mirror of
https://github.com/wheremyfoodat/Panda3DS.git
synced 2025-05-06 20:24:48 +12:00
metal: initial support
This commit is contained in:
parent
29d9ed7224
commit
f0547d1a71
167 changed files with 28839 additions and 1271 deletions
|
@ -12,34 +12,36 @@ static const char* arbitrationTypeToString(u32 type) {
|
|||
}
|
||||
}
|
||||
|
||||
Handle Kernel::makeArbiter() {
|
||||
HandleType Kernel::makeArbiter() {
|
||||
if (arbiterCount >= appResourceLimits.maxAddressArbiters) {
|
||||
Helpers::panic("Overflowed the number of address arbiters");
|
||||
}
|
||||
arbiterCount++;
|
||||
|
||||
Handle ret = makeObject(KernelObjectType::AddressArbiter);
|
||||
HandleType ret = makeObject(KernelObjectType::AddressArbiter);
|
||||
objects[ret].data = new AddressArbiter();
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Result CreateAddressArbiter(Handle* arbiter)
|
||||
// Result CreateAddressArbiter(HandleType* arbiter)
|
||||
void Kernel::createAddressArbiter() {
|
||||
logSVC("CreateAddressArbiter\n");
|
||||
regs[0] = Result::Success;
|
||||
regs[1] = makeArbiter();
|
||||
}
|
||||
|
||||
// Result ArbitrateAddress(Handle arbiter, u32 addr, ArbitrationType type, s32 value, s64 nanoseconds)
|
||||
// Result ArbitrateAddress(HandleType arbiter, u32 addr, ArbitrationType type, s32 value, s64 nanoseconds)
|
||||
void Kernel::arbitrateAddress() {
|
||||
const Handle handle = regs[0];
|
||||
const HandleType handle = regs[0];
|
||||
const u32 address = regs[1];
|
||||
const u32 type = regs[2];
|
||||
const s32 value = s32(regs[3]);
|
||||
const s64 ns = s64(u64(regs[4]) | (u64(regs[5]) << 32));
|
||||
|
||||
logSVC("ArbitrateAddress(Handle = %X, address = %08X, type = %s, value = %d, ns = %lld)\n", handle, address,
|
||||
arbitrationTypeToString(type), value, ns);
|
||||
logSVC(
|
||||
"ArbitrateAddress(HandleType = %X, address = %08X, type = %s, value = %d, ns = %lld)\n", handle, address, arbitrationTypeToString(type),
|
||||
value, ns
|
||||
);
|
||||
|
||||
const auto arbiter = getObject(handle, KernelObjectType::AddressArbiter);
|
||||
if (arbiter == nullptr) [[unlikely]] {
|
||||
|
@ -61,7 +63,7 @@ void Kernel::arbitrateAddress() {
|
|||
switch (static_cast<ArbitrationType>(type)) {
|
||||
// Puts this thread to sleep if word < value until another thread arbitrates the address using SIGNAL
|
||||
case ArbitrationType::WaitIfLess: {
|
||||
s32 word = static_cast<s32>(mem.read32(address)); // Yes this is meant to be signed
|
||||
s32 word = static_cast<s32>(mem.read32(address)); // Yes this is meant to be signed
|
||||
if (word < value) {
|
||||
sleepThreadOnArbiter(address);
|
||||
}
|
||||
|
@ -71,7 +73,7 @@ void Kernel::arbitrateAddress() {
|
|||
// Puts this thread to sleep if word < value until another thread arbitrates the address using SIGNAL
|
||||
// If the thread is put to sleep, the arbiter address is decremented
|
||||
case ArbitrationType::DecrementAndWaitIfLess: {
|
||||
s32 word = static_cast<s32>(mem.read32(address)); // Yes this is meant to be signed
|
||||
s32 word = static_cast<s32>(mem.read32(address)); // Yes this is meant to be signed
|
||||
if (word < value) {
|
||||
mem.write32(address, word - 1);
|
||||
sleepThreadOnArbiter(address);
|
||||
|
@ -79,12 +81,9 @@ void Kernel::arbitrateAddress() {
|
|||
break;
|
||||
}
|
||||
|
||||
case ArbitrationType::Signal:
|
||||
signalArbiter(address, value);
|
||||
break;
|
||||
case ArbitrationType::Signal: signalArbiter(address, value); break;
|
||||
|
||||
default:
|
||||
Helpers::panic("ArbitrateAddress: Unimplemented type %s", arbitrationTypeToString(type));
|
||||
default: Helpers::panic("ArbitrateAddress: Unimplemented type %s", arbitrationTypeToString(type));
|
||||
}
|
||||
|
||||
requireReschedule();
|
||||
|
@ -92,8 +91,9 @@ void Kernel::arbitrateAddress() {
|
|||
|
||||
// Signal up to "threadCount" threads waiting on the arbiter indicated by "waitingAddress"
|
||||
void Kernel::signalArbiter(u32 waitingAddress, s32 threadCount) {
|
||||
if (threadCount == 0) [[unlikely]] return;
|
||||
s32 count = 0; // Number of threads we've woken up
|
||||
if (threadCount == 0) [[unlikely]]
|
||||
return;
|
||||
s32 count = 0; // Number of threads we've woken up
|
||||
|
||||
// Wake threads with the highest priority threads being woken up first
|
||||
for (auto index : threadIndices) {
|
||||
|
@ -106,4 +106,4 @@ void Kernel::signalArbiter(u32 waitingAddress, s32 threadCount) {
|
|||
if (count == threadCount && threadCount > 0) break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -8,10 +8,7 @@
|
|||
#include "kernel.hpp"
|
||||
|
||||
namespace DirectoryOps {
|
||||
enum : u32 {
|
||||
Read = 0x08010042,
|
||||
Close = 0x08020000
|
||||
};
|
||||
enum : u32 { Read = 0x08010042, Close = 0x08020000 };
|
||||
}
|
||||
|
||||
// Helper to convert std::string to an 8.3 filename to mimic how Directory::Read works
|
||||
|
@ -28,7 +25,7 @@ Filename83 convertTo83(const std::string& path) {
|
|||
// Convert a character to add it to the 8.3 name
|
||||
// "Characters such as + are changed to the underscore _, and letters are put in uppercase"
|
||||
// For now we put letters in uppercase until we find out what is supposed to be converted to _ and so on
|
||||
auto convertCharacter = [](char c) { return (char) std::toupper(c); };
|
||||
auto convertCharacter = [](char c) { return (char)std::toupper(c); };
|
||||
|
||||
// List of forbidden character for 8.3 filenames, from Citra
|
||||
// TODO: Use constexpr when C++20 support is solid
|
||||
|
@ -66,7 +63,7 @@ Filename83 convertTo83(const std::string& path) {
|
|||
filenameTooBig = true;
|
||||
break;
|
||||
}
|
||||
filename[validCharacterCount++] = convertCharacter(c); // Append character to filename
|
||||
filename[validCharacterCount++] = convertCharacter(c); // Append character to filename
|
||||
}
|
||||
|
||||
// Truncate name to 6 characters and denote that it is too big
|
||||
|
@ -87,7 +84,7 @@ Filename83 convertTo83(const std::string& path) {
|
|||
return {filename, extension};
|
||||
}
|
||||
|
||||
void Kernel::handleDirectoryOperation(u32 messagePointer, Handle directory) {
|
||||
void Kernel::handleDirectoryOperation(u32 messagePointer, HandleType directory) {
|
||||
const u32 cmd = mem.read32(messagePointer);
|
||||
switch (cmd) {
|
||||
case DirectoryOps::Close: closeDirectory(messagePointer, directory); break;
|
||||
|
@ -96,7 +93,7 @@ void Kernel::handleDirectoryOperation(u32 messagePointer, Handle directory) {
|
|||
}
|
||||
}
|
||||
|
||||
void Kernel::closeDirectory(u32 messagePointer, Handle directory) {
|
||||
void Kernel::closeDirectory(u32 messagePointer, HandleType directory) {
|
||||
logFileIO("Closed directory %X\n", directory);
|
||||
|
||||
const auto p = getObject(directory, KernelObjectType::Directory);
|
||||
|
@ -109,11 +106,11 @@ void Kernel::closeDirectory(u32 messagePointer, Handle directory) {
|
|||
mem.write32(messagePointer + 4, Result::Success);
|
||||
}
|
||||
|
||||
void Kernel::readDirectory(u32 messagePointer, Handle directory) {
|
||||
void Kernel::readDirectory(u32 messagePointer, HandleType directory) {
|
||||
const u32 entryCount = mem.read32(messagePointer + 4);
|
||||
const u32 outPointer = mem.read32(messagePointer + 12);
|
||||
logFileIO("Directory::Read (handle = %X, entry count = %d, out pointer = %08X)\n", directory, entryCount, outPointer);
|
||||
|
||||
|
||||
const auto p = getObject(directory, KernelObjectType::Directory);
|
||||
if (p == nullptr) [[unlikely]] {
|
||||
Helpers::panic("Called ReadDirectory on non-existent directory");
|
||||
|
@ -136,9 +133,9 @@ void Kernel::readDirectory(u32 messagePointer, Handle directory) {
|
|||
bool isDirectory = std::filesystem::is_directory(relative);
|
||||
|
||||
std::u16string nameU16 = relative.u16string();
|
||||
bool isHidden = nameU16[0] == u'.'; // If the first character is a dot then this is a hidden file/folder
|
||||
bool isHidden = nameU16[0] == u'.'; // If the first character is a dot then this is a hidden file/folder
|
||||
|
||||
const u32 entryPointer = outPointer + (count * 0x228); // 0x228 is the size of a single entry
|
||||
const u32 entryPointer = outPointer + (count * 0x228); // 0x228 is the size of a single entry
|
||||
u32 utfPointer = entryPointer;
|
||||
u32 namePointer = entryPointer + 0x20C;
|
||||
u32 extensionPointer = entryPointer + 0x216;
|
||||
|
@ -152,7 +149,7 @@ void Kernel::readDirectory(u32 messagePointer, Handle directory) {
|
|||
mem.write16(utfPointer, u16(c));
|
||||
utfPointer += sizeof(u16);
|
||||
}
|
||||
mem.write16(utfPointer, 0); // Null terminate the UTF16 name
|
||||
mem.write16(utfPointer, 0); // Null terminate the UTF16 name
|
||||
|
||||
// Write 8.3 filename-extension
|
||||
for (auto c : shortFilename) {
|
||||
|
|
|
@ -1,38 +1,25 @@
|
|||
#include "kernel.hpp"
|
||||
|
||||
namespace Commands {
|
||||
enum : u32 {
|
||||
Throw = 0x00010800
|
||||
};
|
||||
enum : u32 { Throw = 0x00010800 };
|
||||
}
|
||||
|
||||
namespace FatalErrorType {
|
||||
enum : u32 {
|
||||
Generic = 0,
|
||||
Corrupted = 1,
|
||||
CardRemoved = 2,
|
||||
Exception = 3,
|
||||
ResultFailure = 4,
|
||||
Logged = 5
|
||||
};
|
||||
enum : u32 { Generic = 0, Corrupted = 1, CardRemoved = 2, Exception = 3, ResultFailure = 4, Logged = 5 };
|
||||
}
|
||||
|
||||
// Handle SendSyncRequest targetting the err:f port
|
||||
// HandleType SendSyncRequest targetting the err:f port
|
||||
void Kernel::handleErrorSyncRequest(u32 messagePointer) {
|
||||
u32 cmd = mem.read32(messagePointer);
|
||||
switch (cmd) {
|
||||
case Commands::Throw:
|
||||
throwError(messagePointer);
|
||||
break;
|
||||
case Commands::Throw: throwError(messagePointer); break;
|
||||
|
||||
default:
|
||||
Helpers::panic("Unimplemented err:f command %08X\n", cmd);
|
||||
break;
|
||||
default: Helpers::panic("Unimplemented err:f command %08X\n", cmd); break;
|
||||
}
|
||||
}
|
||||
|
||||
void Kernel::throwError(u32 messagePointer) {
|
||||
const auto type = mem.read8(messagePointer + 4); // Fatal error type
|
||||
const auto type = mem.read8(messagePointer + 4); // Fatal error type
|
||||
const u32 pc = mem.read32(messagePointer + 12);
|
||||
const u32 pid = mem.read32(messagePointer + 16);
|
||||
logError("Thrown fatal error @ %08X (pid = %X, type = %d)\n", pc, pid, type);
|
||||
|
@ -44,4 +31,4 @@ void Kernel::throwError(u32 messagePointer) {
|
|||
}
|
||||
|
||||
Helpers::panic("Thrown fatal error");
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
#include "kernel.hpp"
|
||||
#include "cpu.hpp"
|
||||
#include <bit>
|
||||
#include <utility>
|
||||
|
||||
#include "cpu.hpp"
|
||||
#include "kernel.hpp"
|
||||
|
||||
const char* Kernel::resetTypeToString(u32 type) {
|
||||
switch (type) {
|
||||
case 0: return "One shot";
|
||||
|
@ -12,13 +13,13 @@ const char* Kernel::resetTypeToString(u32 type) {
|
|||
}
|
||||
}
|
||||
|
||||
Handle Kernel::makeEvent(ResetType resetType, Event::CallbackType callback) {
|
||||
Handle ret = makeObject(KernelObjectType::Event);
|
||||
HandleType Kernel::makeEvent(ResetType resetType, Event::CallbackType callback) {
|
||||
HandleType ret = makeObject(KernelObjectType::Event);
|
||||
objects[ret].data = new Event(resetType, callback);
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool Kernel::signalEvent(Handle handle) {
|
||||
bool Kernel::signalEvent(HandleType handle) {
|
||||
KernelObject* object = getObject(handle, KernelObjectType::Event);
|
||||
if (object == nullptr) [[unlikely]] {
|
||||
Helpers::panic("Tried to signal non-existent event");
|
||||
|
@ -52,13 +53,12 @@ bool Kernel::signalEvent(Handle handle) {
|
|||
return true;
|
||||
}
|
||||
|
||||
// Result CreateEvent(Handle* event, ResetType resetType)
|
||||
// Result CreateEvent(HandleType* event, ResetType resetType)
|
||||
void Kernel::svcCreateEvent() {
|
||||
const u32 outPointer = regs[0];
|
||||
const u32 resetType = regs[1];
|
||||
|
||||
if (resetType > 2)
|
||||
Helpers::panic("Invalid reset type for event %d", resetType);
|
||||
if (resetType > 2) Helpers::panic("Invalid reset type for event %d", resetType);
|
||||
|
||||
logSVC("CreateEvent(handle pointer = %08X, resetType = %s)\n", outPointer, resetTypeToString(resetType));
|
||||
|
||||
|
@ -66,9 +66,9 @@ void Kernel::svcCreateEvent() {
|
|||
regs[1] = makeEvent(static_cast<ResetType>(resetType));
|
||||
}
|
||||
|
||||
// Result ClearEvent(Handle event)
|
||||
// Result ClearEvent(HandleType event)
|
||||
void Kernel::svcClearEvent() {
|
||||
const Handle handle = regs[0];
|
||||
const HandleType handle = regs[0];
|
||||
const auto event = getObject(handle, KernelObjectType::Event);
|
||||
logSVC("ClearEvent(event handle = %X)\n", handle);
|
||||
|
||||
|
@ -82,9 +82,9 @@ void Kernel::svcClearEvent() {
|
|||
regs[0] = Result::Success;
|
||||
}
|
||||
|
||||
// Result SignalEvent(Handle event)
|
||||
// Result SignalEvent(HandleType event)
|
||||
void Kernel::svcSignalEvent() {
|
||||
const Handle handle = regs[0];
|
||||
const HandleType handle = regs[0];
|
||||
logSVC("SignalEvent(event handle = %X)\n", handle);
|
||||
KernelObject* object = getObject(handle, KernelObjectType::Event);
|
||||
|
||||
|
@ -98,9 +98,9 @@ void Kernel::svcSignalEvent() {
|
|||
}
|
||||
}
|
||||
|
||||
// Result WaitSynchronization1(Handle handle, s64 timeout_nanoseconds)
|
||||
// Result WaitSynchronization1(HandleType handle, s64 timeout_nanoseconds)
|
||||
void Kernel::waitSynchronization1() {
|
||||
const Handle handle = regs[0];
|
||||
const HandleType handle = regs[0];
|
||||
const s64 ns = s64(u64(regs[2]) | (u64(regs[3]) << 32));
|
||||
logSVC("WaitSynchronization1(handle = %X, ns = %lld)\n", handle, ns);
|
||||
|
||||
|
@ -117,7 +117,7 @@ void Kernel::waitSynchronization1() {
|
|||
}
|
||||
|
||||
if (!shouldWaitOnObject(object)) {
|
||||
acquireSyncObject(object, threads[currentThreadIndex]); // Acquire the object since it's ready
|
||||
acquireSyncObject(object, threads[currentThreadIndex]); // Acquire the object since it's ready
|
||||
regs[0] = Result::Success;
|
||||
} else {
|
||||
// Timeout is 0, don't bother waiting, instantly timeout
|
||||
|
@ -126,7 +126,7 @@ void Kernel::waitSynchronization1() {
|
|||
return;
|
||||
}
|
||||
|
||||
regs[0] = Result::OS::Timeout; // This will be overwritten with success if we don't timeout
|
||||
regs[0] = Result::OS::Timeout; // This will be overwritten with success if we don't timeout
|
||||
|
||||
auto& t = threads[currentThreadIndex];
|
||||
t.waitList.resize(1);
|
||||
|
@ -141,7 +141,7 @@ void Kernel::waitSynchronization1() {
|
|||
}
|
||||
}
|
||||
|
||||
// Result WaitSynchronizationN(s32* out, Handle* handles, s32 handlecount, bool waitAll, s64 timeout_nanoseconds)
|
||||
// Result WaitSynchronizationN(s32* out, HandleType* handles, s32 handlecount, bool waitAll, s64 timeout_nanoseconds)
|
||||
void Kernel::waitSynchronizationN() {
|
||||
// TODO: Are these arguments even correct?
|
||||
s32 ns1 = regs[0];
|
||||
|
@ -149,13 +149,12 @@ void Kernel::waitSynchronizationN() {
|
|||
s32 handleCount = regs[2];
|
||||
bool waitAll = regs[3] != 0;
|
||||
u32 ns2 = regs[4];
|
||||
s32 outPointer = regs[5]; // "out" pointer - shows which object got bonked if we're waiting on multiple objects
|
||||
s32 outPointer = regs[5]; // "out" pointer - shows which object got bonked if we're waiting on multiple objects
|
||||
s64 ns = s64(ns1) | (s64(ns2) << 32);
|
||||
|
||||
logSVC("WaitSynchronizationN (handle pointer: %08X, count: %d, timeout = %lld)\n", handles, handleCount, ns);
|
||||
|
||||
if (handleCount <= 0)
|
||||
Helpers::panic("WaitSyncN: Invalid handle count");
|
||||
if (handleCount <= 0) Helpers::panic("WaitSyncN: Invalid handle count");
|
||||
|
||||
// Temporary hack: Until we implement service sessions properly, don't bother sleeping when WaitSyncN targets a service handle
|
||||
// This is necessary because a lot of games use WaitSyncN with eg the CECD service
|
||||
|
@ -165,11 +164,11 @@ void Kernel::waitSynchronizationN() {
|
|||
return;
|
||||
}
|
||||
|
||||
using WaitObject = std::pair<Handle, KernelObject*>;
|
||||
using WaitObject = std::pair<HandleType, KernelObject*>;
|
||||
std::vector<WaitObject> waitObjects(handleCount);
|
||||
|
||||
// We don't actually need to wait if waitAll == true unless one of the objects is not ready
|
||||
bool allReady = true; // Default initialize to true, set to fault if one of the objects is not ready
|
||||
bool allReady = true; // Default initialize to true, set to fault if one of the objects is not ready
|
||||
|
||||
// Tracks whether at least one object is ready, + the index of the first ready object
|
||||
// This is used when waitAll == false, because if one object is already available then we can skip the sleeping
|
||||
|
@ -177,8 +176,8 @@ void Kernel::waitSynchronizationN() {
|
|||
s32 firstReadyObjectIndex = 0;
|
||||
|
||||
for (s32 i = 0; i < handleCount; i++) {
|
||||
Handle handle = mem.read32(handles);
|
||||
handles += sizeof(Handle);
|
||||
HandleType handle = mem.read32(handles);
|
||||
handles += sizeof(HandleType);
|
||||
|
||||
auto object = getObject(handle);
|
||||
// Panic if one of the objects is not even an object
|
||||
|
@ -190,13 +189,12 @@ void Kernel::waitSynchronizationN() {
|
|||
|
||||
// Panic if one of the objects is not a valid sync object
|
||||
if (!isWaitable(object)) [[unlikely]] {
|
||||
Helpers::panic("Tried to wait on a non waitable object in WaitSyncN. Type: %s, handle: %X\n",
|
||||
object->getTypeName(), handle);
|
||||
Helpers::panic("Tried to wait on a non waitable object in WaitSyncN. Type: %s, handle: %X\n", object->getTypeName(), handle);
|
||||
}
|
||||
|
||||
if (shouldWaitOnObject(object)) {
|
||||
allReady = false; // Derp, not all objects are ready :(
|
||||
} else { /// At least one object is ready to be acquired ahead of time. If it's the first one, write it down
|
||||
allReady = false; // Derp, not all objects are ready :(
|
||||
} else { /// At least one object is ready to be acquired ahead of time. If it's the first one, write it down
|
||||
if (!oneObjectReady) {
|
||||
oneObjectReady = true;
|
||||
firstReadyObjectIndex = i;
|
||||
|
@ -213,12 +211,12 @@ void Kernel::waitSynchronizationN() {
|
|||
// If there's ready objects, acquire the first one and return
|
||||
if (oneObjectReady) {
|
||||
regs[0] = Result::Success;
|
||||
regs[1] = firstReadyObjectIndex; // Return index of the acquired object
|
||||
acquireSyncObject(waitObjects[firstReadyObjectIndex].second, t); // Acquire object
|
||||
regs[1] = firstReadyObjectIndex; // Return index of the acquired object
|
||||
acquireSyncObject(waitObjects[firstReadyObjectIndex].second, t); // Acquire object
|
||||
return;
|
||||
}
|
||||
|
||||
regs[0] = Result::OS::Timeout; // This will be overwritten with success if we don't timeout
|
||||
regs[0] = Result::OS::Timeout; // This will be overwritten with success if we don't timeout
|
||||
// If the thread wakes up without timeout, this will be adjusted to the index of the handle that woke us up
|
||||
regs[1] = 0xFFFFFFFF;
|
||||
t.waitList.resize(handleCount);
|
||||
|
@ -227,8 +225,8 @@ void Kernel::waitSynchronizationN() {
|
|||
t.wakeupTick = getWakeupTick(ns);
|
||||
|
||||
for (s32 i = 0; i < handleCount; i++) {
|
||||
t.waitList[i] = waitObjects[i].first; // Add object to this thread's waitlist
|
||||
waitObjects[i].second->getWaitlist() |= (1ull << currentThreadIndex); // And add the thread to the object's waitlist
|
||||
t.waitList[i] = waitObjects[i].first; // Add object to this thread's waitlist
|
||||
waitObjects[i].second->getWaitlist() |= (1ull << currentThreadIndex); // And add the thread to the object's waitlist
|
||||
}
|
||||
|
||||
requireReschedule();
|
||||
|
@ -243,4 +241,4 @@ void Kernel::runEventCallback(Event::CallbackType callback) {
|
|||
case Event::CallbackType::DSPSemaphore: serviceManager.getDSP().onSemaphoreEventSignal(); break;
|
||||
default: Helpers::panic("Unimplemented special callback for kernel event!"); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -14,8 +14,7 @@ namespace FileOps {
|
|||
};
|
||||
}
|
||||
|
||||
|
||||
void Kernel::handleFileOperation(u32 messagePointer, Handle file) {
|
||||
void Kernel::handleFileOperation(u32 messagePointer, HandleType file) {
|
||||
const u32 cmd = mem.read32(messagePointer);
|
||||
switch (cmd) {
|
||||
case FileOps::Close: closeFile(messagePointer, file); break;
|
||||
|
@ -30,7 +29,7 @@ void Kernel::handleFileOperation(u32 messagePointer, Handle file) {
|
|||
}
|
||||
}
|
||||
|
||||
void Kernel::closeFile(u32 messagePointer, Handle fileHandle) {
|
||||
void Kernel::closeFile(u32 messagePointer, HandleType fileHandle) {
|
||||
logFileIO("Closed file %X\n", fileHandle);
|
||||
|
||||
const auto p = getObject(fileHandle, KernelObjectType::File);
|
||||
|
@ -48,7 +47,7 @@ void Kernel::closeFile(u32 messagePointer, Handle fileHandle) {
|
|||
mem.write32(messagePointer + 4, Result::Success);
|
||||
}
|
||||
|
||||
void Kernel::flushFile(u32 messagePointer, Handle fileHandle) {
|
||||
void Kernel::flushFile(u32 messagePointer, HandleType fileHandle) {
|
||||
logFileIO("Flushed file %X\n", fileHandle);
|
||||
|
||||
const auto p = getObject(fileHandle, KernelObjectType::File);
|
||||
|
@ -65,13 +64,12 @@ void Kernel::flushFile(u32 messagePointer, Handle fileHandle) {
|
|||
mem.write32(messagePointer + 4, Result::Success);
|
||||
}
|
||||
|
||||
void Kernel::readFile(u32 messagePointer, Handle fileHandle) {
|
||||
void Kernel::readFile(u32 messagePointer, HandleType fileHandle) {
|
||||
u64 offset = mem.read64(messagePointer + 4);
|
||||
u32 size = mem.read32(messagePointer + 12);
|
||||
u32 dataPointer = mem.read32(messagePointer + 20);
|
||||
|
||||
logFileIO("Trying to read %X bytes from file %X, starting from offset %llX into memory address %08X\n",
|
||||
size, fileHandle, offset, dataPointer);
|
||||
logFileIO("Trying to read %X bytes from file %X, starting from offset %llX into memory address %08X\n", size, fileHandle, offset, dataPointer);
|
||||
|
||||
const auto p = getObject(fileHandle, KernelObjectType::File);
|
||||
if (p == nullptr) [[unlikely]] {
|
||||
|
@ -85,7 +83,7 @@ void Kernel::readFile(u32 messagePointer, Handle fileHandle) {
|
|||
Helpers::panic("Tried to read closed file");
|
||||
}
|
||||
|
||||
// Handle files with their own file descriptors by just fread'ing the data
|
||||
// HandleType files with their own file descriptors by just fread'ing the data
|
||||
if (file->fd) {
|
||||
std::unique_ptr<u8[]> data(new u8[size]);
|
||||
IOFile f(file->fd);
|
||||
|
@ -94,8 +92,7 @@ void Kernel::readFile(u32 messagePointer, Handle fileHandle) {
|
|||
|
||||
if (!success) {
|
||||
Helpers::panic("Kernel::ReadFile with file descriptor failed");
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
for (size_t i = 0; i < bytesRead; i++) {
|
||||
mem.write8(u32(dataPointer + i), data[i]);
|
||||
}
|
||||
|
@ -107,7 +104,7 @@ void Kernel::readFile(u32 messagePointer, Handle fileHandle) {
|
|||
return;
|
||||
}
|
||||
|
||||
// Handle files without their own FD, such as SelfNCCH files
|
||||
// HandleType files without their own FD, such as SelfNCCH files
|
||||
auto archive = file->archive;
|
||||
std::optional<u32> bytesRead = archive->readFile(file, offset, size, dataPointer);
|
||||
if (!bytesRead.has_value()) {
|
||||
|
@ -118,14 +115,13 @@ void Kernel::readFile(u32 messagePointer, Handle fileHandle) {
|
|||
}
|
||||
}
|
||||
|
||||
void Kernel::writeFile(u32 messagePointer, Handle fileHandle) {
|
||||
void Kernel::writeFile(u32 messagePointer, HandleType fileHandle) {
|
||||
u64 offset = mem.read64(messagePointer + 4);
|
||||
u32 size = mem.read32(messagePointer + 12);
|
||||
u32 writeOption = mem.read32(messagePointer + 16);
|
||||
u32 dataPointer = mem.read32(messagePointer + 24);
|
||||
|
||||
logFileIO("Trying to write %X bytes to file %X, starting from file offset %llX and memory address %08X\n",
|
||||
size, fileHandle, offset, dataPointer);
|
||||
logFileIO("Trying to write %X bytes to file %X, starting from file offset %llX and memory address %08X\n", size, fileHandle, offset, dataPointer);
|
||||
|
||||
const auto p = getObject(fileHandle, KernelObjectType::File);
|
||||
if (p == nullptr) [[unlikely]] {
|
||||
|
@ -137,8 +133,7 @@ void Kernel::writeFile(u32 messagePointer, Handle fileHandle) {
|
|||
Helpers::panic("Tried to write closed file");
|
||||
}
|
||||
|
||||
if (!file->fd)
|
||||
Helpers::panic("[Kernel::File::WriteFile] Tried to write to file without a valid file descriptor");
|
||||
if (!file->fd) Helpers::panic("[Kernel::File::WriteFile] Tried to write to file without a valid file descriptor");
|
||||
|
||||
std::unique_ptr<u8[]> data(new u8[size]);
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
|
@ -162,7 +157,7 @@ void Kernel::writeFile(u32 messagePointer, Handle fileHandle) {
|
|||
}
|
||||
}
|
||||
|
||||
void Kernel::setFileSize(u32 messagePointer, Handle fileHandle) {
|
||||
void Kernel::setFileSize(u32 messagePointer, HandleType fileHandle) {
|
||||
logFileIO("Setting size of file %X\n", fileHandle);
|
||||
|
||||
const auto p = getObject(fileHandle, KernelObjectType::File);
|
||||
|
@ -191,7 +186,7 @@ void Kernel::setFileSize(u32 messagePointer, Handle fileHandle) {
|
|||
}
|
||||
}
|
||||
|
||||
void Kernel::getFileSize(u32 messagePointer, Handle fileHandle) {
|
||||
void Kernel::getFileSize(u32 messagePointer, HandleType fileHandle) {
|
||||
logFileIO("Getting size of file %X\n", fileHandle);
|
||||
|
||||
const auto p = getObject(fileHandle, KernelObjectType::File);
|
||||
|
@ -220,7 +215,7 @@ void Kernel::getFileSize(u32 messagePointer, Handle fileHandle) {
|
|||
}
|
||||
}
|
||||
|
||||
void Kernel::openLinkFile(u32 messagePointer, Handle fileHandle) {
|
||||
void Kernel::openLinkFile(u32 messagePointer, HandleType fileHandle) {
|
||||
logFileIO("Open link file (clone) of file %X\n", fileHandle);
|
||||
|
||||
const auto p = getObject(fileHandle, KernelObjectType::File);
|
||||
|
@ -247,7 +242,7 @@ void Kernel::openLinkFile(u32 messagePointer, Handle fileHandle) {
|
|||
mem.write32(messagePointer + 12, handle);
|
||||
}
|
||||
|
||||
void Kernel::setFilePriority(u32 messagePointer, Handle fileHandle) {
|
||||
void Kernel::setFilePriority(u32 messagePointer, HandleType fileHandle) {
|
||||
const u32 priority = mem.read32(messagePointer + 4);
|
||||
logFileIO("Setting priority of file %X to %d\n", fileHandle, priority);
|
||||
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
#include <cassert>
|
||||
#include "kernel.hpp"
|
||||
#include "kernel_types.hpp"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "cpu.hpp"
|
||||
#include "kernel_types.hpp"
|
||||
|
||||
Kernel::Kernel(CPU& cpu, Memory& mem, GPU& gpu, const EmulatorConfig& config)
|
||||
: cpu(cpu), regs(cpu.regs()), mem(mem), handleCounter(0), serviceManager(regs, mem, gpu, currentProcess, *this, config) {
|
||||
objects.reserve(512); // Make room for a few objects to avoid further memory allocs later
|
||||
objects.reserve(512); // Make room for a few objects to avoid further memory allocs later
|
||||
mutexHandles.reserve(8);
|
||||
portHandles.reserve(32);
|
||||
threadIndices.reserve(appResourceLimits.maxThreads);
|
||||
|
@ -17,7 +19,7 @@ Kernel::Kernel(CPU& cpu, Memory& mem, GPU& gpu, const EmulatorConfig& config)
|
|||
t.tlsBase = VirtualAddrs::TLSBase + i * VirtualAddrs::TLSSize;
|
||||
t.status = ThreadStatus::Dead;
|
||||
t.waitList.clear();
|
||||
t.waitList.reserve(10); // Reserve some space for the wait list to avoid further memory allocs later
|
||||
t.waitList.reserve(10); // Reserve some space for the wait list to avoid further memory allocs later
|
||||
// The state below isn't necessary to initialize but we do it anyways out of caution
|
||||
t.outPointer = 0;
|
||||
t.waitAll = false;
|
||||
|
@ -79,12 +81,12 @@ void Kernel::setVersion(u8 major, u8 minor) {
|
|||
u16 descriptor = (u16(major) << 8) | u16(minor);
|
||||
|
||||
kernelVersion = descriptor;
|
||||
mem.kernelVersion = descriptor; // The memory objects needs a copy because you can read the kernel ver from config mem
|
||||
mem.kernelVersion = descriptor; // The memory objects needs a copy because you can read the kernel ver from config mem
|
||||
}
|
||||
|
||||
Handle Kernel::makeProcess(u32 id) {
|
||||
const Handle processHandle = makeObject(KernelObjectType::Process);
|
||||
const Handle resourceLimitHandle = makeObject(KernelObjectType::ResourceLimit);
|
||||
HandleType Kernel::makeProcess(u32 id) {
|
||||
const HandleType processHandle = makeObject(KernelObjectType::Process);
|
||||
const HandleType resourceLimitHandle = makeObject(KernelObjectType::ResourceLimit);
|
||||
|
||||
// Allocate data
|
||||
objects[processHandle].data = new Process(id);
|
||||
|
@ -98,7 +100,7 @@ Handle Kernel::makeProcess(u32 id) {
|
|||
|
||||
// Get a pointer to the process indicated by handle, taking into account that 0xFFFF8001 always refers to the current process
|
||||
// Returns nullptr if the handle does not correspond to a process
|
||||
KernelObject* Kernel::getProcessFromPID(Handle handle) {
|
||||
KernelObject* Kernel::getProcessFromPID(HandleType handle) {
|
||||
if (handle == KernelHandles::CurrentProcess) [[likely]] {
|
||||
return getObject(currentProcess, KernelObjectType::Process);
|
||||
} else {
|
||||
|
@ -142,7 +144,7 @@ void Kernel::reset() {
|
|||
for (auto& t : threads) {
|
||||
t.status = ThreadStatus::Dead;
|
||||
t.waitList.clear();
|
||||
t.threadsWaitingForTermination = 0; // No threads are waiting for this thread to terminate cause it's dead
|
||||
t.threadsWaitingForTermination = 0; // No threads are waiting for this thread to terminate cause it's dead
|
||||
}
|
||||
|
||||
for (auto& object : objects) {
|
||||
|
@ -159,7 +161,7 @@ void Kernel::reset() {
|
|||
|
||||
// Allocate handle #0 to a dummy object and make a main process object
|
||||
makeObject(KernelObjectType::Dummy);
|
||||
currentProcess = makeProcess(1); // Use ID = 1 for main process
|
||||
currentProcess = makeProcess(1); // Use ID = 1 for main process
|
||||
|
||||
// Make main thread object. We do not have to set the entrypoint and SP for it as the ROM loader does.
|
||||
// Main thread seems to have a priority of 0x30. TODO: This creates a dummy context for thread 0,
|
||||
|
@ -169,19 +171,17 @@ void Kernel::reset() {
|
|||
setupIdleThread();
|
||||
|
||||
// Create some of the OS ports
|
||||
srvHandle = makePort("srv:"); // Service manager port
|
||||
errorPortHandle = makePort("err:f"); // Error display port
|
||||
srvHandle = makePort("srv:"); // Service manager port
|
||||
errorPortHandle = makePort("err:f"); // Error display port
|
||||
}
|
||||
|
||||
// Get pointer to thread-local storage
|
||||
u32 Kernel::getTLSPointer() {
|
||||
return VirtualAddrs::TLSBase + currentThreadIndex * VirtualAddrs::TLSSize;
|
||||
}
|
||||
u32 Kernel::getTLSPointer() { return VirtualAddrs::TLSBase + currentThreadIndex * VirtualAddrs::TLSSize; }
|
||||
|
||||
// Result CloseHandle(Handle handle)
|
||||
// Result CloseHandle(HandleType handle)
|
||||
void Kernel::svcCloseHandle() {
|
||||
logSVC("CloseHandle(handle = %d) (Unimplemented)\n", regs[0]);
|
||||
const Handle handle = regs[0];
|
||||
const HandleType handle = regs[0];
|
||||
|
||||
KernelObject* object = getObject(handle);
|
||||
if (object != nullptr) {
|
||||
|
@ -242,7 +242,7 @@ void Kernel::getProcessID() {
|
|||
regs[1] = process->getData<Process>()->id;
|
||||
}
|
||||
|
||||
// Result GetProcessInfo(s64* out, Handle process, ProcessInfoType type)
|
||||
// Result GetProcessInfo(s64* out, HandleType process, ProcessInfoType type)
|
||||
void Kernel::getProcessInfo() {
|
||||
const auto pid = regs[1];
|
||||
const auto type = regs[2];
|
||||
|
@ -269,26 +269,25 @@ void Kernel::getProcessInfo() {
|
|||
regs[2] = 0;
|
||||
break;
|
||||
|
||||
case 20: // Returns 0x20000000 - <linear memory base vaddr for process>
|
||||
case 20: // Returns 0x20000000 - <linear memory base vaddr for process>
|
||||
regs[1] = PhysicalAddrs::FCRAM - mem.getLinearHeapVaddr();
|
||||
regs[2] = 0;
|
||||
break;
|
||||
|
||||
default:
|
||||
Helpers::panic("GetProcessInfo: unimplemented type %d", type);
|
||||
default: Helpers::panic("GetProcessInfo: unimplemented type %d", type);
|
||||
}
|
||||
|
||||
regs[0] = Result::Success;
|
||||
}
|
||||
|
||||
// Result DuplicateHandle(Handle* out, Handle original)
|
||||
// Result DuplicateHandle(HandleType* out, HandleType original)
|
||||
void Kernel::duplicateHandle() {
|
||||
Handle original = regs[1];
|
||||
HandleType original = regs[1];
|
||||
logSVC("DuplicateHandle(handle = %X)\n", original);
|
||||
|
||||
if (original == KernelHandles::CurrentThread) {
|
||||
regs[0] = Result::Success;
|
||||
Handle ret = makeObject(KernelObjectType::Thread);
|
||||
HandleType ret = makeObject(KernelObjectType::Thread);
|
||||
objects[ret].data = &threads[currentThreadIndex];
|
||||
|
||||
regs[1] = ret;
|
||||
|
@ -379,7 +378,7 @@ void Kernel::getSystemInfo() {
|
|||
regs[2] = 0;
|
||||
break;
|
||||
|
||||
default:
|
||||
default:
|
||||
Helpers::warn("GetSystemInfo: Unknown PandaInformation subtype %x\n", subtype);
|
||||
regs[0] = Result::FailurePlaceholder;
|
||||
break;
|
||||
|
|
|
@ -17,37 +17,35 @@ namespace Operation {
|
|||
|
||||
namespace MemoryPermissions {
|
||||
enum : u32 {
|
||||
None = 0, // ---
|
||||
Read = 1, // R--
|
||||
Write = 2, // -W-
|
||||
ReadWrite = 3, // RW-
|
||||
Execute = 4, // --X
|
||||
ReadExecute = 5, // R-X
|
||||
WriteExecute = 6, // -WX
|
||||
ReadWriteExecute = 7, // RWX
|
||||
None = 0, // ---
|
||||
Read = 1, // R--
|
||||
Write = 2, // -W-
|
||||
ReadWrite = 3, // RW-
|
||||
Execute = 4, // --X
|
||||
ReadExecute = 5, // R-X
|
||||
WriteExecute = 6, // -WX
|
||||
ReadWriteExecute = 7, // RWX
|
||||
|
||||
DontCare = 0x10000000
|
||||
};
|
||||
}
|
||||
|
||||
// Returns whether "value" is aligned to a page boundary (Ie a boundary of 4096 bytes)
|
||||
static constexpr bool isAligned(u32 value) {
|
||||
return (value & 0xFFF) == 0;
|
||||
}
|
||||
static constexpr bool isAligned(u32 value) { return (value & 0xFFF) == 0; }
|
||||
|
||||
// Result ControlMemory(u32* outaddr, u32 addr0, u32 addr1, u32 size,
|
||||
// MemoryOperation operation, MemoryPermission permissions)
|
||||
// This has a weird ABI documented here https://www.3dbrew.org/wiki/Kernel_ABI
|
||||
// TODO: Does this need to write to outaddr?
|
||||
void Kernel::controlMemory() {
|
||||
u32 operation = regs[0]; // The base address is written here
|
||||
u32 operation = regs[0]; // The base address is written here
|
||||
u32 addr0 = regs[1];
|
||||
u32 addr1 = regs[2];
|
||||
u32 size = regs[3];
|
||||
u32 perms = regs[4];
|
||||
|
||||
if (perms == MemoryPermissions::DontCare) {
|
||||
perms = MemoryPermissions::ReadWrite; // We make "don't care" equivalent to read-write
|
||||
perms = MemoryPermissions::ReadWrite; // We make "don't care" equivalent to read-write
|
||||
Helpers::panic("Unimplemented allocation permission: DONTCARE");
|
||||
}
|
||||
|
||||
|
@ -57,33 +55,33 @@ void Kernel::controlMemory() {
|
|||
bool x = perms & 0b100;
|
||||
bool linear = operation & Operation::Linear;
|
||||
|
||||
if (x)
|
||||
Helpers::panic("ControlMemory: attempted to allocate executable memory");
|
||||
if (x) Helpers::panic("ControlMemory: attempted to allocate executable memory");
|
||||
|
||||
if (!isAligned(addr0) || !isAligned(addr1) || !isAligned(size)) {
|
||||
Helpers::panic("ControlMemory: Unaligned parameters\nAddr0: %08X\nAddr1: %08X\nSize: %08X", addr0, addr1, size);
|
||||
}
|
||||
|
||||
logSVC("ControlMemory(addr0 = %08X, addr1 = %08X, size = %08X, operation = %X (%c%c%c)%s\n",
|
||||
addr0, addr1, size, operation, r ? 'r' : '-', w ? 'w' : '-', x ? 'x' : '-', linear ? ", linear" : ""
|
||||
logSVC(
|
||||
"ControlMemory(addr0 = %08X, addr1 = %08X, size = %08X, operation = %X (%c%c%c)%s\n", addr0, addr1, size, operation, r ? 'r' : '-',
|
||||
w ? 'w' : '-', x ? 'x' : '-', linear ? ", linear" : ""
|
||||
);
|
||||
|
||||
switch (operation & 0xFF) {
|
||||
case Operation::Commit: {
|
||||
std::optional<u32> address = mem.allocateMemory(addr0, 0, size, linear, r, w, x, true);
|
||||
if (!address.has_value())
|
||||
Helpers::panic("ControlMemory: Failed to allocate memory");
|
||||
if (!address.has_value()) Helpers::panic("ControlMemory: Failed to allocate memory");
|
||||
|
||||
regs[1] = address.value();
|
||||
break;
|
||||
}
|
||||
|
||||
case Operation::Map:
|
||||
mem.mirrorMapping(addr0, addr1, size);
|
||||
break;
|
||||
case Operation::Map: mem.mirrorMapping(addr0, addr1, size); break;
|
||||
|
||||
case Operation::Protect:
|
||||
Helpers::warn("Ignoring mprotect! Hope nothing goes wrong but if the game accesses invalid memory or crashes then we prolly need to implement this\n");
|
||||
Helpers::warn(
|
||||
"Ignoring mprotect! Hope nothing goes wrong but if the game accesses invalid memory or crashes then we prolly need to implement "
|
||||
"this\n"
|
||||
);
|
||||
break;
|
||||
|
||||
default: Helpers::warn("ControlMemory: unknown operation %X\n", operation); break;
|
||||
|
@ -106,12 +104,12 @@ void Kernel::queryMemory() {
|
|||
regs[2] = info.size;
|
||||
regs[3] = info.perms;
|
||||
regs[4] = info.state;
|
||||
regs[5] = 0; // page flags
|
||||
regs[5] = 0; // page flags
|
||||
}
|
||||
|
||||
// Result MapMemoryBlock(Handle memblock, u32 addr, MemoryPermission myPermissions, MemoryPermission otherPermission)
|
||||
// Result MapMemoryBlock(HandleType memblock, u32 addr, MemoryPermission myPermissions, MemoryPermission otherPermission)
|
||||
void Kernel::mapMemoryBlock() {
|
||||
const Handle block = regs[0];
|
||||
const HandleType block = regs[0];
|
||||
u32 addr = regs[1];
|
||||
const u32 myPerms = regs[2];
|
||||
const u32 otherPerms = regs[3];
|
||||
|
@ -123,21 +121,15 @@ void Kernel::mapMemoryBlock() {
|
|||
|
||||
if (KernelHandles::isSharedMemHandle(block)) {
|
||||
if (block == KernelHandles::FontSharedMemHandle && addr == 0) addr = 0x18000000;
|
||||
u8* ptr = mem.mapSharedMemory(block, addr, myPerms, otherPerms); // Map shared memory block
|
||||
u8* ptr = mem.mapSharedMemory(block, addr, myPerms, otherPerms); // Map shared memory block
|
||||
|
||||
// Pass pointer to shared memory to the appropriate service
|
||||
switch (block) {
|
||||
case KernelHandles::HIDSharedMemHandle:
|
||||
serviceManager.setHIDSharedMem(ptr);
|
||||
break;
|
||||
case KernelHandles::HIDSharedMemHandle: serviceManager.setHIDSharedMem(ptr); break;
|
||||
|
||||
case KernelHandles::GSPSharedMemHandle:
|
||||
serviceManager.setGSPSharedMem(ptr);
|
||||
break;
|
||||
case KernelHandles::GSPSharedMemHandle: serviceManager.setGSPSharedMem(ptr); break;
|
||||
|
||||
case KernelHandles::FontSharedMemHandle:
|
||||
mem.copySharedFont(ptr);
|
||||
break;
|
||||
case KernelHandles::FontSharedMemHandle: mem.copySharedFont(ptr); break;
|
||||
|
||||
case KernelHandles::CSNDSharedMemHandle:
|
||||
serviceManager.setCSNDSharedMem(ptr);
|
||||
|
@ -154,8 +146,8 @@ void Kernel::mapMemoryBlock() {
|
|||
regs[0] = Result::Success;
|
||||
}
|
||||
|
||||
Handle Kernel::makeMemoryBlock(u32 addr, u32 size, u32 myPermission, u32 otherPermission) {
|
||||
Handle ret = makeObject(KernelObjectType::MemoryBlock);
|
||||
HandleType Kernel::makeMemoryBlock(u32 addr, u32 size, u32 myPermission, u32 otherPermission) {
|
||||
HandleType ret = makeObject(KernelObjectType::MemoryBlock);
|
||||
objects[ret].data = new MemoryBlock(addr, size, myPermission, otherPermission);
|
||||
|
||||
return ret;
|
||||
|
@ -165,7 +157,7 @@ void Kernel::createMemoryBlock() {
|
|||
const u32 addr = regs[1];
|
||||
const u32 size = regs[2];
|
||||
u32 myPermission = regs[3];
|
||||
u32 otherPermission = mem.read32(regs[13] + 4); // This is placed on the stack rather than r4
|
||||
u32 otherPermission = mem.read32(regs[13] + 4); // This is placed on the stack rather than r4
|
||||
logSVC("CreateMemoryBlock (addr = %08X, size = %08X, myPermission = %d, otherPermission = %d)\n", addr, size, myPermission, otherPermission);
|
||||
|
||||
// Returns whether a permission is valid
|
||||
|
@ -175,10 +167,9 @@ void Kernel::createMemoryBlock() {
|
|||
case MemoryPermissions::Read:
|
||||
case MemoryPermissions::Write:
|
||||
case MemoryPermissions::ReadWrite:
|
||||
case MemoryPermissions::DontCare:
|
||||
return true;
|
||||
case MemoryPermissions::DontCare: return true;
|
||||
|
||||
default: // Permissions with the executable flag enabled or invalid permissions are not allowed
|
||||
default: // Permissions with the executable flag enabled or invalid permissions are not allowed
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
@ -197,8 +188,7 @@ void Kernel::createMemoryBlock() {
|
|||
|
||||
// TODO: The address needs to be in a specific range otherwise it throws an invalid address error
|
||||
|
||||
if (addr == 0)
|
||||
Helpers::panic("CreateMemoryBlock: Tried to use addr = 0");
|
||||
if (addr == 0) Helpers::panic("CreateMemoryBlock: Tried to use addr = 0");
|
||||
|
||||
// Implement "Don't care" permission as RW
|
||||
if (myPermission == MemoryPermissions::DontCare) myPermission = MemoryPermissions::ReadWrite;
|
||||
|
@ -209,7 +199,7 @@ void Kernel::createMemoryBlock() {
|
|||
}
|
||||
|
||||
void Kernel::unmapMemoryBlock() {
|
||||
Handle block = regs[0];
|
||||
HandleType block = regs[0];
|
||||
u32 addr = regs[1];
|
||||
logSVC("Unmap memory block (block handle = %X, addr = %08X)\n", block, addr);
|
||||
|
||||
|
|
|
@ -1,29 +1,30 @@
|
|||
#include "kernel.hpp"
|
||||
#include <cstring>
|
||||
|
||||
Handle Kernel::makePort(const char* name) {
|
||||
Handle ret = makeObject(KernelObjectType::Port);
|
||||
portHandles.push_back(ret); // Push the port handle to our cache of port handles
|
||||
#include "kernel.hpp"
|
||||
|
||||
HandleType Kernel::makePort(const char* name) {
|
||||
HandleType ret = makeObject(KernelObjectType::Port);
|
||||
portHandles.push_back(ret); // Push the port handle to our cache of port handles
|
||||
objects[ret].data = new Port(name);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
Handle Kernel::makeSession(Handle portHandle) {
|
||||
HandleType Kernel::makeSession(HandleType portHandle) {
|
||||
const auto port = getObject(portHandle, KernelObjectType::Port);
|
||||
if (port == nullptr) [[unlikely]] {
|
||||
Helpers::panic("Trying to make session for non-existent port");
|
||||
}
|
||||
|
||||
// Allocate data for session
|
||||
const Handle ret = makeObject(KernelObjectType::Session);
|
||||
const HandleType ret = makeObject(KernelObjectType::Session);
|
||||
objects[ret].data = new Session(portHandle);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Get the handle of a port based on its name
|
||||
// If there's no such port, return nullopt
|
||||
std::optional<Handle> Kernel::getPortHandle(const char* name) {
|
||||
std::optional<HandleType> Kernel::getPortHandle(const char* name) {
|
||||
for (auto handle : portHandles) {
|
||||
const auto data = objects[handle].getData<Port>();
|
||||
if (std::strncmp(name, data->name, Port::maxNameLen) == 0) {
|
||||
|
@ -34,7 +35,7 @@ std::optional<Handle> Kernel::getPortHandle(const char* name) {
|
|||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Result ConnectToPort(Handle* out, const char* portName)
|
||||
// Result ConnectToPort(HandleType* out, const char* portName)
|
||||
void Kernel::connectToPort() {
|
||||
const u32 handlePointer = regs[0];
|
||||
// Read up to max + 1 characters to see if the name is too long
|
||||
|
@ -48,14 +49,14 @@ void Kernel::connectToPort() {
|
|||
}
|
||||
|
||||
// Try getting a handle to the port
|
||||
std::optional<Handle> optionalHandle = getPortHandle(port.c_str());
|
||||
std::optional<HandleType> optionalHandle = getPortHandle(port.c_str());
|
||||
if (!optionalHandle.has_value()) [[unlikely]] {
|
||||
Helpers::panic("ConnectToPort: Port doesn't exist\n");
|
||||
regs[0] = Result::Kernel::NotFound;
|
||||
return;
|
||||
}
|
||||
|
||||
Handle portHandle = optionalHandle.value();
|
||||
HandleType portHandle = optionalHandle.value();
|
||||
|
||||
const auto portData = objects[portHandle].getData<Port>();
|
||||
if (!portData->isPublic) {
|
||||
|
@ -63,17 +64,17 @@ void Kernel::connectToPort() {
|
|||
}
|
||||
|
||||
// TODO: Actually create session
|
||||
Handle sessionHandle = makeSession(portHandle);
|
||||
HandleType sessionHandle = makeSession(portHandle);
|
||||
|
||||
regs[0] = Result::Success;
|
||||
regs[1] = sessionHandle;
|
||||
}
|
||||
|
||||
// Result SendSyncRequest(Handle session)
|
||||
// Result SendSyncRequest(HandleType session)
|
||||
// Send an IPC message to a port (typically "srv:") or a service
|
||||
void Kernel::sendSyncRequest() {
|
||||
const auto handle = regs[0];
|
||||
u32 messagePointer = getTLSPointer() + 0x80; // The message is stored starting at TLS+0x80
|
||||
u32 messagePointer = getTLSPointer() + 0x80; // The message is stored starting at TLS+0x80
|
||||
logSVC("SendSyncRequest(session handle = %X)\n", handle);
|
||||
|
||||
// Service calls via SendSyncRequest and file access needs to put the caller to sleep for a given amount of time
|
||||
|
@ -93,7 +94,7 @@ void Kernel::sendSyncRequest() {
|
|||
// Check if our sync request is targetting a file instead of a service
|
||||
bool isFileOperation = getObject(handle, KernelObjectType::File) != nullptr;
|
||||
if (isFileOperation) {
|
||||
regs[0] = Result::Success; // r0 goes first here too
|
||||
regs[0] = Result::Success; // r0 goes first here too
|
||||
handleFileOperation(messagePointer, handle);
|
||||
return;
|
||||
}
|
||||
|
@ -101,7 +102,7 @@ void Kernel::sendSyncRequest() {
|
|||
// Check if our sync request is targetting a directory instead of a service
|
||||
bool isDirectoryOperation = getObject(handle, KernelObjectType::Directory) != nullptr;
|
||||
if (isDirectoryOperation) {
|
||||
regs[0] = Result::Success; // r0 goes first here too
|
||||
regs[0] = Result::Success; // r0 goes first here too
|
||||
handleDirectoryOperation(messagePointer, handle);
|
||||
return;
|
||||
}
|
||||
|
@ -115,12 +116,12 @@ void Kernel::sendSyncRequest() {
|
|||
}
|
||||
|
||||
const auto sessionData = static_cast<Session*>(session->data);
|
||||
const Handle portHandle = sessionData->portHandle;
|
||||
const HandleType portHandle = sessionData->portHandle;
|
||||
|
||||
if (portHandle == srvHandle) { // Special-case SendSyncRequest targetting the "srv: port"
|
||||
if (portHandle == srvHandle) { // Special-case SendSyncRequest targetting the "srv: port"
|
||||
regs[0] = Result::Success;
|
||||
serviceManager.handleSyncRequest(messagePointer);
|
||||
} else if (portHandle == errorPortHandle) { // Special-case "err:f" for juicy logs too
|
||||
} else if (portHandle == errorPortHandle) { // Special-case "err:f" for juicy logs too
|
||||
regs[0] = Result::Success;
|
||||
handleErrorSyncRequest(messagePointer);
|
||||
} else {
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
#include "resource_limits.hpp"
|
||||
|
||||
#include "kernel.hpp"
|
||||
|
||||
// Result GetResourceLimit(Handle* resourceLimit, Handle process)
|
||||
// Result GetResourceLimit(HandleType* resourceLimit, HandleType process)
|
||||
// out: r0 -> result, r1 -> handle
|
||||
void Kernel::getResourceLimit() {
|
||||
const auto handlePointer = regs[0];
|
||||
|
@ -20,10 +21,10 @@ void Kernel::getResourceLimit() {
|
|||
regs[1] = processData->limits.handle;
|
||||
}
|
||||
|
||||
// Result GetResourceLimitLimitValues(s64* values, Handle resourceLimit, LimitableResource* names, s32 nameCount)
|
||||
// Result GetResourceLimitLimitValues(s64* values, HandleType resourceLimit, LimitableResource* names, s32 nameCount)
|
||||
void Kernel::getResourceLimitLimitValues() {
|
||||
u32 values = regs[0]; // Pointer to values (The resource limits get output here)
|
||||
const Handle resourceLimit = regs[1];
|
||||
u32 values = regs[0]; // Pointer to values (The resource limits get output here)
|
||||
const HandleType resourceLimit = regs[1];
|
||||
u32 names = regs[2]; // Pointer to resources that we should return
|
||||
u32 count = regs[3]; // Number of resources
|
||||
|
||||
|
@ -49,10 +50,10 @@ void Kernel::getResourceLimitLimitValues() {
|
|||
regs[0] = Result::Success;
|
||||
}
|
||||
|
||||
// Result GetResourceLimitCurrentValues(s64* values, Handle resourceLimit, LimitableResource* names, s32 nameCount)
|
||||
// Result GetResourceLimitCurrentValues(s64* values, HandleType resourceLimit, LimitableResource* names, s32 nameCount)
|
||||
void Kernel::getResourceLimitCurrentValues() {
|
||||
u32 values = regs[0]; // Pointer to values (The resource limits get output here)
|
||||
const Handle resourceLimit = regs[1];
|
||||
u32 values = regs[0]; // Pointer to values (The resource limits get output here)
|
||||
const HandleType resourceLimit = regs[1];
|
||||
u32 names = regs[2]; // Pointer to resources that we should return
|
||||
u32 count = regs[3]; // Number of resources
|
||||
logSVC("GetResourceLimitCurrentValues(values = %08X, handle = %X, names = %08X, count = %d)\n", values, resourceLimit, names, count);
|
||||
|
|
|
@ -33,7 +33,7 @@ void Kernel::switchThread(int newThreadIndex) {
|
|||
std::memcpy(cpu.fprs().data(), newThread.fprs.data(), cpu.fprs().size_bytes()); // Load 32 FPRs
|
||||
cpu.setCPSR(newThread.cpsr); // Load CPSR
|
||||
cpu.setFPSCR(newThread.fpscr); // Load FPSCR
|
||||
cpu.setTLSBase(newThread.tlsBase); // Load CP15 thread-local-storage pointer register
|
||||
cpu.setTLSBase(newThread.tlsBase); // Load CP15 thread-local-storage pointer register
|
||||
|
||||
currentThreadIndex = newThreadIndex;
|
||||
}
|
||||
|
@ -42,21 +42,19 @@ void Kernel::switchThread(int newThreadIndex) {
|
|||
// The threads with higher priority (aka the ones with a lower priority value) should come first in the vector
|
||||
void Kernel::sortThreads() {
|
||||
std::vector<int>& v = threadIndices;
|
||||
std::sort(v.begin(), v.end(), [&](int a, int b) {
|
||||
return threads[a].priority < threads[b].priority;
|
||||
});
|
||||
std::sort(v.begin(), v.end(), [&](int a, int b) { return threads[a].priority < threads[b].priority; });
|
||||
}
|
||||
|
||||
bool Kernel::canThreadRun(const Thread& t) {
|
||||
if (t.status == ThreadStatus::Ready) {
|
||||
return true;
|
||||
} else if (t.status == ThreadStatus::WaitSleep || t.status == ThreadStatus::WaitSync1
|
||||
|| t.status == ThreadStatus::WaitSyncAny || t.status == ThreadStatus::WaitSyncAll) {
|
||||
} else if (t.status == ThreadStatus::WaitSleep || t.status == ThreadStatus::WaitSync1 || t.status == ThreadStatus::WaitSyncAny ||
|
||||
t.status == ThreadStatus::WaitSyncAll) {
|
||||
// TODO: Set r0 to the correct error code on timeout for WaitSync{1/Any/All}
|
||||
return cpu.getTicks() >= t.wakeupTick;
|
||||
}
|
||||
|
||||
// Handle timeouts and stuff here
|
||||
// HandleType timeouts and stuff here
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -100,8 +98,8 @@ void Kernel::rescheduleThreads() {
|
|||
// Case 1: A thread can run
|
||||
if (newThreadIndex.has_value()) {
|
||||
switchThread(newThreadIndex.value());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Case 2: No other thread can run, straight to the idle thread
|
||||
else {
|
||||
switchThread(idleThreadIndex);
|
||||
|
@ -109,30 +107,30 @@ void Kernel::rescheduleThreads() {
|
|||
}
|
||||
|
||||
// Internal OS function to spawn a thread
|
||||
Handle Kernel::makeThread(u32 entrypoint, u32 initialSP, u32 priority, ProcessorID id, u32 arg, ThreadStatus status) {
|
||||
int index; // Index of the created thread in the threads array
|
||||
HandleType Kernel::makeThread(u32 entrypoint, u32 initialSP, u32 priority, ProcessorID id, u32 arg, ThreadStatus status) {
|
||||
int index; // Index of the created thread in the threads array
|
||||
|
||||
if (threadCount < appResourceLimits.maxThreads) [[likely]] { // If we have not yet created over too many threads
|
||||
if (threadCount < appResourceLimits.maxThreads) [[likely]] { // If we have not yet created over too many threads
|
||||
index = threadCount++;
|
||||
} else if (aliveThreadCount < appResourceLimits.maxThreads) { // If we have created many threads but at least one is dead & reusable
|
||||
} else if (aliveThreadCount < appResourceLimits.maxThreads) { // If we have created many threads but at least one is dead & reusable
|
||||
for (int i = 0; i < threads.size(); i++) {
|
||||
if (threads[i].status == ThreadStatus::Dead) {
|
||||
index = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else { // There is no thread we can use, we're screwed
|
||||
} else { // There is no thread we can use, we're screwed
|
||||
Helpers::panic("Overflowed thread count!!");
|
||||
}
|
||||
|
||||
aliveThreadCount++;
|
||||
|
||||
threadIndices.push_back(index);
|
||||
Thread& t = threads[index]; // Reference to thread data
|
||||
Handle ret = makeObject(KernelObjectType::Thread);
|
||||
Thread& t = threads[index]; // Reference to thread data
|
||||
HandleType ret = makeObject(KernelObjectType::Thread);
|
||||
objects[ret].data = &t;
|
||||
|
||||
const bool isThumb = (entrypoint & 1) != 0; // Whether the thread starts in thumb mode or not
|
||||
const bool isThumb = (entrypoint & 1) != 0; // Whether the thread starts in thumb mode or not
|
||||
|
||||
// Set up initial thread context
|
||||
t.gprs.fill(0);
|
||||
|
@ -150,7 +148,7 @@ Handle Kernel::makeThread(u32 entrypoint, u32 initialSP, u32 priority, Processor
|
|||
t.status = status;
|
||||
t.handle = ret;
|
||||
t.waitingAddress = 0;
|
||||
t.threadsWaitingForTermination = 0; // Thread just spawned, no other threads waiting for it to terminate
|
||||
t.threadsWaitingForTermination = 0; // Thread just spawned, no other threads waiting for it to terminate
|
||||
|
||||
t.cpsr = CPSR::UserMode | (isThumb ? CPSR::Thumb : 0);
|
||||
t.fpscr = FPSCR::ThreadDefault;
|
||||
|
@ -161,8 +159,8 @@ Handle Kernel::makeThread(u32 entrypoint, u32 initialSP, u32 priority, Processor
|
|||
return ret;
|
||||
}
|
||||
|
||||
Handle Kernel::makeMutex(bool locked) {
|
||||
Handle ret = makeObject(KernelObjectType::Mutex);
|
||||
HandleType Kernel::makeMutex(bool locked) {
|
||||
HandleType ret = makeObject(KernelObjectType::Mutex);
|
||||
objects[ret].data = new Mutex(locked, ret);
|
||||
|
||||
// If the mutex is initially locked, store the index of the thread that owns it and set lock count to 1
|
||||
|
@ -181,15 +179,15 @@ Handle Kernel::makeMutex(bool locked) {
|
|||
|
||||
void Kernel::releaseMutex(Mutex* moo) {
|
||||
// TODO: Assert lockCount > 0 before release, maybe. The SVC should be safe at least.
|
||||
moo->lockCount--; // Decrement lock count
|
||||
moo->lockCount--; // Decrement lock count
|
||||
|
||||
// If the lock count reached 0 then the thread no longer owns the mootex and it can be given to a new one
|
||||
if (moo->lockCount == 0) {
|
||||
moo->locked = false;
|
||||
|
||||
if (moo->waitlist != 0) {
|
||||
int index = wakeupOneThread(moo->waitlist, moo->handle); // Wake up one thread and get its index
|
||||
moo->waitlist ^= (1ull << index); // Remove thread from waitlist
|
||||
int index = wakeupOneThread(moo->waitlist, moo->handle); // Wake up one thread and get its index
|
||||
moo->waitlist ^= (1ull << index); // Remove thread from waitlist
|
||||
|
||||
// Have new thread acquire mutex
|
||||
moo->locked = true;
|
||||
|
@ -201,8 +199,8 @@ void Kernel::releaseMutex(Mutex* moo) {
|
|||
}
|
||||
}
|
||||
|
||||
Handle Kernel::makeSemaphore(u32 initialCount, u32 maximumCount) {
|
||||
Handle ret = makeObject(KernelObjectType::Semaphore);
|
||||
HandleType Kernel::makeSemaphore(u32 initialCount, u32 maximumCount) {
|
||||
HandleType ret = makeObject(KernelObjectType::Semaphore);
|
||||
objects[ret].data = new Semaphore(initialCount, maximumCount);
|
||||
|
||||
return ret;
|
||||
|
@ -221,7 +219,7 @@ void Kernel::acquireSyncObject(KernelObject* object, const Thread& thread) {
|
|||
switch (object->type) {
|
||||
case KernelObjectType::Event: {
|
||||
Event* e = object->getData<Event>();
|
||||
if (e->resetType == ResetType::OneShot) { // One-shot events automatically get cleared after waking up a thread
|
||||
if (e->resetType == ResetType::OneShot) { // One-shot events automatically get cleared after waking up a thread
|
||||
e->fired = false;
|
||||
}
|
||||
break;
|
||||
|
@ -245,15 +243,14 @@ void Kernel::acquireSyncObject(KernelObject* object, const Thread& thread) {
|
|||
|
||||
case KernelObjectType::Semaphore: {
|
||||
Semaphore* s = object->getData<Semaphore>();
|
||||
if (s->availableCount <= 0) [[unlikely]] // This should be unreachable but let's check anyways
|
||||
if (s->availableCount <= 0) [[unlikely]] // This should be unreachable but let's check anyways
|
||||
Helpers::panic("Tried to acquire unacquirable semaphore");
|
||||
|
||||
s->availableCount -= 1;
|
||||
break;
|
||||
}
|
||||
|
||||
case KernelObjectType::Thread:
|
||||
break;
|
||||
case KernelObjectType::Thread: break;
|
||||
|
||||
case KernelObjectType::Timer: {
|
||||
Timer* timer = object->getData<Timer>();
|
||||
|
@ -269,36 +266,36 @@ void Kernel::acquireSyncObject(KernelObject* object, const Thread& thread) {
|
|||
|
||||
// Wake up one of the threads in the waitlist (the one with highest prio) and return its index
|
||||
// Must not be called with an empty waitlist
|
||||
int Kernel::wakeupOneThread(u64 waitlist, Handle handle) {
|
||||
int Kernel::wakeupOneThread(u64 waitlist, HandleType handle) {
|
||||
if (waitlist == 0) [[unlikely]]
|
||||
Helpers::panic("[Internal error] It shouldn't be possible to call wakeupOneThread when there's 0 threads waiting!");
|
||||
|
||||
// Find the waiting thread with the highest priority.
|
||||
// We do this by first picking the first thread in the waitlist, then checking each other thread and comparing priority
|
||||
int threadIndex = std::countr_zero(waitlist); // Index of first thread
|
||||
int maxPriority = threads[threadIndex].priority; // Set initial max prio to the prio of the first thread
|
||||
waitlist ^= (1ull << threadIndex); // Remove thread from the waitlist
|
||||
int threadIndex = std::countr_zero(waitlist); // Index of first thread
|
||||
int maxPriority = threads[threadIndex].priority; // Set initial max prio to the prio of the first thread
|
||||
waitlist ^= (1ull << threadIndex); // Remove thread from the waitlist
|
||||
|
||||
while (waitlist != 0) {
|
||||
int newThread = std::countr_zero(waitlist); // Get new thread and evaluate whether it has a higher priority
|
||||
if (threads[newThread].priority < maxPriority) { // Low priority value means high priority
|
||||
int newThread = std::countr_zero(waitlist); // Get new thread and evaluate whether it has a higher priority
|
||||
if (threads[newThread].priority < maxPriority) { // Low priority value means high priority
|
||||
threadIndex = newThread;
|
||||
maxPriority = threads[newThread].priority;
|
||||
}
|
||||
|
||||
waitlist ^= (1ull << threadIndex); // Remove thread from waitlist
|
||||
waitlist ^= (1ull << threadIndex); // Remove thread from waitlist
|
||||
}
|
||||
|
||||
Thread& t = threads[threadIndex];
|
||||
switch (t.status) {
|
||||
case ThreadStatus::WaitSync1:
|
||||
t.status = ThreadStatus::Ready;
|
||||
t.gprs[0] = Result::Success; // The thread did not timeout, so write success to r0
|
||||
t.gprs[0] = Result::Success; // The thread did not timeout, so write success to r0
|
||||
break;
|
||||
|
||||
case ThreadStatus::WaitSyncAny:
|
||||
t.status = ThreadStatus::Ready;
|
||||
t.gprs[0] = Result::Success; // The thread did not timeout, so write success to r0
|
||||
t.gprs[0] = Result::Success; // The thread did not timeout, so write success to r0
|
||||
|
||||
// Get the index of the event in the object's waitlist, write it to r1
|
||||
for (size_t i = 0; i < t.waitList.size(); i++) {
|
||||
|
@ -309,44 +306,40 @@ int Kernel::wakeupOneThread(u64 waitlist, Handle handle) {
|
|||
}
|
||||
break;
|
||||
|
||||
case ThreadStatus::WaitSyncAll:
|
||||
Helpers::panic("WakeupOneThread: Thread on WaitSyncAll");
|
||||
break;
|
||||
case ThreadStatus::WaitSyncAll: Helpers::panic("WakeupOneThread: Thread on WaitSyncAll"); break;
|
||||
}
|
||||
|
||||
return threadIndex;
|
||||
}
|
||||
|
||||
// Wake up every single thread in the waitlist using a bit scanning algorithm
|
||||
void Kernel::wakeupAllThreads(u64 waitlist, Handle handle) {
|
||||
void Kernel::wakeupAllThreads(u64 waitlist, HandleType handle) {
|
||||
while (waitlist != 0) {
|
||||
const uint index = std::countr_zero(waitlist); // Get one of the set bits to see which thread is waiting
|
||||
waitlist ^= (1ull << index); // Remove thread from waitlist by toggling its bit
|
||||
const uint index = std::countr_zero(waitlist); // Get one of the set bits to see which thread is waiting
|
||||
waitlist ^= (1ull << index); // Remove thread from waitlist by toggling its bit
|
||||
|
||||
// Get the thread we'll be signalling
|
||||
Thread& t = threads[index];
|
||||
switch (t.status) {
|
||||
case ThreadStatus::WaitSync1:
|
||||
t.status = ThreadStatus::Ready;
|
||||
t.gprs[0] = Result::Success; // The thread did not timeout, so write success to r0
|
||||
break;
|
||||
case ThreadStatus::WaitSync1:
|
||||
t.status = ThreadStatus::Ready;
|
||||
t.gprs[0] = Result::Success; // The thread did not timeout, so write success to r0
|
||||
break;
|
||||
|
||||
case ThreadStatus::WaitSyncAny:
|
||||
t.status = ThreadStatus::Ready;
|
||||
t.gprs[0] = Result::Success; // The thread did not timeout, so write success to r0
|
||||
case ThreadStatus::WaitSyncAny:
|
||||
t.status = ThreadStatus::Ready;
|
||||
t.gprs[0] = Result::Success; // The thread did not timeout, so write success to r0
|
||||
|
||||
// Get the index of the event in the object's waitlist, write it to r1
|
||||
for (size_t i = 0; i < t.waitList.size(); i++) {
|
||||
if (t.waitList[i] == handle) {
|
||||
t.gprs[1] = u32(i);
|
||||
break;
|
||||
// Get the index of the event in the object's waitlist, write it to r1
|
||||
for (size_t i = 0; i < t.waitList.size(); i++) {
|
||||
if (t.waitList[i] == handle) {
|
||||
t.gprs[1] = u32(i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
break;
|
||||
|
||||
case ThreadStatus::WaitSyncAll:
|
||||
Helpers::panic("WakeupAllThreads: Thread on WaitSyncAll");
|
||||
break;
|
||||
case ThreadStatus::WaitSyncAll: Helpers::panic("WakeupAllThreads: Thread on WaitSyncAll"); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -404,12 +397,11 @@ void Kernel::sleepThread(s64 ns) {
|
|||
void Kernel::createThread() {
|
||||
u32 priority = regs[0];
|
||||
u32 entrypoint = regs[1];
|
||||
u32 arg = regs[2]; // An argument value stored in r0 of the new thread
|
||||
u32 initialSP = regs[3] & ~7; // SP is force-aligned to 8 bytes
|
||||
u32 arg = regs[2]; // An argument value stored in r0 of the new thread
|
||||
u32 initialSP = regs[3] & ~7; // SP is force-aligned to 8 bytes
|
||||
s32 id = static_cast<s32>(regs[4]);
|
||||
|
||||
logSVC("CreateThread(entry = %08X, stacktop = %08X, arg = %X, priority = %X, processor ID = %d)\n", entrypoint,
|
||||
initialSP, arg, priority, id);
|
||||
logSVC("CreateThread(entry = %08X, stacktop = %08X, arg = %X, priority = %X, processor ID = %d)\n", entrypoint, initialSP, arg, priority, id);
|
||||
|
||||
if (priority > 0x3F) [[unlikely]] {
|
||||
Helpers::panic("Created thread with bad priority value %X", priority);
|
||||
|
@ -429,14 +421,14 @@ void Kernel::createThread() {
|
|||
// void SleepThread(s64 nanoseconds)
|
||||
void Kernel::svcSleepThread() {
|
||||
const s64 ns = s64(u64(regs[0]) | (u64(regs[1]) << 32));
|
||||
//logSVC("SleepThread(ns = %lld)\n", ns);
|
||||
// logSVC("SleepThread(ns = %lld)\n", ns);
|
||||
|
||||
regs[0] = Result::Success;
|
||||
sleepThread(ns);
|
||||
}
|
||||
|
||||
void Kernel::getThreadID() {
|
||||
Handle handle = regs[1];
|
||||
HandleType handle = regs[1];
|
||||
logSVC("GetThreadID(handle = %X)\n", handle);
|
||||
|
||||
if (handle == KernelHandles::CurrentThread) {
|
||||
|
@ -456,7 +448,7 @@ void Kernel::getThreadID() {
|
|||
}
|
||||
|
||||
void Kernel::getThreadPriority() {
|
||||
const Handle handle = regs[1];
|
||||
const HandleType handle = regs[1];
|
||||
logSVC("GetThreadPriority (handle = %X)\n", handle);
|
||||
|
||||
if (handle == KernelHandles::CurrentThread) {
|
||||
|
@ -474,7 +466,7 @@ void Kernel::getThreadPriority() {
|
|||
}
|
||||
|
||||
void Kernel::getThreadIdealProcessor() {
|
||||
const Handle handle = regs[1]; // Thread handle
|
||||
const HandleType handle = regs[1]; // Thread handle
|
||||
logSVC("GetThreadIdealProcessor (handle = %X)\n", handle);
|
||||
|
||||
// TODO: Not documented what this is or what it does. Citra doesn't implement it at all. Return AppCore as the ideal processor for now
|
||||
|
@ -490,7 +482,7 @@ void Kernel::getThreadContext() {
|
|||
}
|
||||
|
||||
void Kernel::setThreadPriority() {
|
||||
const Handle handle = regs[0];
|
||||
const HandleType handle = regs[0];
|
||||
const u32 priority = regs[1];
|
||||
logSVC("SetThreadPriority (handle = %X, priority = %X)\n", handle, priority);
|
||||
|
||||
|
@ -524,9 +516,7 @@ void Kernel::getCurrentProcessorNumber() {
|
|||
// Until we properly implement per-core schedulers, return whatever processor ID passed to svcCreateThread
|
||||
switch (id) {
|
||||
// TODO: This is picked from exheader
|
||||
case ProcessorID::Default:
|
||||
ret = static_cast<s32>(ProcessorID::AppCore);
|
||||
break;
|
||||
case ProcessorID::Default: ret = static_cast<s32>(ProcessorID::AppCore); break;
|
||||
|
||||
case ProcessorID::AllCPUs:
|
||||
ret = static_cast<s32>(ProcessorID::AppCore);
|
||||
|
@ -565,8 +555,7 @@ void Kernel::exitThread() {
|
|||
|
||||
// Remove the index of this thread from the thread indices vector
|
||||
for (int i = 0; i < threadIndices.size(); i++) {
|
||||
if (threadIndices[i] == currentThreadIndex)
|
||||
threadIndices.erase(threadIndices.begin() + i);
|
||||
if (threadIndices[i] == currentThreadIndex) threadIndices.erase(threadIndices.begin() + i);
|
||||
}
|
||||
|
||||
Thread& t = threads[currentThreadIndex];
|
||||
|
@ -576,9 +565,9 @@ void Kernel::exitThread() {
|
|||
// Check if any threads are sleeping, waiting for this thread to terminate, and wake them up
|
||||
// This is how thread joining is implemented in the kernel - you wait on a thread, like any other wait object.
|
||||
if (t.threadsWaitingForTermination != 0) {
|
||||
// TODO: Handle cloned handles? Not sure how those interact with wait object signalling
|
||||
// TODO: HandleType cloned handles? Not sure how those interact with wait object signalling
|
||||
wakeupAllThreads(t.threadsWaitingForTermination, t.handle);
|
||||
t.threadsWaitingForTermination = 0; // No other threads waiting
|
||||
t.threadsWaitingForTermination = 0; // No other threads waiting
|
||||
}
|
||||
|
||||
requireReschedule();
|
||||
|
@ -593,7 +582,7 @@ void Kernel::svcCreateMutex() {
|
|||
}
|
||||
|
||||
void Kernel::svcReleaseMutex() {
|
||||
const Handle handle = regs[0];
|
||||
const HandleType handle = regs[0];
|
||||
logSVC("ReleaseMutex (handle = %x)\n", handle);
|
||||
|
||||
const auto object = getObject(handle, KernelObjectType::Mutex);
|
||||
|
@ -619,18 +608,16 @@ void Kernel::svcCreateSemaphore() {
|
|||
s32 maxCount = static_cast<s32>(regs[2]);
|
||||
logSVC("CreateSemaphore (initial count = %d, max count = %d)\n", initialCount, maxCount);
|
||||
|
||||
if (initialCount > maxCount)
|
||||
Helpers::panic("CreateSemaphore: Initial count higher than max count");
|
||||
if (initialCount > maxCount) Helpers::panic("CreateSemaphore: Initial count higher than max count");
|
||||
|
||||
if (initialCount < 0 || maxCount < 0)
|
||||
Helpers::panic("CreateSemaphore: Negative count value");
|
||||
if (initialCount < 0 || maxCount < 0) Helpers::panic("CreateSemaphore: Negative count value");
|
||||
|
||||
regs[0] = Result::Success;
|
||||
regs[1] = makeSemaphore(initialCount, maxCount);
|
||||
}
|
||||
|
||||
void Kernel::svcReleaseSemaphore() {
|
||||
const Handle handle = regs[1];
|
||||
const HandleType handle = regs[1];
|
||||
const s32 releaseCount = static_cast<s32>(regs[2]);
|
||||
logSVC("ReleaseSemaphore (handle = %X, release count = %d)\n", handle, releaseCount);
|
||||
|
||||
|
@ -641,12 +628,10 @@ void Kernel::svcReleaseSemaphore() {
|
|||
return;
|
||||
}
|
||||
|
||||
if (releaseCount < 0)
|
||||
Helpers::panic("ReleaseSemaphore: Negative count");
|
||||
if (releaseCount < 0) Helpers::panic("ReleaseSemaphore: Negative count");
|
||||
|
||||
Semaphore* s = object->getData<Semaphore>();
|
||||
if (s->maximumCount - s->availableCount < releaseCount)
|
||||
Helpers::panic("ReleaseSemaphore: Release count too high");
|
||||
if (s->maximumCount - s->availableCount < releaseCount) Helpers::panic("ReleaseSemaphore: Release count too high");
|
||||
|
||||
// Write success and old available count to r0 and r1 respectively
|
||||
regs[0] = Result::Success;
|
||||
|
@ -656,10 +641,10 @@ void Kernel::svcReleaseSemaphore() {
|
|||
|
||||
// Wake up threads one by one until the available count hits 0 or we run out of threads to wake up
|
||||
while (s->availableCount > 0 && s->waitlist != 0) {
|
||||
int index = wakeupOneThread(s->waitlist, handle); // Wake up highest priority thread
|
||||
s->waitlist ^= (1ull << index); // Remove thread from waitlist
|
||||
int index = wakeupOneThread(s->waitlist, handle); // Wake up highest priority thread
|
||||
s->waitlist ^= (1ull << index); // Remove thread from waitlist
|
||||
|
||||
s->availableCount--; // Decrement available count
|
||||
s->availableCount--; // Decrement available count
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -675,25 +660,23 @@ bool Kernel::isWaitable(const KernelObject* object) {
|
|||
// Returns whether we should wait on a sync object or not
|
||||
bool Kernel::shouldWaitOnObject(KernelObject* object) {
|
||||
switch (object->type) {
|
||||
case KernelObjectType::Event: // We should wait on an event only if it has not been signalled
|
||||
case KernelObjectType::Event: // We should wait on an event only if it has not been signalled
|
||||
return !object->getData<Event>()->fired;
|
||||
|
||||
case KernelObjectType::Mutex: {
|
||||
Mutex* moo = object->getData<Mutex>(); // mooooooooooo
|
||||
return moo->locked && moo->ownerThread != currentThreadIndex; // If the current thread owns the moo then no reason to wait
|
||||
Mutex* moo = object->getData<Mutex>(); // mooooooooooo
|
||||
return moo->locked && moo->ownerThread != currentThreadIndex; // If the current thread owns the moo then no reason to wait
|
||||
}
|
||||
|
||||
case KernelObjectType::Thread: // Waiting on a thread waits until it's dead. If it's dead then no need to wait
|
||||
case KernelObjectType::Thread: // Waiting on a thread waits until it's dead. If it's dead then no need to wait
|
||||
return object->getData<Thread>()->status != ThreadStatus::Dead;
|
||||
|
||||
case KernelObjectType::Timer: // We should wait on a timer only if it has not been signalled
|
||||
case KernelObjectType::Timer: // We should wait on a timer only if it has not been signalled
|
||||
return !object->getData<Timer>()->fired;
|
||||
|
||||
case KernelObjectType::Semaphore: // Wait if the semaphore count <= 0
|
||||
case KernelObjectType::Semaphore: // Wait if the semaphore count <= 0
|
||||
return object->getData<Semaphore>()->availableCount <= 0;
|
||||
|
||||
default:
|
||||
Helpers::panic("Not sure whether to wait on object (type: %s)", object->getTypeName());
|
||||
return true;
|
||||
default: Helpers::panic("Not sure whether to wait on object (type: %s)", object->getTypeName()); return true;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -4,8 +4,8 @@
|
|||
#include "kernel.hpp"
|
||||
#include "scheduler.hpp"
|
||||
|
||||
Handle Kernel::makeTimer(ResetType type) {
|
||||
Handle ret = makeObject(KernelObjectType::Timer);
|
||||
HandleType Kernel::makeTimer(ResetType type) {
|
||||
HandleType ret = makeObject(KernelObjectType::Timer);
|
||||
objects[ret].data = new Timer(type);
|
||||
|
||||
if (type == ResetType::Pulse) {
|
||||
|
@ -52,11 +52,9 @@ void Kernel::pollTimers() {
|
|||
}
|
||||
}
|
||||
|
||||
void Kernel::cancelTimer(Timer* timer) {
|
||||
timer->running = false;
|
||||
}
|
||||
void Kernel::cancelTimer(Timer* timer) { timer->running = false; }
|
||||
|
||||
void Kernel::signalTimer(Handle timerHandle, Timer* timer) {
|
||||
void Kernel::signalTimer(HandleType timerHandle, Timer* timer) {
|
||||
timer->fired = true;
|
||||
requireReschedule();
|
||||
|
||||
|
@ -94,7 +92,7 @@ void Kernel::svcCreateTimer() {
|
|||
}
|
||||
|
||||
void Kernel::svcSetTimer() {
|
||||
Handle handle = regs[0];
|
||||
HandleType handle = regs[0];
|
||||
// TODO: Is this actually s64 or u64? 3DBrew says s64, but u64 makes more sense
|
||||
const s64 initial = s64(u64(regs[2]) | (u64(regs[3]) << 32));
|
||||
const s64 interval = s64(u64(regs[1]) | (u64(regs[4]) << 32));
|
||||
|
@ -112,7 +110,7 @@ void Kernel::svcSetTimer() {
|
|||
timer->interval = interval;
|
||||
timer->running = true;
|
||||
timer->fireTick = cpu.getTicks() + Scheduler::nsToCycles(initial);
|
||||
|
||||
|
||||
Scheduler& scheduler = cpu.getScheduler();
|
||||
// Signal an event to poll timers as soon as possible
|
||||
scheduler.removeEvent(Scheduler::EventType::UpdateTimers);
|
||||
|
@ -127,7 +125,7 @@ void Kernel::svcSetTimer() {
|
|||
}
|
||||
|
||||
void Kernel::svcClearTimer() {
|
||||
Handle handle = regs[0];
|
||||
HandleType handle = regs[0];
|
||||
logSVC("ClearTimer (handle = %X)\n", handle);
|
||||
KernelObject* object = getObject(handle, KernelObjectType::Timer);
|
||||
|
||||
|
@ -141,7 +139,7 @@ void Kernel::svcClearTimer() {
|
|||
}
|
||||
|
||||
void Kernel::svcCancelTimer() {
|
||||
Handle handle = regs[0];
|
||||
HandleType handle = regs[0];
|
||||
logSVC("CancelTimer (handle = %X)\n", handle);
|
||||
KernelObject* object = getObject(handle, KernelObjectType::Timer);
|
||||
|
||||
|
@ -152,4 +150,4 @@ void Kernel::svcCancelTimer() {
|
|||
cancelTimer(object->getData<Timer>());
|
||||
regs[0] = Result::Success;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue