mirror of
https://github.com/wheremyfoodat/Panda3DS.git
synced 2025-04-06 06:05:40 +12:00
More HLE DSP work
This commit is contained in:
parent
07cee43a2b
commit
b299609a9b
2 changed files with 60 additions and 48 deletions
|
@ -16,6 +16,46 @@ namespace Audio {
|
|||
using SampleFormat = HLE::SourceConfiguration::Configuration::Format;
|
||||
using SourceType = HLE::SourceConfiguration::Configuration::MonoOrStereo;
|
||||
|
||||
class DSPMixer {
|
||||
public:
|
||||
template <typename T, usize channelCount = 1>
|
||||
using Sample = std::array<T, channelCount>;
|
||||
|
||||
template <typename T, usize channelCount>
|
||||
using Frame = std::array<Sample<T, channelCount>, 160>;
|
||||
|
||||
template <typename T>
|
||||
using MonoFrame = Frame<T, 1>;
|
||||
|
||||
template <typename T>
|
||||
using StereoFrame = Frame<T, 2>;
|
||||
|
||||
template <typename T>
|
||||
using QuadFrame = Frame<T, 4>;
|
||||
|
||||
// Internally the DSP uses four channels when mixing.
|
||||
// Neatly, QuadFrame<s32> means that every sample is a uint32x4 value, which is particularly nice for SIMD mixing
|
||||
using IntermediateMix = QuadFrame<s32>;
|
||||
|
||||
private:
|
||||
using ChannelFormat = HLE::DspConfiguration::OutputFormat;
|
||||
// The audio from each DSP voice is converted to quadraphonic and then fed into 3 intermediate mixing stages
|
||||
// Two of these intermediate mixers (second and third) are used for effects, including custom effects done on the CPU
|
||||
static constexpr usize mixerStageCount = 3;
|
||||
|
||||
public:
|
||||
ChannelFormat channelFormat = ChannelFormat::Stereo;
|
||||
std::array<float, mixerStageCount> volumes;
|
||||
std::array<bool, 2> enableAuxStages;
|
||||
|
||||
void reset() {
|
||||
channelFormat = ChannelFormat::Stereo;
|
||||
|
||||
volumes.fill(0.0);
|
||||
enableAuxStages.fill(false);
|
||||
}
|
||||
};
|
||||
|
||||
struct DSPSource {
|
||||
// Audio buffer information
|
||||
// https://www.3dbrew.org/wiki/DSP_Memory_Region
|
||||
|
@ -49,6 +89,7 @@ namespace Audio {
|
|||
using SampleBuffer = std::deque<std::array<s16, 2>>;
|
||||
using BufferQueue = std::priority_queue<Buffer>;
|
||||
|
||||
DSPMixer::StereoFrame<s16> currentFrame;
|
||||
BufferQueue buffers;
|
||||
|
||||
SampleFormat sampleFormat = SampleFormat::ADPCM;
|
||||
|
@ -98,46 +139,6 @@ namespace Audio {
|
|||
DSPSource() { reset(); }
|
||||
};
|
||||
|
||||
class DSPMixer {
|
||||
public:
|
||||
template <typename T, usize channelCount = 1>
|
||||
using Sample = std::array<T, channelCount>;
|
||||
|
||||
template <typename T, usize channelCount>
|
||||
using Frame = std::array<Sample<T, channelCount>, 160>;
|
||||
|
||||
template <typename T>
|
||||
using MonoFrame = Frame<T, 1>;
|
||||
|
||||
template <typename T>
|
||||
using StereoFrame = Frame<T, 2>;
|
||||
|
||||
template <typename T>
|
||||
using QuadFrame = Frame<T, 4>;
|
||||
|
||||
// Internally the DSP uses four channels when mixing.
|
||||
// Neatly, QuadFrame<s32> means that every sample is a uint32x4 value, which is particularly nice for SIMD mixing
|
||||
using IntermediateMix = QuadFrame<s32>;
|
||||
|
||||
private:
|
||||
using ChannelFormat = HLE::DspConfiguration::OutputFormat;
|
||||
// The audio from each DSP voice is converted to quadraphonic and then fed into 3 intermediate mixing stages
|
||||
// Two of these intermediate mixers (second and third) are used for effects, including custom effects done on the CPU
|
||||
static constexpr usize mixerStageCount = 3;
|
||||
|
||||
public:
|
||||
ChannelFormat channelFormat = ChannelFormat::Stereo;
|
||||
std::array<float, mixerStageCount> volumes;
|
||||
std::array<bool, 2> enableAuxStages;
|
||||
|
||||
void reset() {
|
||||
channelFormat = ChannelFormat::Stereo;
|
||||
|
||||
volumes.fill(0.0);
|
||||
enableAuxStages.fill(false);
|
||||
}
|
||||
};
|
||||
|
||||
class HLE_DSP : public DSPCore {
|
||||
// The audio frame types are public in case we want to use them for unit tests
|
||||
public:
|
||||
|
@ -159,7 +160,7 @@ namespace Audio {
|
|||
using Source = Audio::DSPSource;
|
||||
using SampleBuffer = Source::SampleBuffer;
|
||||
using IntermediateMix = DSPMixer::IntermediateMix;
|
||||
|
||||
|
||||
private:
|
||||
enum class DSPState : u32 {
|
||||
Off,
|
||||
|
@ -226,7 +227,7 @@ namespace Audio {
|
|||
void outputFrame();
|
||||
// Perform the final mix, mixing the quadraphonic samples from all voices into the output audio frame
|
||||
void performMix(Audio::HLE::SharedMemory& readRegion, Audio::HLE::SharedMemory& writeRegion);
|
||||
|
||||
|
||||
// Decode an entire buffer worth of audio
|
||||
void decodeBuffer(DSPSource& source);
|
||||
|
||||
|
|
|
@ -262,10 +262,10 @@ namespace Audio {
|
|||
for (usize sampleIndex = 0; sampleIndex < Audio::samplesInFrame; sampleIndex++) {
|
||||
// Mono samples are in the format: (l, r)
|
||||
// When converting to quad, gain0 and gain2 are applied to the left sample, gain1 and gain3 to the right one
|
||||
intermediateMix[sampleIndex][0] += s32(source.currentSamples[sampleIndex][0] * gains[0]);
|
||||
intermediateMix[sampleIndex][1] += s32(source.currentSamples[sampleIndex][1] * gains[1]);
|
||||
intermediateMix[sampleIndex][2] += s32(source.currentSamples[sampleIndex][0] * gains[2]);
|
||||
intermediateMix[sampleIndex][3] += s32(source.currentSamples[sampleIndex][1] * gains[3]);
|
||||
intermediateMix[sampleIndex][0] += s32(source.currentFrame[sampleIndex][0] * gains[0]);
|
||||
intermediateMix[sampleIndex][1] += s32(source.currentFrame[sampleIndex][1] * gains[1]);
|
||||
intermediateMix[sampleIndex][2] += s32(source.currentFrame[sampleIndex][0] * gains[2]);
|
||||
intermediateMix[sampleIndex][3] += s32(source.currentFrame[sampleIndex][1] * gains[3]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -467,6 +467,9 @@ namespace Audio {
|
|||
}
|
||||
|
||||
void HLE_DSP::generateFrame(DSPSource& source) {
|
||||
// Zero out all output samples at first. TODO: Don't zero out the entire frame initially, rather only zero-out the "unwritten" samples when the frame is done being processed.
|
||||
source.currentFrame = {};
|
||||
|
||||
if (source.currentSamples.empty()) {
|
||||
// There's no audio left to play, turn the voice off
|
||||
if (source.buffers.empty()) {
|
||||
|
@ -480,7 +483,7 @@ namespace Audio {
|
|||
|
||||
decodeBuffer(source);
|
||||
} else {
|
||||
uint maxSampleCount = uint(float(Audio::samplesInFrame) * source.rateMultiplier);
|
||||
uint maxSampleCount = uint(float(Audio::samplesInFrame) * 1.0);
|
||||
uint outputCount = 0;
|
||||
|
||||
while (outputCount < maxSampleCount) {
|
||||
|
@ -494,8 +497,14 @@ namespace Audio {
|
|||
|
||||
const uint sampleCount = std::min<s32>(maxSampleCount - outputCount, source.currentSamples.size());
|
||||
|
||||
// samples.insert(samples.end(), source.currentSamples.begin(), source.currentSamples.begin() + sampleCount);
|
||||
// Copy samples to current frame buffer
|
||||
// TODO: Implement linear/polyphase interpolation
|
||||
std::copy(
|
||||
source.currentSamples.begin(), std::next(source.currentSamples.begin(), sampleCount), source.currentFrame.begin() + outputCount
|
||||
);
|
||||
// Remove samples from sample buffer
|
||||
source.currentSamples.erase(source.currentSamples.begin(), std::next(source.currentSamples.begin(), sampleCount));
|
||||
// Advance sample position
|
||||
source.samplePosition += sampleCount;
|
||||
outputCount += sampleCount;
|
||||
}
|
||||
|
@ -718,5 +727,7 @@ namespace Audio {
|
|||
|
||||
buffers = {};
|
||||
currentSamples.clear();
|
||||
|
||||
gains.fill({});
|
||||
}
|
||||
} // namespace Audio
|
||||
|
|
Loading…
Add table
Reference in a new issue