Remove OpenGL-specific vector-types

Removes dependency on the OpenGL header and rendering backen for its
`OpenGL::Vector` type in favor of a more standard array.
This commit is contained in:
Wunkolo 2023-07-10 08:55:23 -07:00
parent 2a1683ba62
commit 9e32b6d4bf
5 changed files with 221 additions and 224 deletions

View file

@ -2,17 +2,17 @@
// Only do anything if we're on an x64 target with JIT support enabled
#if defined(PANDA3DS_DYNAPICA_SUPPORTED) && defined(PANDA3DS_X64_HOST)
#include "helpers.hpp"
#include "logger.hpp"
#include "PICA/shader.hpp"
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
#include "x64_regs.hpp"
#include <vector>
#include "PICA/shader.hpp"
#include "helpers.hpp"
#include "logger.hpp"
#include "x64_regs.hpp"
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
class ShaderEmitter : public Xbyak::CodeGenerator {
static constexpr size_t executableMemorySize = PICAShader::maxInstructionCount * 96; // How much executable memory to alloc for each shader
static constexpr size_t executableMemorySize = PICAShader::maxInstructionCount * 96; // How much executable memory to alloc for each shader
// Allocate some extra space as padding for security purposes in the extremely unlikely occasion we manage to overflow the above size
static constexpr size_t allocSize = executableMemorySize + 0x1000;
@ -20,7 +20,7 @@ class ShaderEmitter : public Xbyak::CodeGenerator {
static constexpr uint noSwizzle = 0x1B;
using f24 = Floats::f24;
using vec4f = OpenGL::Vector<f24, 4>;
using vec4f = std::array<f24, 4>;
// An array of labels (incl pointers) to each compiled (to x64) PICA instruction
std::array<Xbyak::Label, PICAShader::maxInstructionCount> instructionLabels;
@ -33,8 +33,8 @@ class ShaderEmitter : public Xbyak::CodeGenerator {
// Vector value of (1.0, 1.0, 1.0, 1.0) for SLT(i)/SGE(i)
Label onesVector;
u32 recompilerPC = 0; // PC the recompiler is currently recompiling @
u32 loopLevel = 0; // The current loop nesting level (0 = not in a loop)
u32 recompilerPC = 0; // PC the recompiler is currently recompiling @
u32 loopLevel = 0; // The current loop nesting level (0 = not in a loop)
bool haveSSE4_1 = false; // Shows if the CPU supports SSE4.1
bool haveAVX = false; // Shows if the CPU supports AVX (NOT AVX2, NOT AVX512. Regular AVX)
@ -105,10 +105,10 @@ class ShaderEmitter : public Xbyak::CodeGenerator {
MAKE_LOG_FUNCTION(log, shaderJITLogger)
public:
using InstructionCallback = const void(*)(PICAShader& shaderUnit); // Callback type used for instructions
public:
using InstructionCallback = const void (*)(PICAShader& shaderUnit); // Callback type used for instructions
// Callback type used for the JIT prologue. This is what the caller will call
using PrologueCallback = const void(*)(PICAShader& shaderUnit, InstructionCallback cb);
using PrologueCallback = const void (*)(PICAShader& shaderUnit, InstructionCallback cb);
PrologueCallback prologueCb = nullptr;
// Initialize our emitter with "allocSize" bytes of RWX memory
@ -123,7 +123,7 @@ public:
Helpers::panic("This CPU does not support SSE3. Please use the shader interpreter instead");
}
}
void compile(const PICAShader& shaderUnit);
// PC must be a valid entrypoint here. It doesn't have that much overhead in this case, so we use std::array<>::at() to assert it does
@ -133,9 +133,7 @@ public:
return reinterpret_cast<InstructionCallback>(ptr);
}
PrologueCallback getPrologueCallback() {
return prologueCb;
}
PrologueCallback getPrologueCallback() { return prologueCb; }
};
#endif // x64 recompiler check
#endif // x64 recompiler check

View file

@ -2,14 +2,12 @@
#include <algorithm>
#include <array>
#include <cstring>
#include "helpers.hpp"
#include "opengl.hpp"
#include "PICA/float_types.hpp"
#include "PICA/pica_hash.hpp"
#include "helpers.hpp"
enum class ShaderType {
Vertex, Geometry
};
enum class ShaderType { Vertex, Geometry };
namespace ShaderOpcodes {
enum : u32 {
@ -46,66 +44,66 @@ namespace ShaderOpcodes {
SETEMIT = 0x2B,
JMPC = 0x2C,
JMPU = 0x2D,
CMP1 = 0x2E, // Both of these instructions are CMP
CMP1 = 0x2E, // Both of these instructions are CMP
CMP2 = 0x2F,
MAD = 0x38 // Everything between 0x38-0x3F is a MAD but fuck it
MAD = 0x38 // Everything between 0x38-0x3F is a MAD but fuck it
};
}
// Note: All PICA f24 vec4 registers must have the alignas(16) specifier to make them easier to access in SSE/NEON code in the JIT
class PICAShader {
using f24 = Floats::f24;
using vec4f = OpenGL::Vector<f24, 4>;
using vec4f = std::array<f24, 4>;
struct Loop {
u32 startingPC; // PC at the start of the loop
u32 endingPC; // PC at the end of the loop
u32 iterations; // How many iterations of the loop to run
u32 increment; // How much to increment the loop counter after each iteration
u32 startingPC; // PC at the start of the loop
u32 endingPC; // PC at the end of the loop
u32 iterations; // How many iterations of the loop to run
u32 increment; // How much to increment the loop counter after each iteration
};
// Info for ifc/ifu stack
struct ConditionalInfo {
u32 endingPC; // PC at the end of the if block (= DST)
u32 newPC; // PC after the if block is done executing (= DST + NUM)
u32 endingPC; // PC at the end of the if block (= DST)
u32 newPC; // PC after the if block is done executing (= DST + NUM)
};
struct CallInfo {
u32 endingPC; // PC at the end of the function
u32 returnPC; // PC to return to after the function ends
u32 endingPC; // PC at the end of the function
u32 returnPC; // PC to return to after the function ends
};
int bufferIndex; // Index of the next instruction to overwrite for shader uploads
int opDescriptorIndex; // Index of the next operand descriptor we'll overwrite
u32 floatUniformIndex = 0; // Which float uniform are we writing to? ([0, 95] range)
u32 floatUniformWordCount = 0; // How many words have we buffered for the current uniform transfer?
bool f32UniformTransfer = false; // Are we transferring an f32 uniform or an f24 uniform?
int bufferIndex; // Index of the next instruction to overwrite for shader uploads
int opDescriptorIndex; // Index of the next operand descriptor we'll overwrite
u32 floatUniformIndex = 0; // Which float uniform are we writing to? ([0, 95] range)
u32 floatUniformWordCount = 0; // How many words have we buffered for the current uniform transfer?
bool f32UniformTransfer = false; // Are we transferring an f32 uniform or an f24 uniform?
std::array<u32, 4> floatUniformBuffer; // Buffer for temporarily caching float uniform data
std::array<u32, 4> floatUniformBuffer; // Buffer for temporarily caching float uniform data
public:
public:
// These are placed close to the temp registers and co because it helps the JIT generate better code
u32 entrypoint = 0; // Initial shader PC
u32 entrypoint = 0; // Initial shader PC
u32 boolUniform;
std::array<OpenGL::Vector<u8, 4>, 4> intUniforms;
std::array<std::array<u8, 4>, 4> intUniforms;
alignas(16) std::array<vec4f, 96> floatUniforms;
alignas(16) std::array<vec4f, 16> fixedAttributes; // Fixed vertex attributes
alignas(16) std::array<vec4f, 16> inputs; // Attributes passed to the shader
alignas(16) std::array<vec4f, 16> fixedAttributes; // Fixed vertex attributes
alignas(16) std::array<vec4f, 16> inputs; // Attributes passed to the shader
alignas(16) std::array<vec4f, 16> outputs;
alignas(16) vec4f dummy = vec4f({ f24::zero(), f24::zero(), f24::zero(), f24::zero() }); // Dummy register used by the JIT
alignas(16) vec4f dummy = vec4f({f24::zero(), f24::zero(), f24::zero(), f24::zero()}); // Dummy register used by the JIT
protected:
protected:
std::array<u32, 128> operandDescriptors;
alignas(16) std::array<vec4f, 16> tempRegisters; // General purpose registers the shader can use for temp values
OpenGL::Vector<s32, 2> addrRegister; // Address register
bool cmpRegister[2]; // Comparison registers where the result of CMP is stored in
alignas(16) std::array<vec4f, 16> tempRegisters; // General purpose registers the shader can use for temp values
std::array<s32, 2> addrRegister; // Address register
bool cmpRegister[2]; // Comparison registers where the result of CMP is stored in
u32 loopCounter;
u32 pc = 0; // Program counter: Index of the next instruction we're going to execute
u32 loopIndex = 0; // The index of our loop stack (0 = empty, 4 = full)
u32 ifIndex = 0; // The index of our IF stack
u32 callIndex = 0; // The index of our CALL stack
u32 pc = 0; // Program counter: Index of the next instruction we're going to execute
u32 loopIndex = 0; // The index of our loop stack (0 = empty, 4 = full)
u32 ifIndex = 0; // The index of our IF stack
u32 callIndex = 0; // The index of our CALL stack
std::array<Loop, 4> loopInfo;
std::array<ConditionalInfo, 8> conditionalInfo;
@ -117,7 +115,7 @@ protected:
// Ideally we want to be able to support multiple different types of hash depending on compilation settings, but let's get this working first
using Hash = PICAHash::HashType;
Hash lastCodeHash = 0; // Last hash computed for the shader code (Used for the JIT caching mechanism)
Hash lastCodeHash = 0; // Last hash computed for the shader code (Used for the JIT caching mechanism)
Hash lastOpdescHash = 0; // Last hash computed for the operand descriptors (Also used for the JIT)
bool codeHashDirty = false;
@ -130,7 +128,7 @@ protected:
vec4f getSource(u32 source);
vec4f& getDest(u32 dest);
private:
private:
// Interpreter functions for the various shader functions
void add(u32 instruction);
void call(u32 instruction);
@ -171,13 +169,13 @@ private:
bool negate;
using namespace Helpers;
if constexpr (sourceIndex == 1) { // SRC1
if constexpr (sourceIndex == 1) { // SRC1
negate = (getBit<4>(opDescriptor)) != 0;
compSwizzle = getBits<5, 8>(opDescriptor);
} else if constexpr (sourceIndex == 2) { // SRC2
} else if constexpr (sourceIndex == 2) { // SRC2
negate = (getBit<13>(opDescriptor)) != 0;
compSwizzle = getBits<14, 8>(opDescriptor);
} else if constexpr (sourceIndex == 3) { // SRC3
} else if constexpr (sourceIndex == 3) { // SRC3
negate = (getBit<22>(opDescriptor)) != 0;
compSwizzle = getBits<23, 8>(opDescriptor);
}
@ -185,8 +183,8 @@ private:
// Iterate through every component of the swizzled vector in reverse order
// And get which source component's index to match it with
for (int comp = 0; comp < 4; comp++) {
int index = compSwizzle & 3; // Get index for this component
compSwizzle >>= 2; // Move to next component index
int index = compSwizzle & 3; // Get index for this component
compSwizzle >>= 2; // Move to next component index
ret[3 - comp] = source[index];
}
@ -212,39 +210,33 @@ private:
u8 getIndexedSource(u32 source, u32 index);
bool isCondTrue(u32 instruction);
public:
public:
static constexpr size_t maxInstructionCount = 4096;
std::array<u32, maxInstructionCount> loadedShader; // Currently loaded & active shader
std::array<u32, maxInstructionCount> bufferedShader; // Shader to be transferred when the SH_CODETRANSFER_END reg gets written to
std::array<u32, maxInstructionCount> loadedShader; // Currently loaded & active shader
std::array<u32, maxInstructionCount> bufferedShader; // Shader to be transferred when the SH_CODETRANSFER_END reg gets written to
PICAShader(ShaderType type) : type(type) {}
// Theese functions are in the header to be inlined more easily, though with LTO I hope I'll be able to move them
void finalize() {
std::memcpy(&loadedShader[0], &bufferedShader[0], 4096 * sizeof(u32));
}
void finalize() { std::memcpy(&loadedShader[0], &bufferedShader[0], 4096 * sizeof(u32)); }
void setBufferIndex(u32 index) {
bufferIndex = index & 0xfff;
}
void setBufferIndex(u32 index) { bufferIndex = index & 0xfff; }
void setOpDescriptorIndex(u32 index) {
opDescriptorIndex = index & 0x7f;
}
void setOpDescriptorIndex(u32 index) { opDescriptorIndex = index & 0x7f; }
void uploadWord(u32 word) {
if (bufferIndex >= 4095) Helpers::panic("o no, shader upload overflew");
bufferedShader[bufferIndex++] = word;
bufferIndex &= 0xfff;
codeHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
codeHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
}
void uploadDescriptor(u32 word) {
operandDescriptors[opDescriptorIndex++] = word;
opDescriptorIndex &= 0x7f;
opdescHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
opdescHashDirty = true; // Signal the JIT if necessary that the program hash has potentially changed
}
void setFloatUniformIndex(u32 word) {
@ -255,23 +247,22 @@ public:
void uploadFloatUniform(u32 word) {
floatUniformBuffer[floatUniformWordCount++] = word;
if (floatUniformIndex >= 96)
Helpers::panic("[PICA] Tried to write float uniform %d", floatUniformIndex);
if (floatUniformIndex >= 96) Helpers::panic("[PICA] Tried to write float uniform %d", floatUniformIndex);
if ((f32UniformTransfer && floatUniformWordCount >= 4) || (!f32UniformTransfer && floatUniformWordCount >= 3)) {
vec4f& uniform = floatUniforms[floatUniformIndex++];
floatUniformWordCount = 0;
if (f32UniformTransfer) {
uniform.x() = f24::fromFloat32(*(float*)&floatUniformBuffer[3]);
uniform.y() = f24::fromFloat32(*(float*)&floatUniformBuffer[2]);
uniform.z() = f24::fromFloat32(*(float*)&floatUniformBuffer[1]);
uniform.w() = f24::fromFloat32(*(float*)&floatUniformBuffer[0]);
uniform[0] = f24::fromFloat32(*(float*)&floatUniformBuffer[3]);
uniform[1] = f24::fromFloat32(*(float*)&floatUniformBuffer[2]);
uniform[2] = f24::fromFloat32(*(float*)&floatUniformBuffer[1]);
uniform[3] = f24::fromFloat32(*(float*)&floatUniformBuffer[0]);
} else {
uniform.x() = f24::fromRaw(floatUniformBuffer[2] & 0xffffff);
uniform.y() = f24::fromRaw(((floatUniformBuffer[1] & 0xffff) << 8) | (floatUniformBuffer[2] >> 24));
uniform.z() = f24::fromRaw(((floatUniformBuffer[0] & 0xff) << 16) | (floatUniformBuffer[1] >> 16));
uniform.w() = f24::fromRaw(floatUniformBuffer[0] >> 8);
uniform[0] = f24::fromRaw(floatUniformBuffer[2] & 0xffffff);
uniform[1] = f24::fromRaw(((floatUniformBuffer[1] & 0xffff) << 8) | (floatUniformBuffer[2] >> 24));
uniform[2] = f24::fromRaw(((floatUniformBuffer[0] & 0xff) << 16) | (floatUniformBuffer[1] >> 16));
uniform[3] = f24::fromRaw(floatUniformBuffer[0] >> 8);
}
}
}
@ -280,10 +271,10 @@ public:
using namespace Helpers;
auto& u = intUniforms[index];
u.x() = word & 0xff;
u.y() = getBits<8, 8>(word);
u.z() = getBits<16, 8>(word);
u.w() = getBits<24, 8>(word);
u[0] = word & 0xff;
u[1] = getBits<8, 8>(word);
u[2] = getBits<16, 8>(word);
u[3] = getBits<24, 8>(word);
}
void run();

View file

@ -1,11 +1,12 @@
#include "PICA/gpu.hpp"
#include "PICA/regs.hpp"
#include "PICA/gpu.hpp"
using namespace Floats;
using namespace Helpers;
u32 GPU::readReg(u32 address) {
if (address >= 0x1EF01000 && address < 0x1EF01C00) { // Internal registers
if (address >= 0x1EF01000 && address < 0x1EF01C00) { // Internal registers
const u32 index = (address - 0x1EF01000) / sizeof(u32);
return readInternalReg(index);
} else {
@ -15,7 +16,7 @@ u32 GPU::readReg(u32 address) {
}
void GPU::writeReg(u32 address, u32 value) {
if (address >= 0x1EF01000 && address < 0x1EF01C00) { // Internal registers
if (address >= 0x1EF01000 && address < 0x1EF01C00) { // Internal registers
const u32 index = (address - 0x1EF01000) / sizeof(u32);
writeInternalReg(index, value, 0xffffffff);
} else {
@ -59,7 +60,7 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
}
u32 currentValue = regs[index];
u32 newValue = (currentValue & ~mask) | (value & mask); // Only overwrite the bits specified by "mask"
u32 newValue = (currentValue & ~mask) | (value & mask); // Only overwrite the bits specified by "mask"
regs[index] = newValue;
// TODO: Figure out if things like the shader index use the unmasked value or the masked one
@ -74,38 +75,38 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
break;
case AttribFormatHigh:
totalAttribCount = (value >> 28) + 1; // Total number of vertex attributes
fixedAttribMask = getBits<16, 12>(value); // Determines which vertex attributes are fixed for all vertices
totalAttribCount = (value >> 28) + 1; // Total number of vertex attributes
fixedAttribMask = getBits<16, 12>(value); // Determines which vertex attributes are fixed for all vertices
break;
case ColourBufferLoc: {
u32 loc = (value & 0x0fffffff) << 3;
renderer.setColourBufferLoc(loc);
renderer->setColourBufferLoc(loc);
break;
};
case ColourBufferFormat: {
u32 format = getBits<16, 3>(value);
renderer.setColourFormat(static_cast<PICA::ColorFmt>(format));
renderer->setColourFormat(static_cast<PICA::ColorFmt>(format));
break;
}
case DepthBufferLoc: {
u32 loc = (value & 0x0fffffff) << 3;
renderer.setDepthBufferLoc(loc);
renderer->setDepthBufferLoc(loc);
break;
}
case DepthBufferFormat: {
u32 format = value & 0x3;
renderer.setDepthFormat(static_cast<PICA::DepthFmt>(format));
renderer->setDepthFormat(static_cast<PICA::DepthFmt>(format));
break;
}
case FramebufferSize: {
const u32 width = value & 0x7ff;
const u32 height = getBits<12, 10>(value) + 1;
renderer.setFBSize(width, height);
renderer->setFBSize(width, height);
break;
}
@ -116,7 +117,7 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
case LightingLUTData4:
case LightingLUTData5:
case LightingLUTData6:
case LightingLUTData7:{
case LightingLUTData7: {
const uint32_t index = regs[LightingLUTIndex]; // Get full LUT index register
const uint32_t lutID = getBits<8, 5>(index); // Get which LUT we're actually writing to
uint32_t lutIndex = getBits<0, 8>(index); // And get the index inside the LUT we're writing to
@ -133,15 +134,16 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
break;
}
case VertexFloatUniformIndex:
shaderUnit.vs.setFloatUniformIndex(value);
break;
case VertexFloatUniformIndex: shaderUnit.vs.setFloatUniformIndex(value); break;
case VertexFloatUniformData0: case VertexFloatUniformData1: case VertexFloatUniformData2:
case VertexFloatUniformData3: case VertexFloatUniformData4: case VertexFloatUniformData5:
case VertexFloatUniformData6: case VertexFloatUniformData7:
shaderUnit.vs.uploadFloatUniform(value);
break;
case VertexFloatUniformData0:
case VertexFloatUniformData1:
case VertexFloatUniformData2:
case VertexFloatUniformData3:
case VertexFloatUniformData4:
case VertexFloatUniformData5:
case VertexFloatUniformData6:
case VertexFloatUniformData7: shaderUnit.vs.uploadFloatUniform(value); break;
case FixedAttribIndex:
fixedAttribCount = 0;
@ -162,7 +164,9 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
}
break;
case FixedAttribData0: case FixedAttribData1: case FixedAttribData2:
case FixedAttribData0:
case FixedAttribData1:
case FixedAttribData2:
fixedAttrBuff[fixedAttribCount++] = value;
if (fixedAttribCount == 3) {
@ -170,15 +174,15 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
vec4f attr;
// These are stored in the reverse order anyone would expect them to be in
attr.x() = f24::fromRaw(fixedAttrBuff[2] & 0xffffff);
attr.y() = f24::fromRaw(((fixedAttrBuff[1] & 0xffff) << 8) | (fixedAttrBuff[2] >> 24));
attr.z() = f24::fromRaw(((fixedAttrBuff[0] & 0xff) << 16) | (fixedAttrBuff[1] >> 16));
attr.w() = f24::fromRaw(fixedAttrBuff[0] >> 8);
attr[0] = f24::fromRaw(fixedAttrBuff[2] & 0xffffff);
attr[1] = f24::fromRaw(((fixedAttrBuff[1] & 0xffff) << 8) | (fixedAttrBuff[2] >> 24));
attr[2] = f24::fromRaw(((fixedAttrBuff[0] & 0xff) << 16) | (fixedAttrBuff[1] >> 16));
attr[3] = f24::fromRaw(fixedAttrBuff[0] >> 8);
// If the fixed attribute index is < 12, we're just writing to one of the fixed attributes
if (fixedAttribIndex < 12) [[likely]] {
shaderUnit.vs.fixedAttributes[fixedAttribIndex++] = attr;
} else if (fixedAttribIndex == 15) { // Otherwise if it's 15, we're submitting an immediate mode vertex
} else if (fixedAttribIndex == 15) { // Otherwise if it's 15, we're submitting an immediate mode vertex
const uint totalAttrCount = (regs[PICA::InternalRegs::VertexShaderAttrNum] & 0xf) + 1;
if (totalAttrCount <= immediateModeAttrIndex) {
printf("Broken state in the immediate mode vertex submission pipeline. Failing silently\n");
@ -199,13 +203,12 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
// If we've reached 3 verts, issue a draw call
// Handle rendering depending on the primitive type
if (immediateModeVertIndex == 3) {
renderer.drawVertices(PICA::PrimType::TriangleList, immediateModeVertices);
renderer->drawVertices(PICA::PrimType::TriangleList, immediateModeVertices);
switch (primType) {
// Triangle or geometry primitive. Draw a triangle and discard all vertices
case 0: case 3:
immediateModeVertIndex = 0;
break;
case 0:
case 3: immediateModeVertIndex = 0; break;
// Triangle strip. Draw triangle, discard first vertex and keep the last 2
case 1:
@ -223,54 +226,54 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
}
}
}
} else { // Writing to fixed attributes 13 and 14 probably does nothing, but we'll see
} else { // Writing to fixed attributes 13 and 14 probably does nothing, but we'll see
log("Wrote to invalid fixed vertex attribute %d\n", fixedAttribIndex);
}
}
break;
case VertexShaderOpDescriptorIndex:
shaderUnit.vs.setOpDescriptorIndex(value);
break;
case VertexShaderOpDescriptorIndex: shaderUnit.vs.setOpDescriptorIndex(value); break;
case VertexShaderOpDescriptorData0: case VertexShaderOpDescriptorData1: case VertexShaderOpDescriptorData2:
case VertexShaderOpDescriptorData3: case VertexShaderOpDescriptorData4: case VertexShaderOpDescriptorData5:
case VertexShaderOpDescriptorData6: case VertexShaderOpDescriptorData7:
shaderUnit.vs.uploadDescriptor(value);
break;
case VertexShaderOpDescriptorData0:
case VertexShaderOpDescriptorData1:
case VertexShaderOpDescriptorData2:
case VertexShaderOpDescriptorData3:
case VertexShaderOpDescriptorData4:
case VertexShaderOpDescriptorData5:
case VertexShaderOpDescriptorData6:
case VertexShaderOpDescriptorData7: shaderUnit.vs.uploadDescriptor(value); break;
case VertexBoolUniform:
shaderUnit.vs.boolUniform = value & 0xffff;
break;
case VertexBoolUniform: shaderUnit.vs.boolUniform = value & 0xffff; break;
case VertexIntUniform0: case VertexIntUniform1: case VertexIntUniform2: case VertexIntUniform3:
shaderUnit.vs.uploadIntUniform(index - VertexIntUniform0, value);
break;
case VertexIntUniform0:
case VertexIntUniform1:
case VertexIntUniform2:
case VertexIntUniform3: shaderUnit.vs.uploadIntUniform(index - VertexIntUniform0, value); break;
case VertexShaderData0: case VertexShaderData1: case VertexShaderData2: case VertexShaderData3:
case VertexShaderData4: case VertexShaderData5: case VertexShaderData6: case VertexShaderData7:
shaderUnit.vs.uploadWord(value);
break;
case VertexShaderData0:
case VertexShaderData1:
case VertexShaderData2:
case VertexShaderData3:
case VertexShaderData4:
case VertexShaderData5:
case VertexShaderData6:
case VertexShaderData7: shaderUnit.vs.uploadWord(value); break;
case VertexShaderEntrypoint:
shaderUnit.vs.entrypoint = value & 0xffff;
break;
case VertexShaderEntrypoint: shaderUnit.vs.entrypoint = value & 0xffff; break;
case VertexShaderTransferEnd:
if (value != 0) shaderUnit.vs.finalize();
break;
case VertexShaderTransferIndex:
shaderUnit.vs.setBufferIndex(value);
break;
case VertexShaderTransferIndex: shaderUnit.vs.setBufferIndex(value); break;
// Command lists can write to the command processor registers and change the command list stream
// Several games are known to do this, including New Super Mario Bros 2 and Super Mario 3D Land
case CmdBufTrigger0:
case CmdBufTrigger1: {
if (value != 0) { // A non-zero value triggers command list processing
int bufferIndex = index - CmdBufTrigger0; // Index of the command buffer to execute (0 or 1)
if (value != 0) { // A non-zero value triggers command list processing
int bufferIndex = index - CmdBufTrigger0; // Index of the command buffer to execute (0 or 1)
u32 addr = (regs[CmdBufAddr0 + bufferIndex] & 0xfffffff) << 3;
u32 size = (regs[CmdBufSize0 + bufferIndex] & 0xfffff) << 3;
@ -285,15 +288,13 @@ void GPU::writeInternalReg(u32 index, u32 value, u32 mask) {
default:
// Vertex attribute registers
if (index >= AttribInfoStart && index <= AttribInfoEnd) {
uint attributeIndex = (index - AttribInfoStart) / 3; // Which attribute are we writing to
uint reg = (index - AttribInfoStart) % 3; // Which of this attribute's registers are we writing to?
uint attributeIndex = (index - AttribInfoStart) / 3; // Which attribute are we writing to
uint reg = (index - AttribInfoStart) % 3; // Which of this attribute's registers are we writing to?
auto& attr = attributeInfo[attributeIndex];
switch (reg) {
case 0: attr.offset = value & 0xfffffff; break; // Attribute offset
case 1:
attr.config1 = value;
break;
case 0: attr.offset = value & 0xfffffff; break; // Attribute offset
case 1: attr.config1 = value; break;
case 2:
attr.config2 = value;
attr.size = getBits<16, 8>(value);
@ -339,13 +340,13 @@ void GPU::startCommandList(u32 addr, u32 size) {
u32 id = header & 0xffff;
u32 paramMaskIndex = getBits<16, 4>(header);
u32 paramCount = getBits<20, 8>(header); // Number of additional parameters
u32 paramCount = getBits<20, 8>(header); // Number of additional parameters
// Bit 31 tells us whether this command is going to write to multiple sequential registers (if the bit is 1)
// Or if all written values will go to the same register (If the bit is 0). It's essentially the value that
// gets added to the "id" field after each register write
bool consecutiveWritingMode = (header >> 31) != 0;
u32 mask = maskLUT[paramMaskIndex]; // Actual parameter mask
u32 mask = maskLUT[paramMaskIndex]; // Actual parameter mask
// Increment the ID by 1 after each write if we're in consecutive mode, or 0 otherwise
u32 idIncrement = (consecutiveWritingMode) ? 1 : 0;

View file

@ -1,6 +1,7 @@
#include "PICA/shader.hpp"
#include <cmath>
#include "PICA/shader.hpp"
using namespace Helpers;
void PICAShader::run() {
@ -11,20 +12,19 @@ void PICAShader::run() {
while (true) {
const u32 instruction = loadedShader[pc++];
const u32 opcode = instruction >> 26; // Top 6 bits are the opcode
const u32 opcode = instruction >> 26; // Top 6 bits are the opcode
switch (opcode) {
case ShaderOpcodes::ADD: add(instruction); break;
case ShaderOpcodes::CALL: call(instruction); break;
case ShaderOpcodes::CALLC: callc(instruction); break;
case ShaderOpcodes::CALLU: callu(instruction); break;
case ShaderOpcodes::CMP1: case ShaderOpcodes::CMP2:
cmp(instruction);
break;
case ShaderOpcodes::CMP1:
case ShaderOpcodes::CMP2: cmp(instruction); break;
case ShaderOpcodes::DP3: dp3(instruction); break;
case ShaderOpcodes::DP4: dp4(instruction); break;
case ShaderOpcodes::DPHI: dphi(instruction); break;
case ShaderOpcodes::END: return; // Stop running shader
case ShaderOpcodes::END: return; // Stop running shader
case ShaderOpcodes::EX2: ex2(instruction); break;
case ShaderOpcodes::FLR: flr(instruction); break;
case ShaderOpcodes::IFC: ifc(instruction); break;
@ -38,31 +38,41 @@ void PICAShader::run() {
case ShaderOpcodes::MOV: mov(instruction); break;
case ShaderOpcodes::MOVA: mova(instruction); break;
case ShaderOpcodes::MUL: mul(instruction); break;
case ShaderOpcodes::NOP: break; // Do nothing
case ShaderOpcodes::NOP: break; // Do nothing
case ShaderOpcodes::RCP: rcp(instruction); break;
case ShaderOpcodes::RSQ: rsq(instruction); break;
case ShaderOpcodes::SGEI: sgei(instruction); break;
case ShaderOpcodes::SLT: slt(instruction); break;
case ShaderOpcodes::SLTI: slti(instruction); break;
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37:
madi(instruction);
break;
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37: madi(instruction); break;
case 0x38: case 0x39: case 0x3A: case 0x3B: case 0x3C: case 0x3D: case 0x3E: case 0x3F:
mad(instruction);
break;
case 0x38:
case 0x39:
case 0x3A:
case 0x3B:
case 0x3C:
case 0x3D:
case 0x3E:
case 0x3F: mad(instruction); break;
default:Helpers::panic("Unimplemented PICA instruction %08X (Opcode = %02X)", instruction, opcode);
default: Helpers::panic("Unimplemented PICA instruction %08X (Opcode = %02X)", instruction, opcode);
}
// Handle control flow statements. The ordering is important as the priority goes: LOOP > IF > CALL
// Handle loop
if (loopIndex != 0) {
auto& loop = loopInfo[loopIndex - 1];
if (pc == loop.endingPC) { // Check if the loop needs to start over
if (pc == loop.endingPC) { // Check if the loop needs to start over
loop.iterations -= 1;
if (loop.iterations == 0) // If the loop ended, go one level down on the loop stack
if (loop.iterations == 0) // If the loop ended, go one level down on the loop stack
loopIndex -= 1;
loopCounter += loop.increment;
@ -73,7 +83,7 @@ void PICAShader::run() {
// Handle ifs
if (ifIndex != 0) {
auto& info = conditionalInfo[ifIndex - 1];
if (pc == info.endingPC) { // Check if the IF block ended
if (pc == info.endingPC) { // Check if the IF block ended
pc = info.newPC;
ifIndex -= 1;
}
@ -82,7 +92,7 @@ void PICAShader::run() {
// Handle calls
if (callIndex != 0) {
auto& info = callInfo[callIndex - 1];
if (pc == info.endingPC) { // Check if the CALL block ended
if (pc == info.endingPC) { // Check if the CALL block ended
pc = info.returnPC;
callIndex -= 1;
}
@ -92,15 +102,15 @@ void PICAShader::run() {
// Calculate the actual source value using an instruction's source field and it's respective index value
// The index value is used to apply relative addressing when index != 0 by adding one of the 3 addr registers to the
// source field, but only with the original source field is pointing at a vector uniform register
// source field, but only with the original source field is pointing at a vector uniform register
u8 PICAShader::getIndexedSource(u32 source, u32 index) {
if (source < 0x20) // No offset is applied if the source isn't pointing to a vector uniform reg
if (source < 0x20) // No offset is applied if the source isn't pointing to a vector uniform reg
return source;
switch (index) {
case 0: [[likely]] return u8(source); // No offset applied
case 1: return u8(source + addrRegister.x());
case 2: return u8(source + addrRegister.y());
case 0: [[likely]] return u8(source); // No offset applied
case 1: return u8(source + addrRegister[0]);
case 2: return u8(source + addrRegister[1]);
case 3: return u8(source + loopCounter);
}
@ -117,7 +127,7 @@ PICAShader::vec4f PICAShader::getSource(u32 source) {
return floatUniforms[source - 0x20];
else {
Helpers::warn("[PICA] Unimplemented source value: %X\n", source);
return vec4f({ f24::zero(), f24::zero(), f24::zero(), f24::zero() });
return vec4f({f24::zero(), f24::zero(), f24::zero(), f24::zero()});
}
}
@ -136,13 +146,13 @@ bool PICAShader::isCondTrue(u32 instruction) {
bool refX = (getBit<25>(instruction)) != 0;
switch (condition) {
case 0: // Either cmp register matches
case 0: // Either cmp register matches
return cmpRegister[0] == refX || cmpRegister[1] == refY;
case 1: // Both cmp registers match
case 1: // Both cmp registers match
return cmpRegister[0] == refX && cmpRegister[1] == refY;
case 2: // At least cmp.x matches
case 2: // At least cmp.x matches
return cmpRegister[0] == refX;
default: // At least cmp.y matches
default: // At least cmp.y matches
return cmpRegister[1] == refY;
}
}
@ -150,7 +160,7 @@ bool PICAShader::isCondTrue(u32 instruction) {
void PICAShader::add(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -171,7 +181,7 @@ void PICAShader::add(u32 instruction) {
void PICAShader::mul(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -210,7 +220,7 @@ void PICAShader::flr(u32 instruction) {
void PICAShader::max(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
const u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -232,7 +242,7 @@ void PICAShader::max(u32 instruction) {
void PICAShader::min(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
const u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -278,16 +288,16 @@ void PICAShader::mova(u32 instruction) {
vec4f srcVector = getSourceSwizzled<1>(src, operandDescriptor);
u32 componentMask = operandDescriptor & 0xf;
if (componentMask & 0b1000) // x component
addrRegister.x() = static_cast<s32>(srcVector.x().toFloat32());
if (componentMask & 0b0100) // y component
addrRegister.y() = static_cast<s32>(srcVector.y().toFloat32());
if (componentMask & 0b1000) // x component
addrRegister[0] = static_cast<s32>(srcVector[0].toFloat32());
if (componentMask & 0b0100) // y component
addrRegister[1] = static_cast<s32>(srcVector[1].toFloat32());
}
void PICAShader::dp3(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -309,7 +319,7 @@ void PICAShader::dp3(u32 instruction) {
void PICAShader::dp4(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -480,7 +490,7 @@ void PICAShader::madi(u32 instruction) {
void PICAShader::slt(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 dest = getBits<21, 5>(instruction);
@ -542,11 +552,11 @@ void PICAShader::slti(u32 instruction) {
void PICAShader::cmp(u32 instruction) {
const u32 operandDescriptor = operandDescriptors[instruction & 0x7f];
const u32 src1 = getBits<12, 7>(instruction);
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 src2 = getBits<7, 5>(instruction); // src2 coming first because PICA moment
const u32 idx = getBits<19, 2>(instruction);
const u32 cmpY = getBits<21, 3>(instruction);
const u32 cmpX = getBits<24, 3>(instruction);
const u32 cmpOperations[2] = { cmpX, cmpY };
const u32 cmpOperations[2] = {cmpX, cmpY};
if (idx) Helpers::panic("[PICA] CMP: idx != 0");
vec4f srcVec1 = getSourceSwizzled<1>(src1, operandDescriptor);
@ -554,33 +564,31 @@ void PICAShader::cmp(u32 instruction) {
for (int i = 0; i < 2; i++) {
switch (cmpOperations[i]) {
case 0: // Equal
case 0: // Equal
cmpRegister[i] = srcVec1[i] == srcVec2[i];
break;
case 1: // Not equal
case 1: // Not equal
cmpRegister[i] = srcVec1[i] != srcVec2[i];
break;
case 2: // Less than
case 2: // Less than
cmpRegister[i] = srcVec1[i] < srcVec2[i];
break;
case 3: // Less than or equal
case 3: // Less than or equal
cmpRegister[i] = srcVec1[i] <= srcVec2[i];
break;
case 4: // Greater than
case 4: // Greater than
cmpRegister[i] = srcVec1[i] > srcVec2[i];
break;
case 5: // Greater than or equal
case 5: // Greater than or equal
cmpRegister[i] = srcVec1[i] >= srcVec2[i];
break;
default:
cmpRegister[i] = true;
break;
default: cmpRegister[i] = true; break;
}
}
}
@ -604,7 +612,7 @@ void PICAShader::ifc(u32 instruction) {
void PICAShader::ifu(u32 instruction) {
const u32 dest = getBits<10, 12>(instruction);
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
if (boolUniform & (1 << bit)) {
if (ifIndex >= 8) [[unlikely]]
@ -615,8 +623,7 @@ void PICAShader::ifu(u32 instruction) {
auto& block = conditionalInfo[ifIndex++];
block.endingPC = dest;
block.newPC = dest + num;
}
else {
} else {
pc = dest;
}
}
@ -637,12 +644,12 @@ void PICAShader::call(u32 instruction) {
void PICAShader::callc(u32 instruction) {
if (isCondTrue(instruction)) {
call(instruction); // Pls inline
call(instruction); // Pls inline
}
}
void PICAShader::callu(u32 instruction) {
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
if (boolUniform & (1 << bit)) {
if (callIndex >= 4) [[unlikely]]
@ -664,26 +671,25 @@ void PICAShader::loop(u32 instruction) {
Helpers::panic("[PICA] Overflowed loop stack");
u32 dest = getBits<10, 12>(instruction);
auto& uniform = intUniforms[getBits<22, 2>(instruction)]; // The uniform we'll get loop info from
loopCounter = uniform.y();
auto& uniform = intUniforms[getBits<22, 2>(instruction)]; // The uniform we'll get loop info from
loopCounter = uniform[1];
auto& loop = loopInfo[loopIndex++];
loop.startingPC = pc;
loop.endingPC = dest + 1; // Loop is inclusive so we need + 1 here
loop.iterations = uniform.x() + 1;
loop.increment = uniform.z();
loop.endingPC = dest + 1; // Loop is inclusive so we need + 1 here
loop.iterations = uniform[0] + 1;
loop.increment = uniform[2];
}
void PICAShader::jmpc(u32 instruction) {
if (isCondTrue(instruction))
pc = getBits<10, 12>(instruction);
if (isCondTrue(instruction)) pc = getBits<10, 12>(instruction);
}
void PICAShader::jmpu(u32 instruction) {
const u32 test = (instruction & 1) ^ 1; // If the LSB is 0 we want to compare to true, otherwise compare to false
const u32 test = (instruction & 1) ^ 1; // If the LSB is 0 we want to compare to true, otherwise compare to false
const u32 dest = getBits<10, 12>(instruction);
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
const u32 bit = getBits<22, 4>(instruction); // Bit of the bool uniform to check
if (((boolUniform >> bit) & 1) == test) // Jump if the bool uniform is the value we want
if (((boolUniform >> bit) & 1) == test) // Jump if the bool uniform is the value we want
pc = dest;
}

View file

@ -1,4 +1,5 @@
#include "PICA/shader_unit.hpp"
#include "cityhash.hpp"
void ShaderUnit::reset() {
@ -18,18 +19,18 @@ void PICAShader::reset() {
opDescriptorIndex = 0;
f32UniformTransfer = false;
const vec4f zero = vec4f({ f24::zero(), f24::zero(), f24::zero(), f24::zero() });
const vec4f zero = vec4f({f24::zero(), f24::zero(), f24::zero(), f24::zero()});
inputs.fill(zero);
floatUniforms.fill(zero);
outputs.fill(zero);
tempRegisters.fill(zero);
for (auto& e : intUniforms) {
e.x() = e.y() = e.z() = e.w() = 0;
e[0] = e[1] = e[2] = e[3] = 0;
}
addrRegister.x() = 0;
addrRegister.y() = 0;
addrRegister[0] = 0;
addrRegister[1] = 0;
loopCounter = 0;
codeHashDirty = true;