Panda3DS/include/audio/hle_core.hpp
2024-11-28 19:10:55 +02:00

227 lines
8.2 KiB
C++

#pragma once
#include <array>
#include <cassert>
#include <deque>
#include <memory>
#include <queue>
#include <vector>
#include "audio/aac.hpp"
#include "audio/aac_decoder.hpp"
#include "audio/audio_interpolation.hpp"
#include "audio/dsp_core.hpp"
#include "audio/dsp_shared_mem.hpp"
#include "audio/hle_mixer.hpp"
#include "memory.hpp"
namespace Audio {
struct DSPSource {
// Audio buffer information
// https://www.3dbrew.org/wiki/DSP_Memory_Region
struct Buffer {
u32 paddr; // Physical address of the buffer
u32 sampleCount; // Total number of samples
u8 adpcmScale; // ADPCM predictor/scale
u8 pad1; // Unknown
std::array<s16, 2> previousSamples; // ADPCM y[n-1] and y[n-2]
bool adpcmDirty;
bool looping;
u16 bufferID;
u8 pad2;
u32 playPosition = 0; // Current position in the buffer
SampleFormat format;
SourceType sourceType;
bool fromQueue = false; // Is this buffer from the buffer queue or an embedded buffer?
bool hasPlayedOnce = false; // Has the buffer been played at least once before?
bool operator<(const Buffer& other) const {
// Lower ID = Higher priority
// If this buffer ID is greater than the other one, then this buffer has a lower priority
return this->bufferID > other.bufferID;
}
};
// Buffer of decoded PCM16 samples. TODO: Are there better alternatives to use over deque?
using SampleBuffer = std::deque<std::array<s16, 2>>;
using BufferQueue = std::priority_queue<Buffer>;
using InterpolationMode = HLE::SourceConfiguration::Configuration::InterpolationMode;
using InterpolationState = Audio::Interpolation::State;
// The samples this voice output for this audio frame.
// Aligned to 4 for SIMD purposes.
alignas(4) DSPMixer::StereoFrame<s16> currentFrame;
BufferQueue buffers;
SampleFormat sampleFormat = SampleFormat::ADPCM;
SourceType sourceType = SourceType::Stereo;
InterpolationMode interpolationMode = InterpolationMode::Linear;
InterpolationState interpolationState;
// There's one gain configuration for each of the 3 intermediate mixing stages
// And each gain configuration is composed of 4 gain values, one for each sample in a quad-channel sample
// Aligned to 16 for SIMD purposes
alignas(16) std::array<std::array<float, 4>, 3> gains;
// Of the 3 intermediate mix stages, typically only the first one is actually enabled and the other ones do nothing
// Ie their gain is vec4(0.0). We track which stages are disabled (have a gain of all 0s) using this bitfield and skip them
// In order to save up on CPU time.
uint enabledMixStages = 0;
u32 samplePosition; // Sample number into the current audio buffer
float rateMultiplier;
u16 syncCount;
u16 currentBufferID;
u16 previousBufferID;
bool enabled; // Is the source enabled?
bool isBufferIDDirty = false; // Did we change buffers?
// ADPCM decoding info:
// An array of fixed point S5.11 coefficients. These provide "weights" for the history samples
// The system describing how an ADPCM output sample is generated is
// y[n] = x[n] + 0.5 + coeff1 * y[n-1] + coeff2 * y[n-2]
// Where y[n] is the output sample we're generating, x[n] is the ADPCM "differential" of the current sample
// And coeff1/coeff2 are the coefficients from this array that are used for weighing the history samples
std::array<s16, 16> adpcmCoefficients;
s16 history1; // y[n-1], the previous output sample
s16 history2; // y[n-2], the previous previous output sample
SampleBuffer currentSamples;
int index = 0; // Index of the voice in [0, 23] for debugging
void reset();
// Push a buffer to the buffer queue
void pushBuffer(const Buffer& buffer) { buffers.push(buffer); }
// Pop a buffer from the buffer queue and return it
Buffer popBuffer() {
assert(!buffers.empty());
Buffer ret = buffers.top();
buffers.pop();
return ret;
}
DSPSource() { reset(); }
};
class HLE_DSP : public DSPCore {
// The audio frame types are public in case we want to use them for unit tests
public:
template <typename T, usize channelCount = 1>
using Sample = DSPMixer::Sample<T, channelCount>;
template <typename T, usize channelCount>
using Frame = DSPMixer::Frame<T, channelCount>;
template <typename T>
using MonoFrame = DSPMixer::MonoFrame<T>;
template <typename T>
using StereoFrame = DSPMixer::StereoFrame<T>;
template <typename T>
using QuadFrame = DSPMixer::QuadFrame<T>;
using Source = Audio::DSPSource;
using SampleBuffer = Source::SampleBuffer;
using IntermediateMix = DSPMixer::IntermediateMix;
private:
enum class DSPState : u32 {
Off,
On,
Slep,
};
// Number of DSP pipes
static constexpr size_t pipeCount = 8;
DSPState dspState;
std::array<std::vector<u8>, pipeCount> pipeData; // The data of each pipe
std::array<Source, Audio::HLE::sourceCount> sources; // DSP voices
Audio::HLE::DspMemory dspRam;
Audio::DSPMixer mixer;
std::unique_ptr<Audio::AAC::Decoder> aacDecoder;
void resetAudioPipe();
bool loaded = false; // Have we loaded a component?
// Get the index for the current region we'll be reading. Returns the region with the highest frame counter
// Accounting for whether one of the frame counters has wrapped around
usize readRegionIndex() const {
const auto counter0 = dspRam.region0.frameCounter;
const auto counter1 = dspRam.region1.frameCounter;
// Handle wraparound cases first
if (counter0 == 0xffff && counter1 != 0xfffe) {
return 1;
} else if (counter1 == 0xffff && counter0 != 0xfffe) {
return 0;
} else {
return (counter0 > counter1) ? 0 : 1;
}
}
// DSP shared memory is double buffered; One region is being written to while the other one is being read from
Audio::HLE::SharedMemory& readRegion() { return readRegionIndex() == 0 ? dspRam.region0 : dspRam.region1; }
Audio::HLE::SharedMemory& writeRegion() { return readRegionIndex() == 0 ? dspRam.region1 : dspRam.region0; }
// Get a pointer of type T* to the data starting from physical address paddr
template <typename T>
T* getPointerPhys(u32 paddr, u32 size = 0) {
if (paddr >= PhysicalAddrs::FCRAM && paddr + size <= PhysicalAddrs::FCRAMEnd) {
u8* fcram = mem.getFCRAM();
u32 index = paddr - PhysicalAddrs::FCRAM;
return (T*)&fcram[index];
} else if (paddr >= PhysicalAddrs::DSP_RAM && paddr + size <= PhysicalAddrs::DSP_RAM_End) {
u32 index = paddr - PhysicalAddrs::DSP_RAM;
return (T*)&dspRam.rawMemory[index];
} else [[unlikely]] {
Helpers::warn("[DSP] Tried to access unknown physical address: %08X", paddr);
return nullptr;
}
}
void handleAACRequest(const AAC::Message& request);
void updateSourceConfig(Source& source, HLE::SourceConfiguration::Configuration& config, s16_le* adpcmCoefficients);
void updateMixerConfig(HLE::SharedMemory& sharedMem);
void generateFrame(StereoFrame<s16>& frame);
void generateFrame(DSPSource& source);
void outputFrame();
// Perform the final mix, mixing the quadraphonic samples from all voices into the output audio frame
void performMix(Audio::HLE::SharedMemory& readRegion, Audio::HLE::SharedMemory& writeRegion);
// Decode an entire buffer worth of audio
void decodeBuffer(DSPSource& source);
SampleBuffer decodePCM8(const u8* data, usize sampleCount, Source& source);
SampleBuffer decodePCM16(const u8* data, usize sampleCount, Source& source);
SampleBuffer decodeADPCM(const u8* data, usize sampleCount, Source& source);
public:
HLE_DSP(Memory& mem, Scheduler& scheduler, DSPService& dspService, EmulatorConfig& config);
~HLE_DSP() override {}
void reset() override;
void runAudioFrame(u64 eventTimestamp) override;
u8* getDspMemory() override { return dspRam.rawMemory.data(); }
u16 recvData(u32 regId) override;
bool recvDataIsReady(u32 regId) override { return true; } // Treat data as always ready
void writeProcessPipe(u32 channel, u32 size, u32 buffer) override;
std::vector<u8> readPipe(u32 channel, u32 peer, u32 size, u32 buffer) override;
void loadComponent(std::vector<u8>& data, u32 programMask, u32 dataMask) override;
void unloadComponent() override;
void setSemaphore(u16 value) override {}
void setSemaphoreMask(u16 value) override {}
};
} // namespace Audio