320
const u32 screenTextureHeight = 2 * 240; // Both screens are 240 pixels tall
glGenTextures(1,&lightLUTTextureArray);
const u32 screenTextureWidth = 400; // Top screen is 400 pixels wide, bottom is 320
const u32 screenTextureHeight = 2 * 240; // Both screens are 240 pixels tall
glGenTextures(1, &lightLUTTextureArray);
auto prevTexture = OpenGL::getTex2D();
screenTexture.create(screenTextureWidth, screenTextureHeight, GL_RGBA8);
@ -684,8 +689,7 @@ void Renderer::initGraphicsContext() {
screenFramebuffer.createWithDrawTexture(screenTexture);
screenFramebuffer.bind(OpenGL::DrawAndReadFramebuffer);
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
Helpers::panic("Incomplete framebuffer");
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) Helpers::panic("Incomplete framebuffer");
// TODO: This should not clear the framebuffer contents. It should load them from VRAM.
GLint oldViewport[4];
@ -699,19 +703,32 @@ void Renderer::initGraphicsContext() {
}
// Set up the OpenGL blending context to match the emulated PICA
void Renderer::setupBlending() {
void RendererGL::setupBlending() {
const bool blendingEnabled = (regs[PICA::InternalRegs::ColourOperation] & (1 << 8)) != 0;
// Map of PICA blending equations to OpenGL blending equations. The unused blending equations are equivalent to equation 0 (add)
static constexpr std::array<GLenum, 8> blendingEquations = {
GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX, GL_FUNC_ADD, GL_FUNC_ADD, GL_FUNC_ADD
GL_FUNC_ADD, GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT, GL_MIN, GL_MAX, GL_FUNC_ADD, GL_FUNC_ADD, GL_FUNC_ADD,
};
// Map of PICA blending funcs to OpenGL blending funcs. Func = 15 is undocumented and stubbed to GL_ONE for now
static constexpr std::array<GLenum, 16> blendingFuncs = {
GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA,
GL_SRC_ALPHA_SATURATE, GL_ONE
GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR,
GL_CONSTANT_ALPHA,
GL_ONE_MINUS_CONSTANT_ALPHA,
GL_SRC_ALPHA_SATURATE,
GL_ONE,
};
if (!blendingEnabled) {
@ -743,13 +760,12 @@ void Renderer::setupBlending() {
}
}
void Renderer::setupTextureEnvState() {
void RendererGL::setupTextureEnvState() {
// TODO: Only update uniforms when the TEV config changed. Use an UBO potentially.
static constexpr std::array<u32, 6> ioBases = {
PICA::InternalRegs::TexEnv0Source, PICA::InternalRegs::TexEnv1Source,
PICA::InternalRegs::TexEnv2Source, PICA::InternalRegs::TexEnv3Source,
PICA::InternalRegs::TexEnv4Source, PICA::InternalRegs::TexEnv5Source
PICA::InternalRegs::TexEnv0Source, PICA::InternalRegs::TexEnv1Source, PICA::InternalRegs::TexEnv2Source,
PICA::InternalRegs::TexEnv3Source, PICA::InternalRegs::TexEnv4Source, PICA::InternalRegs::TexEnv5Source,
};
u32 textureEnvSourceRegs[6];
@ -775,9 +791,11 @@ void Renderer::setupTextureEnvState() {
glUniform1uiv(textureEnvScaleLoc, 6, textureEnvScaleRegs);
}
void Renderer::bindTexturesToSlots() {
void RendererGL::bindTexturesToSlots() {
static constexpr std::array<u32, 3> ioBases = {
PICA::InternalRegs::Tex0BorderColor, PICA::InternalRegs::Tex1BorderColor, PICA::InternalRegs::Tex2BorderColor
PICA::InternalRegs::Tex0BorderColor,
PICA::InternalRegs::Tex1BorderColor,
PICA::InternalRegs::Tex2BorderColor,
};
for (int i = 0; i < 3; i++) {
@ -805,13 +823,13 @@ void Renderer::bindTexturesToSlots() {
glActiveTexture(GL_TEXTURE0);
}
void Renderer::updateLightingLUT() {
void RendererGL::updateLightingLUT() {
gpu.lightingLUTDirty = false;
std::array<u16, GPU::LightingLutSize> u16_lightinglut;
std::array<u16, GPU::LightingLutSize> u16_lightinglut;
for (int i = 0; i < gpu.lightingLUT.size(); i++) {
uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
u16_lightinglut[i] = value * 65535 / 4095;
uint64_t value = gpu.lightingLUT[i] & ((1 << 12) - 1);
u16_lightinglut[i] = value * 65535 / 4095;
}
glActiveTexture(GL_TEXTURE0 + 3);
@ -824,19 +842,22 @@ void Renderer::updateLightingLUT() {
glActiveTexture(GL_TEXTURE0);
}
void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> vertices) {
void RendererGL::drawVertices(PICA::PrimType primType, std::span<const Vertex> vertices) {
// The fourth type is meant to be "Geometry primitive". TODO: Find out what that is
static constexpr std::array<OpenGL::Primitives, 4> primTypes = {
OpenGL::Triangle, OpenGL::TriangleStrip, OpenGL::TriangleFan, OpenGL::Triangle
OpenGL::Triangle,
OpenGL::TriangleStrip,
OpenGL::TriangleFan,
OpenGL::Triangle,
};
const auto primitiveTopology = primTypes[static_cast<usize>(primType)];
const auto primitiveTopology = primTypes[static_cast<usize>(primType)];
gl.disableScissor();
gl.bindVBO(vbo);
gl.bindVAO(vao);
gl.useProgram(triangleProgram);
OpenGL::enableClipPlane(0); // Clipping plane 0 is always enabled
OpenGL::enableClipPlane(0); // Clipping plane 0 is always enabled
if (regs[PICA::InternalRegs::ClipEnable] & 1) {
OpenGL::enableClipPlane(1);
}
@ -852,9 +873,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
const int colourMask = getBits<8, 4>(depthControl);
gl.setColourMask(colourMask & 1, colourMask & 2, colourMask & 4, colourMask & 8);
static constexpr std::array<GLenum, 8> depthModes = {
GL_NEVER, GL_ALWAYS, GL_EQUAL, GL_NOTEQUAL, GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL
};
static constexpr std::array<GLenum, 8> depthModes = {GL_NEVER, GL_ALWAYS, GL_EQUAL, GL_NOTEQUAL, GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL};
const float depthScale = f24::fromRaw(regs[PICA::InternalRegs::DepthScale] & 0xffffff).toFloat32();
const float depthOffset = f24::fromRaw(regs[PICA::InternalRegs::DepthOffset] & 0xffffff).toFloat32();
@ -865,7 +884,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
oldDepthScale = depthScale;
glUniform1f(depthScaleLoc, depthScale);
}
if (oldDepthOffset != depthOffset) {
oldDepthOffset = depthOffset;
glUniform1f(depthOffsetLoc, depthOffset);
@ -917,7 +936,7 @@ void Renderer::drawVertices(PICA::PrimType primType, std::span<const Vertex> ver
constexpr u32 topScreenBuffer = 0x1f000000;
constexpr u32 bottomScreenBuffer = 0x1f05dc00;
void Renderer::display() {
void RendererGL::display() {
gl.disableScissor();
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
@ -925,7 +944,7 @@ void Renderer::display() {
glBlitFramebuffer(0, 0, 400, 480, 0, 0, 400, 480, GL_COLOR_BUFFER_BIT, GL_LINEAR);
}
void Renderer::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
void RendererGL::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 control) {
return;
log("GPU: Clear buffer\nStart: %08X End: %08X\nValue: %08X Control: %08X\n", startAddress, endAddress, value, control);
@ -947,10 +966,10 @@ void Renderer::clearBuffer(u32 startAddress, u32 endAddress, u32 value, u32 cont
OpenGL::clearColor();
}
OpenGL::Framebuffer Renderer::getColourFBO() {
//We construct a colour buffer object and see if our cache has any matching colour buffers in it
// If not, we allocate a texture & FBO for our framebuffer and store it in the cache
ColourBuffer sampleBuffer(colourBufferLoc, colourBufferFormat, fbSize.x(), fbSize.y());
OpenGL::Framebuffer RendererGL::getColourFBO() {
// We construct a colour buffer object and see if our cache has any matching colour buffers in it
// If not, we allocate a texture & FBO for our framebuffer and store it in the cache
ColourBuffer sampleBuffer(colourBufferLoc, colourBufferFormat, fbSize[0], fbSize[1]);
auto buffer = colourBufferCache.find(sampleBuffer);
if (buffer.has_value()) {
@ -960,9 +979,9 @@ OpenGL::Framebuffer Renderer::getColourFBO() {
}
}
void Renderer::bindDepthBuffer() {
void RendererGL::bindDepthBuffer() {
// Similar logic as the getColourFBO function
DepthBuffer sampleBuffer(depthBufferLoc, depthBufferFormat, fbSize.x(), fbSize.y());
DepthBuffer sampleBuffer(depthBufferLoc, depthBufferFormat, fbSize[0], fbSize[1]);
auto buffer = depthBufferCache.find(sampleBuffer);
GLuint tex;
@ -979,14 +998,14 @@ void Renderer::bindDepthBuffer() {
glFramebufferTexture2D(GL_FRAMEBUFFER, attachment, GL_TEXTURE_2D, tex, 0);
}
OpenGL::Texture Renderer::getTexture(Texture& tex) {
OpenGL::Texture RendererGL::getTexture(Texture& tex) {
// Similar logic as the getColourFBO/bindDepthBuffer functions
auto buffer = textureCache.find(tex);
if (buffer.has_value()) {
return buffer.value().get().texture;
} else {
const void* textureData = gpu.getPointerPhys<void*>(tex.location); // Get pointer to the texture data in 3DS memory
const void* textureData = gpu.getPointerPhys<void*>(tex.location); // Get pointer to the texture data in 3DS memory
Texture& newTex = textureCache.add(tex);
newTex.decodeTexture(textureData);
@ -994,7 +1013,7 @@ OpenGL::Texture Renderer::getTexture(Texture& tex) {
}
}
void Renderer::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
void RendererGL::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32 outputSize, u32 flags) {
const u32 inputWidth = inputSize & 0xffff;
const u32 inputGap = inputSize >> 16;
@ -1022,21 +1041,21 @@ void Renderer::displayTransfer(u32 inputAddr, u32 outputAddr, u32 inputSize, u32
// Hack: Detect whether we are writing to the top or bottom screen by checking output gap and drawing to the proper part of the output texture
// We consider output gap == 320 to mean bottom, and anything else to mean top
if (outputGap == 320) {
OpenGL::setViewport(40, 0, 320, 240); // Bottom screen viewport
OpenGL::setViewport(40, 0, 320, 240); // Bottom screen viewport
} else {
OpenGL::setViewport(0, 240, 400, 240); // Top screen viewport
OpenGL::setViewport(0, 240, 400, 240); // Top screen viewport
}
OpenGL::draw(OpenGL::TriangleStrip, 4); // Actually draw our 3DS screen
OpenGL::draw(OpenGL::TriangleStrip, 4); // Actually draw our 3DS screen
}
void Renderer::screenshot(const std::string& name) {
void RendererGL::screenshot(const std::string& name) {
constexpr uint width = 400;
constexpr uint height = 2 * 240;
std::vector<uint8_t> pixels, flippedPixels;
pixels.resize(width * height * 4);
flippedPixels.resize(pixels.size());;
pixels.resize(width * height * 4);
flippedPixels.resize(pixels.size());
OpenGL::bindScreenFramebuffer();
glReadPixels(0, 0, width, height, GL_BGRA, GL_UNSIGNED_BYTE, pixels.data());

View file

@ -1,6 +1,8 @@
#include "emulator.hpp"
#include <stb_image_write.h>
#ifdef PANDA3DS_ENABLE_OPENGL
#include <glad/gl.h>
#endif
#ifdef _WIN32
#include <windows.h>
@ -12,7 +14,7 @@ __declspec(dllexport) DWORD AmdPowerXpressRequestHighPerformance = 1;
}
#endif
Emulator::Emulator() : kernel(cpu, memory, gpu), cpu(memory, kernel), gpu(memory, gl, config), memory(cpu.getTicksRef()) {
Emulator::Emulator() : kernel(cpu, memory, gpu), cpu(memory, kernel), gpu(memory, config), memory(cpu.getTicksRef()) {
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS) < 0) {
Helpers::panic("Failed to initialize SDL2");
}
@ -23,6 +25,7 @@ Emulator::Emulator() : kernel(cpu, memory, gpu), cpu(memory, kernel), gpu(memory
Helpers::warn("Failed to initialize SDL2 GameController: %s", SDL_GetError());
}
#ifdef PANDA3DS_ENABLE_OPENGL
// Request OpenGL 4.1 Core (Max available on MacOS)
// MacOS gets mad if we don't explicitly demand a core profile
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
@ -42,6 +45,7 @@ Emulator::Emulator() : kernel(cpu, memory, gpu), cpu(memory, kernel), gpu(memory
if (!gladLoadGL(reinterpret_cast<GLADloadfunc>(SDL_GL_GetProcAddress))) {
Helpers::panic("OpenGL init failed: %s", SDL_GetError());
}
#endif
if (SDL_WasInit(SDL_INIT_GAMECONTROLLER)) {
gameController = SDL_GameControllerOpen(0);
@ -427,14 +431,12 @@ bool Emulator::loadELF(std::ifstream& file) {
}
// Reset our graphics context and initialize the GPU's graphics context
void Emulator::initGraphicsContext() {
gl.reset(); // TODO (For when we have multiple backends): Only do this if we are using OpenGL
gpu.initGraphicsContext();
}
void Emulator::initGraphicsContext() { gpu.initGraphicsContext(); }
#ifdef PANDA3DS_ENABLE_HTTP_SERVER
void Emulator::pollHttpServer() {
std::scoped_lock lock(httpServer.actionMutex);
ServiceManager& srv = kernel.getServiceManager();
if (httpServer.pendingAction) {

4
src/renderer.cpp Normal file
View file

@ -0,0 +1,4 @@
#include "renderer.hpp"
Renderer::Renderer(GPU& gpu, const std::array<u32, regNum>& internalRegs) : gpu(gpu), regs(internalRegs) {}
Renderer::~Renderer() {}